REPORTS
(1) THE

UNITED STATES (OMMISSIONEDS

TO THE

LNIVERSAL EXPOSITION OF 1889

A'T PARIS.
 by Acthonity of conianess.

Vohime III.

SIXTH GROUP.

WASHINGTON: GOVERNMENT PRINTING OFFIOE.
1891.

C(ONTENTS ()I V()LUME III.

 l'are.

- 'IARIE: 13. RICHARIS. 1
 18.7
 24.5
Marhinu touls .Jous H. Bark. :31:3
 J. M. Merkow :311
Mamufacture of bria-k ans tiles H. I). Wonds. 4117
Railway plant 4:3:1
 i4:3
linles $x \times 1$

ILLUSTRATIONS IN VOLUME III.

Generaf, Review : rape.
l'ate I. View of the interior of Machinery Hall, showing United States nection Frontispiece.
Plate II. J. A. Fay \& Cu.'s exhibit of wood-working machinery 44
Figure 1. Coxe \& Salmon's gyrating screen; roller bearing 25
Figure 2. Coxe \& Salınon's gyrating wreen ; jerspective view 28
Figures 3-N. American Syrew Company's procesw for threading word screws 31
Figure 8. The Reere buttonhole sewing machine 35
Figure 10. Hurtu \& Hautin's combroidering machine 40
Figure 11. Legat's machine for sewing straw braid 42
 45
Figure 13. Saw lench for mitering : by J. A. Fay \& ('o. U'nited Nitates. 45
Figure 14. The Thorne typersetting and distributing machine 53
Figure 15. Bicyolette : Howe Machine ('o., (ilasgow 31
Figure 16. Tricycle: Humber \& ('o., Lomdon 62
Figure 1\%. Serpolet's steam tricycle 63
(ieneral Mechanics:
Steram lucilores.
Figures 1 and 2 . The Babeock \& Wileor builer: section and front view. 81
Figure 3. Kuap's moditication of Ront's looilor $8:$
Figures 4 and 5. End view and sertionof Momentiof Knapes Root boilar. 83
Figures 6 and 7. The De Nayer builer: seetion and end view of elements. Nis
Figuress x and 9. The luser borilar. 8.5
Figure: 10. The Belleville boiler 8
Fisure 11. The Is lle ville lasiler x
Figure 1:. End view of a single dement of the Bedleville boilar N
Figure 13. Dulac's lxoiler 91
Figure 14. Dulaces woilar : Field tulke with sediment collowton 12
Figure 15. Stationary boiler with remowable farnate: Wievh r \& Riche- mond, France 92
Figures 18 and 17. S'mi-portable kxiler with remosable furnan. 93
 94
Figure 19. Serpolet's steam gellerator: vertical section 94
Figure ?ll. Serpolet's stamill gemerator: "ross seretion 9.9
Figure il. Serpelet's stam generator with three dements 95
Steroll engimes.
Fipure ${ }_{2}$. Triphexpansion wortical rngine by Wher \& Richemond. Frame $1(6)$
 engive . sections 101
General Mechanic:-('ontinued. Pag\%.
Figure 2i. Weyher \& Richemomd's triple-expansion engine ; vertical sec-

- tion 102
Figure 26. Wryher \& Richemond's compound comlensing semi-por- table stram engine $10: 5$
Figure 27. Fareetes Corliss engine ; vertical sertion of cylimere 10\%
Figure ${ }^{2}$. Leerouteux \& (iarnier's Corliss valve gear, with device for prolonging the admission beyond half stroke 1018
Figure 24. Stenm jacketed $\cdot \mathrm{y}$ linder of the Iavouteux \& Garnier engine 1199
Flgure 30. Bomjour's engine : side view of 'ylinder. 1111
Figure 31. Bonjour'n engine ; crons wection of celiniler 111
Figure 32. Fricart's releasing valo gear : genemalarangenent $11:$
 114
Figures 37 and $3 \boldsymbol{N}$. Fricart's valve gear: exhanst and stean valve dia- gramis $11 . i$
Figure 39. Fricart's halaneed valoe 116
Figure 40. 'ylinders of Sutar Brothers' tandem triple-expansion hori- zontal יngine 118
Figure 41. Indicator diagram from the evinders of sulares tambem an- цін" 119
Figure 12. Diagrann of tankeltial preswers onthe crank pia 119
 Escher. Wyss \& (\%., Zurich. $1: 1$
Figures 44 and 45. Whe dick's new system of values, $1: 7$
Figure 46. Parsoms's compounl stam turbine; general view $1: i$
Figure 47. Parsonsis compound steam turbine; longitudinal swrion $1: 4$
Figure $4 x$. Parsons's compound stamaturber : section of end of turbine and of one loaring $1: 9$
Giax ringi"us.
Figures 49 and 50 . Vertical gan compine: (otor type 1:35
Figure 51. Horizontal (otto gat rugine with puppet values: wetion of breech $1: 37$
Figute 5: The "Simplex" gats ragilne of for horse power: side view 138
 1:39
 141
Figure \boldsymbol{n}^{2}. Pendulum governor of the "simplex" gas engine. 1.4)
Figure is. Agricultural gats engine. with carhurizer 14.5
Figures 57 and 5s. Ravel's gas engine 146
Figure 69. Ragnts petroldum vapar "hpian 144
 149
 tulw iznitur 149
Fixure be. Igniting : 1:9
F"gure fas. The Baldwing gat rofite: sentional view 1.1
 $1.5:$
H!!!ranliar minchinerry.
 the wertical fitard turbines. 1.99
Figure bif. The Chat-de-Fombs water works: surtimal view of the phan- sur $\begin{aligned} \text { gumps }\end{aligned}$ 160
 works, Switzerland: view showing the general arramement. 164
General Mechasics-Continued. l'a,pe.
Figures 68 and 69 . Plan and wection of one of the turbines of the water works at Geneva. Swit\%erland 16.5
Figure fo. small incosed (xirard wheel, by Eschary, W'ys de (io.. of Zurich, Switzerland 168
Figure il. (iduldeblade crown, and pliable roll-up gate for a tarbine. ly Brault, Tiswett \& (iillet, Frame e. 169
Figure iv. Stegment and rollers for the pliable wate shown in Fig. $71 . .$. 1684
 eral view and sections 171
Figure Fis. Aretion of lower half of Bergeses whed for a high head of water. 172
Figure 7%. Spout and short section of buckete of Berges.s whed. $1: 2$
Figures is and 78 . Montrichatrl's valveless pump. 17:3
Figure wis. The Worthington high-daty pumping engine: қentral view. 173
Figure 81 . The Worthington higheduty pumping engine: seretion $17 i$
Figure s.: The Worthingt on high-duty pumping engrine: diagran show- iag the action of the compernsitilig apparatus. 17x
 1×2
 tethels 1×3
 $1 \times i$
 contrifugal pumpos. 104
 rular croses sactiont ins
Figuru Kx. Fartot's smalleq centrifugal pmon! 19:!
Fignter N!. Deroures centrifugal jumpl: arotional virw 15!
 heighit $1!11$
 water from derep wolls. $1: 11$
 $14: 3$
 $1: 14$
 $1: 4 i$
 110
 $1!1 \times$
 :111;
 $31!$

 $\because 11$
 $\because: 11$
 Hacel in the primeipal ottion.a. $\because!$
 $\because: 9$
 $\because \because 4$
 $3: 9$

$3: 9$
 $3: 9$
（if．neral Mfchanics－（ontinued． Page．
Figure 108．Bussis truhometer；front view 230
Figure 109．Bussis tarliometer；one of the pemindams 230
Figures 100 and 111 ．Bussis tachometer；sections of end of mindle and penchlulums 231
Figure 112．Upright tachometor 232
Figure 11：3．Bussis portable tachometer 232
Figuran 114 and 115．Bussis - gered recorcler 2：3：3
Figure 110．Kecord of the mered of hoisting in a colliery：manle liy a IBusa sincoll rocorder ：34
Figures 117 and 118 ．Shembheyder＇s water meter 235
Figure 119．Si hönherdar＇s water metor；plan 236
Figure 120．Thomentis watur metor ： 41
Figure 1：1．Thomanon＇s water meter：nectional view 242

Figures 1－3．Lijpunann＇к filtoring columи $: 48$
Figures 4－1）．Lippmannix bering toxols． 2.1
Figures \boldsymbol{T} and K ．Lippmannis nippers for shaft sinking 20
Figure 9．Arrault＇s jertable siaking outtit，for holes from in to tij fert Herl｜ 2.53
 tubbing colum＂！ 2．5
 alnk through quicksand 2iv
 2 15
 21：
 ： 14
Figures 23 and 24 ．Inriving in head rock with the ram drill $2(6)$
Figures 3^{5} athl 26 ．Driving in selhist with the ratur drill 216
Figure ：27．＇Tail－rope governor；armangement for lowering tilling at Lỵons －halt ：2il
Figure is．Tail－rone governor：curves showing the veloxity of the cages． ：2：3
Figures 20 and 30 ．Liffermatial hadance for pump ronds． ：24
Figure ：31．Differential halanco：diagram of its working 275
Figure ：is．（i，Pinctis hointing ellgine 2Tis
Figure ：3s．（＇hampigny＇s gromeded pulley 2：
 2011
Figure 3i．（iraty nafety lathp 201
Figures： 36 and ：3\％．Fumat＇s lamp 31
Figure $3 k$ ．Frouch form of Marsatutes lamp． 2N：3
Figurn ：39．Muenelar＇s lathp 3×4
 ：3．7
 2n：
Figure 43，Appamaths for op－ning Ratfardis magalic fastening ？ni
Figure ft．Fremeh form of Marsatits safety lamp．With leal rivet fastening こni
Firumes 4ij－ti．Mardy sink ：3x
Figure 48. Hardy＇－maltiple worlge． ごい！
Figure f！．Tramanmation ly hanging chains at dïn－Sedmat phan of rail－ Way 2×1
 $\because(H)$
Figure ol．Tramsurtation ly hanging rhains at dïn－hedmat station at hand of sertion 241
 2：3：3
 tion 29.5
 J'age"
 296
- Figure 5.t. Fougeratin pastont basculeur 296
Figurn in. (oal-transferring plant at Eleu 288
Figures $5 \boldsymbol{j}-\mathbf{- j 0}$. Viala's patent automatic lateh for cobal cars 300
Figure 60. The Blake multiple-.jaw crusher: ofnened to show its construe- tion 301
Finure *1. The Blake multiple-jaw crunher ready for work 3112
Figures 62 and 18: Chatillon \& Commentry's reversing plate mill: arrange. ment for tipping the upper roll. 3 318
Figure 64. ('hatillon \& ('ommentry'x phate mill: detailof the tipping sear. 307
Figuros dis-il. (hatillon \& Commentry's plate mill: artangement for ketping the spindles puralled 308
Figure il. Engine-frame plate flanged lig Fox's prowess 311
Figure $\boldsymbol{7}$. ! attittoin fllax platen 312
Figure is. Kilfonkimming foundry lalle 312
Machisf: tomis:
Figure 1. C'pright milling machine, by Iariquand \& Sons. Franco 318
Figure :. Milling machine with vertiend and horizontal mindles: I'. Muri. France $32:$
Figure 3. Machinu for straightening taps, etc.. by Murtu \& Jantin, France : $: 1$
Figure 4. Large bami saw for metal: l'anhard \& Levassor :330
Figurre 5. Jig sall for metal: Panhard \& Lavassur 3:3:3
Figure 6. Vertical spindle milling marhine. by the Soriete Alsaciobme :1:3;
Figure $\%$ Large gear-dutter, by the Soriete Alsacionne :3:7
Figure N. Drill-grinder: J. M. Ibomowr. Butgium $34:$
 :1:
Figure 10. Machine forgrinding the slots of loxomotive links: Futla. Ineti». ※(${ }^{\circ}$ 34:3
Figure 11. Large vertical milling marhint: Foth. Ibrize \& ('o. :14
Figure 1:. Automatie gear-cutter: Brown do Nharpe. :116
 Nitatess 3:31)
Figure 14. Four-spindle valve milling machine: Warner \& Sw:ary :nis
Figure 15. Pearn's tapping fixture $3: 37$
Figure 16. Marhine for planing the terth of level gears, hy the (berliken Machine Works 35

Figure 1. l'lain kinit fabric. :36)
Figure : P'ain wowen fabrie $3: 1$
Fighre 3. Weft-threall knit fabria- ::i:
Figure 4. Knit fabrie with weft theral intorlownedfface sid. :i: 1
 $3: 9$
rigure 6. Warp-knit falırie. :i:
Figure i. (arligan rib. :i:3
Figure s. Spring norolin. :iif
Figure ! I. Latch mer.lla. :3it
Figure 10. Action of the lateh nexdle- :in
 :i:i
Figure 12. The Iambl knitting madhine. :is
 ::!!
 :inl
Firura 1: Xarrowod f:alrir. ふM1
Machinery for Knittina and Embroldering;-Continued. Page.
Figures 16-20. Action of latch needles in narrowing. 3×1
 3×2
Figure 2.2. The Nax Machine (omipanys full-fashioned legerer ;is:3
Figure 2:3. The Aiken full-fanhomed fonter; The Ahed Marhine (ompany :34
Figure 24. "Saxony Marline." (Fatl fashioning.) 3ヵ.;
Figure 2.). Straight rib-knitting makhine, with fashoming merhanism :3xt
Figure 2t. The Joneph H gininthom Machine Company knitting machine. 3xi
Figure 2\%. The Paget warp-knitting machine: front view 3sy
Figure 28. The Paget warp-knitting machine; rear view. 3×9
Figure 29 . Spring needle cirrular knitting machine: J. S. (rant d ('o 390
Figure 30). (ireular knitting marhine: C. Terrot's 391
Figure 31. ('ircular rib marhine with spring needles: ('. Terrot's $3!:$
Figure 32. The Hepworth knitting machine 39:3
Figure 33. The Xre A Tredick cirvolar rib-cutf machine 394
Figure 34 . Nye \mathbb{E} Tredick antomatic circular rib-knitting machine :39\%
Figure :j.7. The Heginhothom antematic circular rib-knitting mandine. $34 ;$
Figure 36 . The Tattle knitting mathine ; The Lamb Company 395
Figure 37. Seamless stocking (10)
Figure ;s. The National automatie knitter for seamlesi hositery 41)1
Figure 34. The Lamb Vachine (ompany" looper 410
Bhifk aNi Thesi Nib Machinery for their Mantfatire:
Plate I. Varions forms of presised tiles. 410
Plat. Il. Perrieres hollow tiles 412
Figure 1. Duprat's interlocking chimmey-flut tiles. 414
 415
Figure 3 . lboulet's mixing mill. 41.5
Figure t. Boulet \& Co.s hamd serew presi 416
Figure 5. Power serew press driven he friction diak; 416
Figure 6. Jolly \& Foucart's lever press. 41%
Figure \%. Ollagnier's lever press. 417
 Asamer $41 N$
 $+16$
Figure 10. Pinette: allomatic tile press $1: 11$
Figure 11. Bonlot © Co.santomatir press. $1: 1$
 $4: 3$
Fignar 13. Bunlet \& (ones antomatio hriok pores 4:3
Figure 14. Forming plate for hollew or fertorated briak $4: 4$
Figure 1. Pinettes foreing prens with single piaton $4: 4$
Figure 16. 1'inette is denhle-piston preas. $4: 5$
Figure 1i. linetters foreing pros with foreing exlintion or rollers $4: 5$
 metion with the mixer. comvegor. At. $4: 6$
 $4: 9$
Figume : J. Joly \& Fourartis forring press. 427
Figure ?l. Joly \& Fomarts deliary table $4: 3$
 4:x
Figure 2?. ('utting tahle. W以 Burnor \& (0) $4 \cdot 4$
Figure e4. Hand pwer hrick marhint. hy J. allamin. $4: 9$
 $4: 9$
 4:31)
Figure 27. Boulet's vertical tile mathine with foreing rollers 431
Brick and Tiles, and Machinery for their Mancfactire-Continued. Page.
Figure $\geqq 8$. Joly \& Foucart's self-contain d continuously acting tile ma- chine $4: 2$
Figure 29. Small drain-pipe machine, by J. Chambrette-Hellon. 4;
Railway leant:
Figures 1 and 2. Expresis pasisenger engine No. tie3: elevation and plan 43!)
Figures 3 and 4. Bogie engine No. 9.51: Western Railroad. France 41
Figures 5 and 6. Saloon sleeper: Western Railroad. France. 44:
Figure 7 . Mixed carriage: Western Railroad. France: elevation 44
Figure *. Mixed carriage: Western Railway: رlan 44.5
Figures 9 and 10. Escape nozzle 446
Figures 11-13. Car heater. with interior flues 4.4
- Figure 14. Thermosiphon car heater. $44 i$
Figures 15 and 16. Uncoupling device 448
Figure 1\%. Balance heam 449
Figure 18. Paris, Lyons and Mediterrantan Companỵ's engine, C 1 4.51
Figure 19. Paris, Lyons and Mediterranean salown carriage. A 223; plan. $4 . \%$
Figure 20. Saloon carriage, A 203: Paris, Lyons and Mediterranean Rail- road Company plan 4.5
Figures 21 and 22. Paris, Lyons and Mediterrantan Railroad Company̌s car. A 198 $4: 3$
Figure :23. Saloon sleeper; Paris, Lyons and Mediterranean Company: No. 41 4.4
Figure ?t. The Woolf engine: elevation 4.56
Figure ${ }_{2}^{2}$. The Woulf engine: section of cylinders 4.76
$\mathrm{Fi}_{\text {sinue }}$? 36. Fireless locomotive 46
Figure 27. Tank locomotive: Belgian (irand Central Railway 4 48
Figure 28. Mixed passenger car; Belgian (irand (entral Kailway 469
Figure 29. Twenty-ton gondola: Belgian Grand Central Railway 4il)
Figure 30. Locomotive for heavy grades: Belgian state railways. $4 i 1$
Figure 31. Sleeping car: London and Northwestern Railway $4 i 9$
Figure 32. Passenger engine No. 1853; the Midland Railway. England 4×1
Figure 33. Compartment carriage: Midland Railway, England; plan 4×2
Figure 34. Ten-wheeled passenger engine: Baldwin locomotive Works $4 \times .5$
Figure 3.). Rack rail loromotive; Riggenbach's system 4×6
Figure 36. Decapod locomotive 4×6
Figure 37. Noiseless steam strest car 4×7
Figure 38. Switching locomotive 4×8
Figure 39. Forney lecomotive 4×8
Figure 40. Mogul locomotive 4×8
Figure 41. Double-ender locromotive: suburban. 489
Figure 42. Tank switching locomotive. 4×9
Figure 43. Consolidation freight locomotive $4!10$
Figure 44. Plantation lecomotive 491
Figure 45. American trpe passenger locomotive $4!1$
Figure 46. "Mogul" pattern freight locomotive: longitudinal section $49:$
Figure 47. "American" pattern passenger and freight lowomotive: longi- tudinal section 493
Figure 48. "Consolidated" freight loxomotive: lomgitudinal section 464
Figure 49. The Strong locomotive; corrugated fire loxtes. junction. and combustion chamber 407
Figure 50. The Strong lecomotive> general view 448
Figure 51. The H. K. Porter locomotive 500
Figure 52. Mekarski compresised-air motor. $50: 1$
Railnay Plant-Continued. Page.
Figure j2a. English trach, with wooden ties 509
Figuresisis and 54. The Clark-Fisher Company - "bridge joint 511
Figures 5.j-5\%. The Utis joint 511
Figure ix. The Otis joint: : :ection $51:$
Figures i9-69. Hoffmeters ie 514
Figure \%0. The Paulet iron tif 17\%
Figure il. Heavy rail and fasirnings used on the Pennsylvania Railroad 514
Figure $\boldsymbol{i v}$. Railway with central rail; Magnat syitem 519
Figure :3. Magnat switch
Figure 7t. The sliding hydraulic railway 5: 4
Figure $7 . \%$ Féraudes system of suspenting car leolies 5ix
Figure \%6, Arlet's car wheel i.30
Figure 77. The Sprarue electric motor applied to a street-car truck $5: 34$
Figure ix. The Thomsom-Houston electric strert-car motor 83:
Civif ENiinemerivi. Public Works, and Architectore:
Plate J. View of the hydraulic canal lift at Les Fontinettes 5.j)
Plate J. View of the trourh basin at Les Fontinettes 5.94
Plate III. Pumping machmery at Les Fontinettes. 5is
Plate IV. Model of Posets dam: ly Regnard Brothers. Paris.
Plate V. Construction of the quays at Calais: process of sinking the piles by means of water jets 67
Plate VI. Construction of the outor harlor quars at Calais: process of sinking the fommation curbs byeans of water jets. 6ix
Ilate VII. Port of INavre: lon'k gates of the Berlot basin 6!1/5
Plate VIII. Framework of the iron dork sheds at Havre T10
Plate IX. The lower pertion of the areh of the Garabit viaduct :6:
Plate X. Garabit vialuct during the process of ereetion 769
Plate XI. Iron framework of a Paris store the Ma!ouzin du Printrmps) (x) 4
Plate XII. The Eiffel Tower: iron caissons, used with compressed air in building the foumdation of a pier K1:
Plate XIII. The Eiffel Tower: view of a pier with its inclosing walls. $\underset{N}{ } 14$
Plate XIV. The Eiffel Towrer: new scatlolding, 4.5 meters high, for unit- ing the isolated piers. x14
Plate XV. The Eiffel Tower: details of the ironwork of the structure. 800
late XVI. The Eiffel Tower: the erecting crane used above the second story $x \cdot 4$
Plate XVII. The tirst story of the Eiffel Tower $8: 3$
plate XVIII. Complete view of the Eitfel Tower $4: 30$
Plate XIX. View of Marhinery Mall, showing the end truss girder and the wahles. $\times 56$
Plate XX. Interior view of Machinery Hall 40.6
Plates XXI and XXII. Two qroups of tigures supporting the lintel of Ma- -hinery Hall: one by M. Barrias. representing electricity: the other by M. Chapu. personifying stetam $\times 62$

Figure 1. Plan of the hyilraulic lift at Les Fontinettes 5.53
Figure 2. Longitudinal section along the axis of the trough 5i) 4
Figure 3. ('ross section through the transwerse a vis of the lift 0.56Marahle deme at Suresurs an tha spine.
Figure 4. Map and general plan of the dam 56.5
Civil Exaineering, Public Works, and Architecture-Continued. Page.
Figures j-i. Movable frame of the Navigable Pass; elevation and sections 567
Figure 8. Movable frame, with its panels 568
The Marly dum on the Seine.
Figure 9. Fixed frame ueed in the Marly dam 571
Figure 10. Method of anchoring the frame 571
Veu' river lock at Bougival.
Figure 11. Map showing the situation of the lock 573
Figure 12. Machinery house and accumulator: longitudinal section 57%
Figure 13. Machinery house and accumulator: horizontal section 578
Figure 14. Machinery house : transverse section 578
Apparatus for operating the lock sluices by hydraulic power alone.
Figures 15 and 16. Vertical section and elevation 578
Figure 1i-18. Plan and section of the sluices 579
Combined apparatus for operating the lock sluices either by hand or by hydraulic pouer
Figures 19-23. Elevation, plan and sections 580
Figures 24 and 2\%. Valve chest ; vertical sections 581
Hydraulic apparatus for opening and closing the lock gates.
Figures 26 and 2\%. Longitudinal section and plan 582
Figures $2 \mathbb{N}$ and 29. Sections 583
Hylruulic capstan.
Figures 31) and 31. Sections 58:
Figure 32. Plan (cover removed) 586
Figures 33 and 34. Elevation and sections 587
Movable dam at Poses on the Seine. The uprights and curtains.
Figure 35. Longitudinal section in front of the uprights 589
Figure 36. Transverse section $5 \%)$
Figures 37 and 38 . Hoistir.g windlass 590
Figure 39. Section of the chain stop 590
Figures 40 and 41. Details of the curtain hinges and shoxe 591
Figure 42. Transverse section 593
Figures 43 and 44. Sections of members 593
Figure 4.). Plan and horizontal section of the bridge at different heights. 594
Figures 46 and 47. Sections of members 594
Figure 48. Upstream elevation of the intermediate girder. 595
Figure 49. Map showing position of the new movable dam at Poses 597
Figure 50. Elevation and section of the abutment on the left bank, with the anchorage for the foundations 598
Figure in. View of the dam from below 599
Figure 52 . View of the dam from alowe; raising a frame (B)1
Figure i)3. View from lwelow; rolling a curtain (i)1
Figures it and 5.j. Mole of sispending the frames (P'ort-Mort Dam) (11):
Monable dam at lillez.
Figure 56. (reneral view of the dam
Figure 5\%. Lowering the frames at Villez Dam 6015
Figures is and i9. Windlass for hoisting and lowering the curtains, and the mode of unshipping and transporting them 609
Monable fish wre!! rit Port-Mort.
Figure 81. View of the fish way 611

Civil Engineering. Plblic Works, and Architectcre-Continued.

> Torcy-Neuf reservoir for the Gentral Canal.
Figure 61. Map of the reservoirPage.
Figure 62. Cross section of the dike, the water tower and the culvert 615
Figures 63-65. Section, elevation, and details of the sluice 617
Figures 66-69. Elevation and vertical and horizontal sections of the guard gate, with details 618
New high lift locks on the Central Canal.
Figures 70-74. Sections of a high-lift lock 620
Figures 75 and 76. Half cross sections through the axes of the sluice pits. 621
Figure 77. Fontaine's cylindrical sluice 622
Figures 78 and 79. Eleration and section of the lowes gates of the lock. 623
Cable towage for bouts on canals and rivers.
Figure 80. Details of the pulley and the rope connections 626
Figures 81 and 82. Elevation and plan of a double pulley for a concare angle 628
Figure 83. Single pulley for concave angles. 629
Figures 84 and 85. Hooking-on and casting-off grip 629
Figure 86. The grip, with the tow rope. 630
Toucage by a submerged chain and a fireless engine.
Figures 87 and 88. Plan and sections of the chain towboats 633
System for supplying the canal from the Marne to the Rhine.
Figure 89. Vertical section through the pumping station at Pierre-la Treiche 636
Figure 90 . Plan of the same 637
Oscillating bridye over the Dames Canal lock.
Figure 81. Liagram showing the action of the bridge 638
Balanced gates on the Rhone and Cette C'anal.
Figure 9:. Segmental balance gate at Croiseedu-Lez 640
Braye-en-Laonnois Tunnel.
Figure 93. Geological section. 643
Figure 94. Sections showing details of the construction of the tunnel. 644
Figures 95 and 96 . Sections of the air lick 645
Figure 97. The method adopted for ventilating the tunnel 647
Embankment uxorks for the improvement of the tidal Srime.
Figure 98. Map of the tidal Seine 6.50
Figures 99-101. Schemes A, B, and B_{2}, for training the river through its tidal extuary 661
Figure 102. Scheme (:. 682
Figures 103 and 104. Schemes D and D bis. 683
Figure 105. Scheme E 664
Figure 108. Scheme E bis. 66:5
Figure 107. Scheme F 666
(Calai» Harbor works.
Figure 108. Plan of Calais Harlxor 671
Figure 109. Crose sections of the dike and quays 675
Civil Evgineering, Public Works, and Architecture-Continued. Page.
Figure 110. Cross section on a larger scale of the Northeast quay 676
Figures 111-113. Section and plans of a curb 678
Figure 114. Arrangements of water jets for lowering a curb 678
Figure 115. Section of a finished curb 679
Figure 116. Method of cementing two consecutive blocks togethe:: 679
Figure 117. Profile of the eastern quay wall of the eastern dock 683
Neu' outer harlor at Boulogne.
Figure 118. Map of the port of Boulogne BN8
Figure 119. General view of the new deep-water harbor 601)
Figure 120. Cross section of the parallel dike b 691
Port of Havre-Bellot lock and iron wave-breaker.
Figure 121. Transverse section of the Bellot lock 694
Figures 122 and 123 . Elevation and plan of the revolving bridge ore the lock 695
Figures 124 and $12 \overline{2}$. Elevation and section of a leaf of the lock gates 698
Figure 126. Lifting press and wedge of the revolving bridge. 698
Figure 127. Apparatus for operating the lock gates; elevation and plan of a leaf 698
Figure 128. Complete plan of the lock gates with the operating appara- tus 699
Figure 129. Iron wave-breaker 701
Canal from Havre to Tancarville.
Figures 130-133. Elevation, half plan, and sections of the Tancarville lock gates. 703
Slipuay at Rouen for the repuir of ships.
Figure 134. General plan of the slipway 705
Figure 135. Cross section 706
Figure 136. Hauling machinery 706
Figure 137. Method of attaching the compensating cable to the cradle. 707
Figure 138. Details of the shores 708
Port of Honfleur.
Figure 139. Plan of the port of Honfleur and the sluicing basin 709
Figures 140 and 141. Apparatus for closing the sluicing lock at Honfleur. 711
Figure 142. The feeding-weir gates of the sluicing basin 713
Figure 143. Siphonage between the basins; sections of the siphons. 716
Traversing bridye at St. Malo st. Servan.
Figure 144. Section of the bridge, and details 718
Figure 145. Diagram of the operation of the recuperator 719
Figure 146. Vertical section and plan of the recuperator 718
Figure 147. Horizontal section of the recuperator press. 720
Hydraulic works and pneumatir foumations at Genow.
Figure 148. Transverse section of the movable caissons used for drilling the rock for the purpose of submarine blasting 727
Figure 149. Transverse section of the movable caissons used in laying the masonry under water 727
Figure 150. Elevation and longitudinal section of the same 728
Civil Engineering, Plblic Works, and Architectere-Continued. Page.
Figures 151-156. Details of the excaration lock 728
Figure 157. Great floating caisson used in laving the flooring of Basin No. :2: transcerse section 730
Figures 158 and 159. Positions of the caissons, with and without ballast. 732
Figures 160 and 161. (aissons at work 732
Figure 162. Method of laving tise flooring of a basin. 734
Figure 163. Quav walls; in arcades, quai des (iraces; longitudinal section. 734
Figure 164. Details of the iron centers 735
Port of Rochelle-Foundutions of jetties at La Pallice.
Figure 165. Plan of the outer harbor of La Pallice 738
Figure 166. Caisson raised from the block. 737
Figures 167 and 168. Caisson resting on jacks 739
Figure 169. Method of closing the space between the blocks. 742
Figures 170-172. Sections showing the walls under the panels and the method of holding the panels. 743
The new steel bridge at Rouen.
Figures 173 and 174 . Elevation and plan. 746
Figure 17%. Upstream elevation of Pier No. 2 747
Suspension briage at Tommay-charente.
Figure 176. General view of the bridge. 749
Figures 177 and 178. Method of attaching the cable and suspension rods. 750
Figure 179. M. Anodin's alternately twisted cable 751
The lifting bridge at La Villette, Paris.
Figure 190. Elevation 752
Figure 181. Transverse section 753
Figure 182. System of guiding the bridge 754
Figure 183. Details of a press and the superstructure 754
Figure 184. Three-was cock 755
The Garabit viaduct.
Figure 185. General view of the (iarabit viaduct 3.57
Figure 186. Elevation of the central jortion, and sectionsof the members. 760
Figures 1×7 and 180 . Wind bracing. 760
Figure 189. Elevations of pier. and cross sections of members. 762
Figure 190. Erection of the iron arch; leginning of the process of erec- tion 764
Figure 1H1. Appearance in an advanced stage of erection 765Gone-Doir riaduct.
Figure 192. (ieneral view of the structure 768
Viaduct over the river Tardes.
Figures 193 ana 194. Elevation and plan of the viaduct 770
Consolidution of the side slopex of the railuray cutting at La Plante.
Figure 195. View of the slopes after the completion of the work 372
Tunnel through Culorex Pass.
Figure 198. Half sections of the tunnel. 734
Figure 197. Center used in the construction 774

Civil Engineering. Plblic Works, and Architecture-Continued.

C'ubzac Bridge ortr the Dordogne.
Figure 198. Partial elevation of the Cubzac Bridge and viaduct
Page. 778
Figure 199. Elevation of a pier of the viaduct of approach (left bank) 377
Figure 200. Elevation of an abutment 777
Figure 201 . Elevation of an iron pier.
Construction of the' ('astelet, the Lulcur', and the Antwinette Bridyes.
Figure 202. Elevation of the Castelet Bridge 782
Figure 203. View of the Antoinette Bridge and section of the viaduct 783
Figure 204. Elevation of the Lateur Bridge 783
Figure 205. Center of ('astelet Bridge' : ele vation of a truss. 785
Figure 206. Antoinette Bridge : clevation of a truss 786
Figure 20\%. Center of the Laveur Bridge. 787
Figures 208 and 209. Supports for the rings 788
The C'éret Bridge.
Figure 210 . Elevation, half plan, and half horizontal section. 791
The crossing of the Garonne at Marmande.
Figure 211. Plan of the submersible plain of the Garonne near Marmande. 792
Figure 212. Longitudinal section of the roadway across the plain 793
Figures 213-219. Masonry caissons used in building the foundations of the viaducts 795
Bridye over the Gave D'Oloron amd the Gratoma Bridge.
Figure 220. View of the bridge over the Gave D'Oloron 797
Figure 222. View of the (iravona Bridge (railroad from Ajaccio to Corte) 799
Specimens of iron construrtion in Puris.
Figure 22:. Pneumatic apparatus used for the foundations of the Mag- uzin du Printemps. 80\%
Figures 223-225. Transverse sections of the pillars 804
The Eiffol Tourer.
Figure 226. Diagram of the resistance of the simple lattice 807
Figure 227. Diagram of the stability of the Eiffel Tower when expersed to the pressure of the wind : two cases. 807
Figure 228. General plan of the foundations 810
Figure 229. Longitudinal section of the Champs de Mars at piers 1 and 2. 811
Figure 230. Longitudinal and transverse sections of the iron caisson. 811
Figure 231 . View and section of a caisson showing the underground work and the shafts for the men and the materials. 812
Figure 232. Plan and section of pier No. 1 814
Figure 233. Anchorage of the foundations 815
Figure 234. Erection of the tower; appearance in August. 1887. 816
Figure 235 . The er cting cranes used in the construction of the first and second stories 819
Figure 236. View of the first story $8: 0$
Figure 237. Details of the hydraulic jack $8: 1$
Figure 238. Operation of lifting one standard of the towar by an hydraulic jack 822
Figure 239. Arrangement of the crane for constructing the tower above the second story 823
Figure 240. Campanile of the tower. 825
Figures 241 and $\mathbf{2 4 2}$. Verification of the verticality of the tower. 828
H. Ex. 410-VOL 111 - 11

Civil Engineering, Public Works, and Architecture-Continued.

The Muchinery Hull.

Pare
Figure 243. General plan of the foundations. 837
Figure 244 . Geological section of the Champs de Mars $8: 35$
Figures 245 and 246. Foundation for a truss girder $8: 39$
Figure 247. Elevation of one of the principal truss girders 841
Figures $248-251$. Sections of the great truss girders. 841
Figures $2522-254$. Sections of the girders. 842
Figures 2ijo-2ij. Purlin ; elevation and sections 844
Figures 258-261. Rafter, rafter end, and sections A and B 845
Figure 262. Section of rafter 846
Figure 263. Method of erecting a great truss girder employed by the Fires- Lille Co 847
Figures 264 and 265. Elevation and plan of the foot of a great truss. 849
Figure 266. Special arrangement of the pulleys for lifting the foot of the girder 850
Figure 267. Scheme adopted by the Fives-Lille Co. for erecting the rafters and purlins 850
Figures 268 and 269 . Method of holding and rolling the purlins on the girders 852
Figure 270. Lowering a purlin 852
Figure 271. Scaffolding for erecting the great truss girders; Cail \& Cc 853
Figure 272. Upper platform of the rolling scaffolding 8.54
Figure 273. Cail \& Co.'s method of erecting the purlins 855
Figure 274. Cupola of the Machinery Hall vestibule; transverse section 857
Figures 275 and 276. Scaffoldings used in erecting the vestibule of Ma- chinery Hall 858
Figure 277. Longitudinal façade of the side galleries 859
Figure 278. Iransverse section through the crown of the arch. 860
Figure 279. Lateral view of the side galleries from the principal nare 861
Light-honeses.
Figures 280 and 281. Section and elevation of the Planier Light-house. 865
Figure 282. Iron light-house at Port Vendres 888
Figure 283. Lodging room of Port Vendres Light-house 868
Figure 284. Hyper-radiant apparatus for the new light-houst at Cape Antifer, near Havre. 871
Figures 285 and 286. Apparatus lighted with petroleum oil 873
Figure 287. Regulating brake and indicator of stoppage 874
Figures 288 and 289. Iamp maintaining the oil at a constant level 876
Figures 290 and 291. Bifocal apparatus for an electric light-house. 877
Figures 292-294. Electric regulators and indicators 880
Figure 295. Light-house at Belle Isle, with acoustic apparatus. 882
Figure 296. Apparatus for lighting beacon towers with gasoline 884Graphic method of quadrature. By M. Ed. Collignon.
Figure 297. Application to trapezoids 885
Figure 298. Application to trapezoids. 886
Figure 299. Transformation of rectangles 887
Figure 300. Quadrature of curves 887

GENERAL REVIEW
 OF

THE SIXTH GROUP.

$\mathbf{B Y}$

OHARLES B. BIOHARDS, M. A.
United Slates Erpert Commissioner for the sixth group.
H. Ex. 410-Vol HII- 1

TABLE OF CONTENTS.

I.-Introduction.

Page.
General character of the Exposition in the sixth group 7
The United State 3 section 9
Influence of American practice 10
Classification in the sixth group 11
Number of exhibitors in the group 12
Scope of the group and space covered 13
Machinery Hall 14
Allotment of space 15
Appearance and arrangement of the interior of the building 16
Arrangement of shafting 17
Contracts for supplying shafting 17
Distribution of steam and water 18
Steam-engines for supplring power 18
Contracts for running the engines 20
Arrangements for supplying steam 20
Number and capacity of the boilers 21
Contracts for supplying steam 21
II.-General review of the classes.
I
ntroduction 23
Jlass 48.- Hining and metallurgy 24
Cox and Salmon's coal and ore screen 24
This class the subject of a special report 27
plass 49.-Farming and forestry:
This class not assigned to sixth group 27
Plasses 50 and 51.-Agriculture and food industries:
These classes noticed in other reports 27
Standing of the United States in these classes 27
plass 52.-General mechanics:
This class the subject of a special report 28
lass 53.-Machine tools:
Standing of the United States exhibitors 28
Steinlen \& Co.'stools. 28
The American Screw Company's exhibit 29
(i. F. Simonds' forging machine 31
This class the subject of a special report 32
lasses it and 53.-Machinery and processes for the textile industries: (ieneral notice. 32
Knitting machinery the subject of a sperial report 33
ass 5ti.-Sewing and the manufacture of clothing:
Number and kind of exhibits 33
Distribution of awards to the different nations 34
Awards to exhibitors from the United States 34
Class 56.-Sewing and the manufacture of clothing-Continued.
The Reece button-hole sewing machinesWheeler \& Wilson sewing machines.
Singer sewing machines
Davis sewing machines.
White sewing machines
French sewing machines
Curnely's embroidering machines
Deriery's multiple embroidering machine for muslin curtains
Hurtu \& Hautin's embroiderer
Machines for sewing straw braid
Paine's machine for lasting shoes
Class 57.-Manufacture of furniture and articles for the dwelling, wood-work-ing machinery, etc. :
J. A. Fay \& Co.'s exhibit in the United States section.
Exhibitors in other sections
McCoy's pneumatic tool for cutting stone, etc
Faure's machinery for manufacturing porcelain.
Manufacture of brick and tiles the subject of a special report
Class 58.-Paper-making and printing:
Paper machines
Machine for making mill board
Printing presses in general
Alauzet and Tiquet's high speed press for several colors
Kientzy Bros.' press for printing copy books.
Type and printing material
Type setting and distributing machines
Lagerman's composing and justifying machines.
Fraser's Delcambre composing and distributing machines
The Thorne combined composing and distributing machine
Class 59.-Machines for miscellaneous use :
General remarks
Awards of gold medals
Typewriting machines from the United States
Other typewriters
Leinbach's machine for making paper bags
Bibby \& Baron's, and Planche's, bag machines
Awards of silver medals.
Class 60.-Carriages, wagons, etc.
General remarks
Bicyclettes.
Tricycles
Serpolet's steam tricycle
Class 61.-Railway plant :
Special report referred to
Class 62.-Electricity :
Special report referred to
Class 63.-Civil engineering, public works, and architecture:
Special report referred to.
Class 64.-Hygiene and public charities:
Report on hospitals referred to
Clasees 65 and 66.-Navigation, life-saving and military material :
Special report referred to

GENERAL REVIEN OF THE SIXTH GROLP.

By CHARLES B. RICHARDS, M. A.

INTRODUCTION.

(1) Recognizing the inability of one person to report with sufficient etail upon any large proportion of the whole ground covered hy the reat variety of subjects to which the exhibits in the sixth group elate, the Commissioner-General authorized the expert assistant mmissioner for this group to limit his; work to a general review of ate group and a more particular examination of a single class uncer , and to distribute the remainder of the work to a number of exerts who volunteered or were employed to furnish particular reports the special subjects of which they were comperent to treat.
Among those who volunteered this assistance were several of the pert assistant commissioners for the other groujs, who assumed e responsibility of examining those classes of the sisth group hich bore close relations to the classes of their own eroups, or to hose sul, jects the professional work of these gentlemen relates.
The kindness of those who have thus willingly given their valuae time and labor. has made it possible to present a collection of becial reports relating to a variety of subjocts which must otherise have been entirely neglected or very superficially presented, the ound to be covered being so vast and the difficulties in the way of athering information during the Exposition so great.
Following are the names of the gentlemen who have contributed eccial reports, or included matter relating to the sixth group in tereorts of their own groups:
Commissioner Chandler, for the fourth group, tork the following hjects: Apparatus for compressing fuel and economizing smoke; \therefore (rertain appliances for metallurgical work. in Class 48 ; chemical parat us and gits manufacture, in Class 51 : processes for the presVation of wood, in Class 63. and hygiene, hospitals, etc., in Class ge. Commissioner Clark. for the seventh group, took into his own roup Class $\delta 0$, relating to the manufacture of food products.

Commissioner Newbury, for the fifth group, took the subject of the manufacture of chemical and pharmaceutical products, in Class 51.

Mr. C. R. Dodge, special agent of the U. S. Agricultural Department, took agricultural appliances. in Class 50 , and certain subjects relating to textile manufactures, in Class 54.
The following gentlemen contributed special reports. The arrange. ment is in the order of the cla.sses to which the reports relate:

Mr. Heury M. Howe, on mining and metallurgy ; Class 4x.
Prof. John H. Barr, on machine tools; Class 53.
Mr. J. M. Merrow, on knitting and embroidering machinery; Class 55.

Mr. H. D. Woods, machinery for making brick and tiles; in Class 57.

Prof. L. M. Haupt, Class 61, railroad appliances.
Mr. Carl Hering, Class 62 , electricity.
Prof. William Watson, Class 63, civil engineering, public works and arehitecture.

Commissioner Lyle, Class 66, art of war ; also life-saving, in Chass 65.

The regulations of the Exposition prohibited visitors from makin: sketches, or even taking notes, without special permission from the exhibitors in every case. a rule which was rigorously enforced by the attendants; and although, through the courtesy of M. Berger Director-Cieneral of the Exposition, the Commissioner and his assist ants received letters intended to secure special privileges, the sur picion with which attempts to make memoranda were regarded, an the consequent interruptions that occurred, put many and ver. serious difficulties in the way of getting the information necessary for a sufficient knowledge of the exhibits.

The exhibitors were, as a general rule, exceedingly courteous an quite willing to give all the information requested, but they could seldom be found except at times when the buildings were thronge with visitors. In a few cases exhibitors of extensive collections machinery stated, in answer to inquiries, that it was not for thei inter,st to be public instructors, and refused all opportunity fo getting information respecting their exhibits.

In this connection it is a pleasure to acknowledge the value of the services rendered by Mr. H. D. Woods in corresponding with the exhibitors and in collecting much of the information which served as the basis of several of the special reports.

Messrs. Vuillet and C. Morin, attachés of the administration Machinery Hall, also rendered service in gathering information.

Frequent reference is made to descripions and comments found i the leading journals of engineering science and practice. It is nat ural to expect that nearly all the strikingly interesting features a great international exhibition would be promptly noticed and de
scribed in the enterprising special technical journals of the various countries. In the present instance these journals have vied with each other in giving to the public information respecting the details of the Paris Exposition, and many of them have published different illustrated descriptions of the same exhibits.
The publishers of the English journals "Engineering" and "Industries" cordially gave full permission to have their illustrations and descriptions used to any extent in the reports. A limited use of this privilege has been made, credit being given in each case to the source from which material is taken. In referring the reader to publications of descriptions not inserted in the report, those references have been chosen which seem to give the fullest information on the subject.

GENERAL CHARACTER OF THE EXPOSITION IN THE SIXTH GROUP.

(z) On making a careful survey of the machinery and other objects classed under the sixth group one fact soon became strikingly apparent, that, notwithstanding the great extent and variety of the display, the number of new inventions of importance-except perhaps certain applications of electricity-was very small.
Throughout the entire French, Belgian, English, and Swiss sections there were to be seen, with but few exceptions, only machines and apparatus which, in similar forms, have long been familiar to experts in the different arts represented.
It seems to have been necessary to make a similar criticism in relation to the Vienna Exposition of 1893, and at the Paris Exposition of 18i8 a like condition was recognized and very ably commented upon by M. Hirsch, the accomplished reporter for the jury of Class 54 of that Exposition, who in his exhaustive report says, in effect:
With respect to machinery the Exposition of 1siss. compared with those which have preceded it, seems to present a clearly distinctive character. In former expositions new inventions occupied a considerable place: in the exposition of 1878 it is quite otherwise. Few absolutely original ideas are to be found. The machinery and apparatus exhibited are little more than recombinations of principles already well known and applied. Not only would we seek in rain in the vast buildings for some one of those great discoseries which change the character of an industry. but even, in a far more limited sense, inventions which jossess a noderately important scope are absolutely wanting.
He then remarks that progress had nevertheless been made, and says:

The machines exhibited are, as a whole. inetter dexigued and more intelligently combined than those shown in the former expositions: their proportions are better. their workmanship more perfect. In fact. considerable advance has been made.

But it is not by great inventions that this progress ha b been effected; it is rather by a thousand improsements which relate to the det ins of the machinery. and if the results thus attained seem less brilliant their importance is not the less enormons. It may be said that the mechanical industries have advanced out of the embryonic perioxl. have reste:l from putting forth germs, but are becoming develoged by a vigorous growth.

The improvement in the detail and design of machines commented upon in $18 \tilde{r}^{8} 8$ by M. Hirsci has continued to advance rapidly since then, and it may be safely said that there is now comparatively little to choose between the productions of the several great nations who exhibited in Machinery Hall.
So far as style, proportions, convenience, completeness of detail, and adaptation to the purpuse in view are concerned, the machinery was in general admirably well designed and executed.

The several great international expositions which have been held in the last two decades and the increased intercommunication of engineers and manufacturers resulting from them have had the effect which might have been anticipated: Each nation, gradually losing its prejudices, has adopted the improvements which have enabled another to take the lead in any particular direction, whether in matters of practical importance or of good taste. A general uniformity of excellence, amounting indeed to a certain lack of individuality in the design of the machinery of any one class, was a marked feature of the Exposition of 1889 .
The doctrine of the survival of the fittest was here illustrated in its application to inanimate objects.
Light and flexible frameworks with tortuous contours, formerly approved and admired, have yielded place to substantial forms with severe rather than fanciful outlines well suited to the material employed, and designs have been adopted which exhibit a judicious directness in the application of material so as best to resist the stress to which it is subjected, and a distribution of mass well adapted for the absorption of vibrations.

Complex and indirect apparatus for transforming movement, the result of ingenuity misapplied or unskillfully directed, is replaced by simple and compact mechanism, the product of careful study and of the judicious application of the principles of kinematics.
Frivolous ornamentations and a profusion of highly polished surfaces are rarely found, their bad taste and inappropriateness being universally recognized, and the outlay formerly wasted in this direction is now appied to procuring neat castings and securing coincidence of the places where parts meet each other.
Another quotation from the report of M. Hirsch is apt in its application to the Exposition of 1889, and conveys suggestions so noteworthy that it will be given here:
An interesting fact to notice is the absence of those eccentric and irrational inventions which too often mar an exposition, machines conceived in a contempt for fundamental mechanical principles and which betray the lack in their authors of the most elementary knowledge of science.

He goes on to say that the severity of the inspection of the jury for the admission of exhibits has much to do with this-

But it is equally certain that the diffusion of technical instruction has played the more important part in this purging ; exact ideas, so indispensable to the mechani-
cian, are widely popularized: ther form the basis of professional teaching, not only for the education of the superintendent and the engineer. but also of the foreman and the operative. Furthermore, in proportion as the teachings are extended among those employed in an industry, in that proportion do the sciences themselves gain in breadth and solidity and in their foothold in the shops.

It is gratifying to be able to record the evidence of general progress thus shown by the Exposition of 1859 . To those familiar with the condition of the mechanical industries in the comntries of Continental Europe in former times one thing must have been strikingly evident : that these countries have recently made rapid strides in the direction of substantial progress, and that their manufacturers are fast assuming a position in the foremost rank among the producers of well-designed and well-executed machinery of all kinds. While, therefore, the United States has hitherto exercised.and, as will be shown, continues to exercise a very marked intluence upon the improvement which is noticed in the products of the continental engineer and his shops, yet in order to continue to maintain in the future the creditable place in the advance which the younger comntry now occupies, unremitting attention must be given to increasing facilities for the best scientific and technical training of youth, a training superior in its methods to the European systems which, though faulty in many respects, have been such an important factor in the progress of the mechanical industries there.
(3) THE UNITED STATES SECTION.

The position held by the United States in the sixth group of the Exposition was a very honorable one.

Without particular mention here of the exhibits most deserving of attention. it is sufficient to say that no part of Machinery Hall was examined with greater interest and approval, by European engineers, than was the United States section. The general verdict of these men was that the greater proportion of those machines in which freshmess and originality were shown was found in this section, and that here the interesting new idea and useful invention were conspicuous above the uniform grade of general excellence everywhere found in the mechanical exhibits.

The juries for the classes of the sixth group performed their duty in a thoroughly conscientious and painstaking manner, and their decisions afford the best criterion for judging of the excellence of the United States exhibit.
The high awards which were so liberally distributed to our exhibitors were generally given on the ground of the orgginality and utility of the exhibit rather than its fine appearance or great extent, and never simply because the exhibitor was a surcessful manufacturer or engineer, a course which for good reasons was not always pursued in distributing awards to the French exhibitors.
(4) The representation of the United States was by no means how-
ever confined to its own section; its proudest display was in fact seen outside of the actual exhibits made by its own citizens. Much of the machinery exhibited by the other nations was either admitted to be of design belonging to the Cnited States and advertised to be this, or else was a close imitation of forms which have originated with its engineers and inventors.
A large proportion of the sieam-engines were of the Corliss type. Porter's steam-engine govermor was seen on most of the engines; the influence of Porter's life work in the development of the highspeed engine was everywhere apparent. The Wheelock, and Armington \& Sims engines were exhibited in the sections of every nation; examples of pumps and water meters embodying Worthington's duplex system were numerous; the windmills exhibited were of types belonging to the United States: our forms of wood-working machinery have been adopted; our steam-boilers are closely copied, and the rapid working and yet safe passenger elevators so common in the United States are being introduced.

To substantiate this statement of the prevalence of America 1 influence which the Exposition shows to exist in Europe it is well to quote from an unprejudiced writer.

In an article in the Revue Universelle des Mines, etc., on the steamengines of the Exposition, Professor Dwelshauvers-Dery, of the University of Liege, the learned vice-president of the jury of Class 52 of the Exprosition, says:
One of the most striking facts that the Exposition of 1889 brings into relief is that, with respect to machinery, American influence is extending more and more, and gaining a stronger foothold day by day in Europe. The United States has imposed upon us its forms, its methorls of ϵ cecution, even the organization of work by which more perfect precision is obtained in the production of its workshops, and in the case of steam-engines it has imposed its types.

After giving numerous examples of the adoption by the largest manufacturing establishments of systems introduced from the United States, and of forms and devices imported from there, he continues:

The question may well be put, whence comest this exulserance from one side of the Atlantic, that kind of relaxed condition on the other? How does it happen that the master thought is sent across the ocean to Europeans, who, so to sipeak, are reduced to the role of manufacturers only?

Perhaps the answer would be more easily found if we were to quit the domain of the mechanic arts to examine from a higher standpoint the social status of the old and the new continents. It would bea digression of great value, but space is lacking, and we will speak only of machinery. and particularly of the stcam-engine, born in the old continent, having there received at the outset its first applications, and whose fundamental theory has heen based on the work of Europeans-Régnault. Mayer, Joule. Rankine, Clausens, Hirn. If we say that the Americans have a more practical mind. that is to say, more logical habits of thought. this is begging the question, for the American race has little blockl fortign to Europe, and other reasons than that of race must be given to account for this practical superiority.

Does not the difference we find lie in the education? In the United States it is free everywhere, every where creative and expansive as liberty itself. In Europe it
is regulated, powerfully organized, the work of a despotism smacking of the barracks: its aim seems to be to reduce to uniformity all the members of the social body, to cart them, all in the same mold, to make them, so to speak, interchangeable. It is forgotten that the trees of a forest can be brought to equal height only by cutting of the higher ones to the level of the lower; that the education of organisms is not accomplished under the hammer, at the anvil. in the mold, or by a milling process, and that the first of its duties is to respect individuality while developing it at the same time.
Often, without consulting special aptitudes, a young man is bronght up to make a mechanician by inculcating in his mind, in a metholic manner, a certain number of sciences, well classified, well graded, according to a well-definel programme, which leaves nothing for him to originate: the courses of study teach him everything; the young man need only learn, let himself be led. Periodically he is examined as to what he has absorbed; he is overworked, if it is necessary to do so, to deprive him of time for reflection; then a diploma is given to him, and he is consecrated a mechanical engineer, warranted by the Government. Happily there are vigorous temperaments which resist even this prolonged compression and burst the mold, resuming their own forms more or less speedily. But how much time is wasted?
Let us have less, much less, dogmatic teaching : ' + the youth be brought up in the laboratories, as is already done nowadays in Ehgland and America; let the schools and laboratories be opened widely. learing the young people free to consult their aptitudes, without compelling them to submit to a series of examinations by means of which their knowledge is appraised to the hundredth of 1 per cent., and without dismissing them from the whool berause they have failed in a brauch the study of which repels them, and which perhaps they will never in their lives make use of.

Public prosperity is interested in a reform which has the respect of individual freedom for a foundation. This would lse the simple conser ration of the revolution which the Paris Expmsition celebrates, and whose results are even to-day compromised by the kind of education which is applied th, those of whom it is desired to make leaders in movements relating to social interests. The true democratic principle is to give to each one the place which his personality merits, with the air free about him for his development : "the right man in the right place."

The quotation has been given thas in full in order to add force to the words already said in connection with the quotation from M. Hirsch respecting the influence technical education has had upon the progress shown in the mechanic arts.
(5) Ciassification: In the Exposition of 1889 the classi‘cation of the oljects exhibited did not differ greatly from that of 1878 , and. with one exception, all the classes relating to plant. apparatus, and processes used in mechanical industries were assigned to the sixth group, which, therefore, comprised Class 48 and Classes 50 to $6 f$, inclusive; Class 49 which relates to agriculture and forestry, having bren taken from the sixth group and set off to the eighth and ninth groups.

The general subjects to which the plant, implements, apparatus, and processes under the eighteen different classes of the sixth group relate. respectively, are:

Class 49. Mining and metallurgical operations.
Class 50. Food industries and the preparation of agricultural products.

```
Class 51. Chemistry, pharmacs, and tanning.
Class 52. General mechanics.
Class 53. Machine tools.
('lass 54. Spinning and the manufacture of cordage.
Class 55. Weaving.
Class 56. Sewing and the manufacture of articles of clothing.
Clase 57. Furniture. joinery. and the manufacture of building materials.
Class is. Paper making. dyeing. and printing.
Class 59. Miscellaneous industries and arts.
Class 60. Carriage and wagon making and wheelwright work.
Class 61. Railways.
Class 62. Electricity.
Class 63. Civil engineering, ןublic works, and architecture.
Class 64. Hygiene and public charities.
Class 65. Narigation and life-saving.
Class 68. The art of war.
```

(6) The number of exhibitors of different nationalities in the different classes of the sixth group is given approximately in Table I, compiled from the French official catalogue, in which there were some errors. Changes in the classification were, in many cases, made by the juries after the publication of the latest editions of the catalogues, so that awards were given to exhibitors whose names were listed in classes different from those in which the awards were granted. As the purpose of the table is only to give a general idea of the distribution of the exhibits, its accuracy is practically sufficient.

Table I.-Number of exhibitors in the sixth group, by nations and classes.

Class.	$\begin{gathered} \text { France } \\ \text { and } \\ \text { colonies } \end{gathered}$	Belpium.	United States.	Great Britain.	Switzerland.	Other countries.	Total.
48	14.	$2{ }^{1}$	4	12	3	1 ;	200
50.	40	23 !	12	16	17	21	3;39
51.	175	13	1 .	16	3	10	218
52	433	42	34	183	17	38	67%
53.	38	10	(2)	1\%	8	23	1.4
54	H1;	19	2 ;	$1)$	3	4	155
55.	1182	5	$2!$	5	\cdots	14 \|	136
58	104.	2	12	9		7	134
57	(is)	1	9		2	1	\%
5%	164 :	11	$13{ }^{\text {i }}$	11	31	41	223
54. . . .	33	2	23	12	5	10	118
(i)	47	1*	9	21	5	69	31;9
11	16\%	37	23	13	8	16 \|	265
82.	213	15)	33	1%	10	21	380
43.	\%3\%	\cdots	17	30	12	N	1,081
(i).	26.4	21	2	32	10	06	405
65.	219	5	9	30	6	$40!$	304
fi6.	187	14	2	4		12:	223
Grand total	3, 3 2x	35°	289	336	1:20	51\%	5,478

(7) The field covered by this group was very great, and the floor space devoted to it, which was crowded with exhibits, had an extent of about 100,000 square metres, or $1,000,000$ square feet--nearly 25 acres. The following table shows how this space was provided for ly the different buildings:

Table II.-Space occupied by the sixth group.

	Sguare leet.	Total square feet.
Builer hcuses in the boiler courtyard :		
Balcock	1.500	
C. Knapp	OLS	
Dayde \& Pille.	1,775	
Roser	2,225	
Ie Nacyer.	4, (3x)	
Belleville	2,174	
Weyher \& Richmond..	1,690	
Dulac	1, 1.6	
Fontaine.	1, 0ris	
sueinlen \& Co.	13, 78	
Two bakehouges	2,734	
Megy's building	1,201	
Electrical Court: $\quad 10000$		
Gramme station	7.750	
Syindicate station	3.855	
Le C'outeux station	6,2016	
Class 61, Aduex :		
First building	60,544	
Second buiding (Suffren avenue)..	21,90\%	
		82, 506
Class 60, Industrial Arts Building Annex.		26,000
On the Champ de Mars:		
Gulurnberg	538	
Asphalt	33202	
Forges St. Ibennis.	1,610	
Monter'hamin	250	
Stoker's Suciety	4,305	
Hoyaux	5388	
Lavour.	643	
Etablissement Cail	7,535	
Ia Buire	5, 204	
Annex for Clans 52.	8,2\%0	
Rolvay . . .	1.064	
Mariemont Collieries.	3,762	
Forges du Nord	4.843	
Elison Station.	4,443	
Perruseon	1,549	
Telrphones	3,762	
State manufactures.	4,358	
Eiffel Pavilion.	699	
Gas Pavilion	4,038	
Pavilion Coignet	3×7	
		48,547
Carried forward		219,83\%

Table II.-Space uccupied by the sixth group-Continued.

-	Square feet.	Total eguare fet.
Brought forward		219,838
On the Qual d'Orsal :		
Annex for Class 52	19,375	
Annex for Clase 65.	31, 188	
Pumping stations.	3,647	
Serpollet	1,054	
Electrical stations	13,288	
Petroleum	10,676	
Annex for Class 58.	12,817	
Buildiugs on the Esplanade des Invalides:		
Ministry of War (ground Hoor)	35, 527	
Ministry of War (second story)	32, 2432	
Powder and salt peter	3.354	
Aerostation	B,048	
Tollet tents	2,250	
Collat tents	1.607	
Walker tents	38	
Sanitary mervice.	314	
Yvose tents.	4 H	
Colombier Militaire.	5	
Sanitary train.	18, 2\%	
Wayon shed	9.087	
Military bakery.	1.076	
Public assistance	20, 5.58	
Hyglene (Class 64)	15,069	
Mineral waters	10,504	
Help for the wounded	12,543	
Euglish mill ...	1.028	
Surface occupied by exhibits of the sixth group in Machinery Hall	5 $4 \times 5.14 \%$
Total		1,048,048

(8.) Machinery Hall.-lt will be seen that more than one-half of the total area occupied by the sixth group was furnished by the great Machinery Hall, the general arrangements and dimensions of which will be stated here, the description of the structure being given in the report on Class 6;3. A general view of the interior is given in Plate I, the frontispiece of this volume.

This building, which perhaps is the boldest in design of any hitherto attempted, and the largest one of its general kind yet constructed, consists of a central nave 1.360 feet long, covered by a glass roof in a single span of 375 feet, with its peak at a height of nearly 160 feet from the ground. On each side of the nave, extending its whole length, is a lateral extension or wing 48 feet wide, forming a part of the great hall, not in any way partitioned off from it, but having a roof much lower than that of the nave. These wings expand the ground floor of the great room to a width of 471 feet in all, and also have floors $2 f$ feet above the ground floor which
form galleries 48 feet wide along each si le of the hall ; galleries 59 feet wide are also carried across the ends of the nave at the same level. The whole ground floor of Machinery Hall thus affords an area of 640,000 square feet, and the galleries an additional area of 1:1;000 square feet; total, nearly 19 acres, which, after deducting thoroughfares and passageways, left about $565,0 n 0$ spuare feet of flowr room available for the exhibits.
(9) The allotment of the space according to nationalities is shown in Table III.

Table III.-Allotment of space in Machinery Hall.

Countries.		Ground floor.		Galleries.	Total.		
		Nave.	Wings.				
(ireat Britaln		1N. N (3)	14.1!M)	11.508	43.205		
Switzerland		1:.916	3.74.7		23, 474		
Brlgiums		24.96	9,364	3,209	3\%,5i0		
France :							
Class 4.		14.800	8.590	3,229	28, 209		
51		23, 640	8.580	4,308	36, 846		
51.		16, 060		2.153	18, 24,3		
52.		35, 485	12, 29%	6. 782	55), 441		
53		3). 3 (4x	$2.1+1$	3, 25)	35, 6 (3)		
54.		17. $2: 2$		2, 1:33	1935.5		
55.		16, 10.0		2,204;	1R,34.4		
56.				10.764	10. 364		
54.		17.9.22		2,153	19,5:5		
58.		22.013	11,803	3.050	30, 950		
59.		5,50\%		1,910	7. 533		
61.		\cdots	68, 905	1\%.56	84,5033		
62.		14, 203	4,154	2,903	21,762		
63.			21. ONB $^{\text {a }}$	1N, 3\%4	40.810		
Grand to		2x. 714	17:, 411	145, 032	565, 147		

The French exhibits covered three-fourths of the area of Machinery Hall: the remaining fourth, namely, the corner of the building nearest the avenue de la Bourdonnais and the main exhibition building for the industrial groups, was assigned to the only four foreign nations who made any considerable exhibition of machinery, namely, Enited States, Great Britain, Belgium. and Switzerland.
The French exhibits were divided in accordance with the officialclassification, and all the objects in a class were grouped together in onir place, so that the exhibits of any class could be studied toget her and be compared with each other.* In the foreign sections. how--ver. there was little attempt at an arrangement in classes, the limited

[^0]dimensions of the space and the character and extent of the exhibits making it impracticable to effect a systematic grouping.
(10) As au exhibit of bold engineering enterprise, and as a work of art in iron construction, Machinery Hall was magnificent, hat it is questionable whether it was so well adapted for its use as other buildings for the same purpose in former expositions have been.

As is the case with all noble buildings, the fine proportions of this immense hall prevented its size from being appreciated at a glance, and the height and great width of the arched nave had the effect to dwarf the contents of the buidding sadly, so that even the noblest exhibits and the largest machines (such, for example, as the blowing engine, 40 feet high, exhibited by the Cockerill Company, and the large horizontal engine with a pulley 33 feet in diameter, shown by Farcot) failed to appear impressive.

Provisions for ventilation were practically entirely wanting, only a few very insufficient inlets and outlets for air having been provided. It was sapposed that the great height and volume of the inclosed space would make it unnecessary to provide for rapid renewal of the confined air, but the heat, even in moderately warm weather, was almost intolerable, and the air was close except in cold and windy weather.

The great width of roof and the consequent movements caused by expansion and contraction from change of temperature made trouble with the glazing, so that occasional showers of broken glass from the great height, and the arrangement for extensive repairs which the breakages involved, made it necessary at times to rail off large areas of the floor in order to prevent access to places where it would be dangerous for visitors to pass.

The provisions for the circulation of visitors in this great hall were well considered, and proved as liberal as could be demanded for even the vast crowds which at times filled the Exposition. Two main avenues, $2 ;$ feet wide, one lengthwise and one crosswise through the center of the building. divided the ground floor into four equal parts, and an avenue also 26 feet wide crossed the building midway between each end and the middle. These four thoroughfares, with a passage across each end of the building and eight others running lengthwise, all from 10 to 13 feet wide, formed the main channels of communication and circulation. Railway tracks were laid in these passageways, and turn-tal)les provided at crossings for use in placing and removing the exhibits ; they were covered by the floor during the Exposition.
(11) Nearly all the machinery in motion, or that which required a supply of steam, was located in the nave, although motion was communicated to some of the very light machinery in the upper gallery, and to some of the machines under the galleries. by means of special lines of shafting. The principal lines were four in number, extend-
ing from end to end of the hall. They were placed in the middle of the spaces for the exhibits, between the passageways, and supported at a height of 15 feet above the foor by the heavy double colnmms and lattice girders which sustained the tracks of two traveling cranes of bo feet span, which were used for phacing heavy mathinery, and afterwards employed as traveling galleries for convering visitors from end to end of the buildingr, and affording peints of view of the building and contents. At the places where the power was transmitted from the engines to the shaft the columns were from if to $1:$ feet apart, acoording to cibcomstances, elsewhere 36 fowt apart with two intermediate hangers in the sate. Where the shaft recerved the transmis ion from an engine it was $5 \pm$ inches in diamoter. elstwhere $3 t$ inches. Thespeed was 150 revolutions per minute. It was assumed that about six-tenths of a horse-power per foot in lengeth might be required. Earh line was divided into seven independent lengths, driven by separate engines, hat the lengths could be couphed by sleeves in case of the falure of any engine. There were several supplementary lines of shafting in different parts of the building, notably three under the galleries, where they were sustained hy substantial hollow iron posts, having an elliptical cross-section and a base hroad enough to afford rigidity without bracing ; a neat arrandement.
(1:) The line shafting. without pulleys or hangers, was rented in thirty lots from several large engineering firms, who also furnished attendance, oil, atc., necessary to kewp it in ruming order, on terms as follows:

First. For supplying the shafting, and for the service of keeping it oiled and in running order during the entire term of 180 dats. which is the official period of the Exposition, at the rate of f hours of working time per day, $; 4$ franes per running metre, or about 83.30 per foot of the $3 \frac{1}{2}$-inch shafting, was paid.

Second. If service additional to the alove should be required in consequence of an extension of the daily running time bryond \boldsymbol{z} hours. then an additional payment was to be made. at the rate of about onequarter of a cent per foot of shaft for each additional hour, to cover extra $\times x p e n s e$ for attendance, oil, etc.

Third. If additional serviceshould be needed in consequence of a continuance of the Exposition beyond the ofticial period of 180 days. then $3 \frac{1}{2}$ cents per foot of shaft was to be paid for each day of $\%$ hours running time thus added to the term, to compensate for the continued use of the shafting and the expense of keeping it oiled and in order.

The total length of shafting thus supplied was about 5.000 feet.
(1:3) For driving the shafting there were thirty-two steam-engines, and these were scattered in all parts of the huilding, a distribution which nectssitated an extensive system of piping for the supply of steam, formarying the cold water used for condensation, and for the re-
moval of the hot water discharged from the condensers-a system the magnitude of which will be appreciated when the great volume of steam and water which the engines reguired is considered.
The pipes were contained in substantially built arched subways of masomer. which extemded beneath the floors of the thoroughfares. The main subway, which extended the whole length of the building. hot winn the lines of shafting nearest the boiler court, was ofeet wide hy hearly a feet high and 1,100 feet long. Another subway, of nearly the same size but half this length, was placed in the quarter of the huilding oecupied by the foreign exhibitors, while a cross-subway of the same size as the latter connected these two. Openings were provided 14 feet apart for access to joints and for making connections. the distance of the openings from each other being determined by the standard length of the pipes used for the Paris water supply. Six smaller subways led to the main subways from the six groups of milers which supplied the steam. The hot and cold water pipes, one of each, in the main subway, were 24 inches in diameter. In the suhway for the foreign sections these pipes were reducel to 16 inches. The sterm pipes were comparatively small, as they led independently from the different groups of boilers to limited sections of the build. ing. and were not connected with each other, so that the repairs of a brak or leak in one of the pipes would not interfere with the running of any large number of machines. The branch pipes from the lime of the subways to the engines were supplied at the expense of the exhibitors.
All steam piper were well covered with nonconducting clothing. but motwithstanding this the heat radiating from them contribute Ereatly to the discomfort experienced in this building by the exhit. itors and visitors.
(14) The motive power for the shafting in Machinery Hall was, a: has been stated. obtained from thirty-two engines. These were fur nished by exhibitors. Each of the twenty-eight lengths into which the four main lines of shafting were divided and each of the three lines under the galleries was driven independently by one of thes engines, the remaining engine being amployed to drive a dynam from which power was transmitted to the Agricultural Building.

The names of the exhibitors, the nominal power of each engine. the power bargained for by the auministration, and the length of shaft driven by each is given in Table IV.

Table IV.-Particulars of the steam-engines employed for driving the main lines of shafting in Machinery Hall.

Names of the exhibitors.	Iength of - 3f-inch shaft driventy each engine.	Power the shaft was intended to transmit.	Power requesced by the exhits. itors of machin. ery.	Power of the engines furnished by the contractors.	Power contracted for or actually exerted.
	Ficet.	H. P	H. P.	H. ${ }^{1}$.	H. P.
Powell	1501	90	48	150	3)
L.Horme	110	$6{ }^{\circ}$	45	2410	(1)
Ateliers de Vierzua	13i2	\%9	51	(1)	40
schuieder \& Co	165	100	204	300	110
Windsor	165	100	46	150)	9)
('haligny	118	72	23	60	30
Boulet .	1:0	73	60	100	75
Anciens Etablixwments Cail.	85	51	30 !	200	4)
Iarblay	80	50	1 30	
biétrix	1*)	110	75)	12)	5
Weyher \& Richmond	105)	100	204	150	10)
Lecouteux \& Giaruier	165	10)	4π	300	$111)$
Scrérté de Fives-İille	185	11:	34	1(1)	7.5
Douane, Jobin \& Co	16:	11:	10	100	75
Inavey, l'axman \& Co.	165	1(n)	46	151)	(0)
Straght Line Engine Company	145	89	80	1(1)	(1)
Socirta Phornix.	135)	76	Ki)	194)	- 100
Societé de Winterthur	10)	100	it	1:20)	85
Sulzer Frères	16.5	100	20	1:0)	00
	185	112	50	3(k)	75
Sociétf Alsacieune .				2in)	60
Havey, Paxman S Co	145	80	89	150	3)
Brown	14.5	K0	89	$1(1)$	(x)
(arrla	1:3)	\%	8	$3: 0$	110)
Socifte doorlikon	16.5	100)	33	310	$\left.4^{1 /}\right)$
Escher.Wyssa Co	165	10)	2)	1501	9)
Qlry (iramdemange	118	72	16	* 0	55
C'assf et fils	185	112	36	6010	110
Herendorf	T5	45	4	5)	41
If Quillaca	110	6if	60	160	90
Buffaud \& Robatel	$\pi 5$	45	12	75	4
Brasseur	110	6%	60	531	110
Total.	4.363		1,918	5,595	2.544

It will be seen that 2,500 horse-power were required by the administration, while the actual power of the engines in motion made over 5,010 horse-power available.
(15) For providing the engines and connections, including pulleys and belts for transmitting power to the line and all vai.es and pipe connections with the hot and cold water and steam mains; also for rumning the engines continuously at the power required and furnishing attendance necessary for this purpose, the following prices were paid:
First. For power supplied in the amount contracted for, during the whole
official period of 180 dass, at the rate of \boldsymbol{z} hours working time per day:
For each indicated horse-power ... $\$ 8.0$.
Second. For extra power beyond that contracted for if required in the regular working hours:
For each indicated horse-power, per hour.
Third. For power if supplied in overtime, in consequence of the daily working time being extended beyond 7 hours:
(a) For each indicated horse-power, per hour of overtime, for oil, wear and tear, etc.
(b) For each hour thus added, for labor..................................... . . 40 -

Fourth. For power if needed in consequence of the continuance of the Exposition beyond the official period of 180 days:
For tach indicated horse-pwer, per hour.. . 01
Steam for running the engines. and water for condensation were supplied to these contractors without charge.
(16) The steam supply for Machinery Hall was furnished by certain exhibitors, who contracted to erect boilers, comnect them with the water supply, and provide chimneys not less than 100 feet high, without expense to the administration; also to supply steam during the exposition, on terms which were alike for all the contractors.

It was agreed that the administration would deliver water in the main under the boiler court without charge to the contracting exhibitors, who on their part were to be at the expense of the fuel and all attendance, of whatever character, required for the maintenance of a continuous supply of steam at a specified pressure, in quantity as required. There were ten of these exhibitors whose boilers were used for Machinery Hall alone. The boilers were separated into seven groups, six of which occupied buildings in the boiler court. which extended the whole length of one side of the hall at the extreme end of the Champs de Mars, the seventh group being in the electrical station on the other side of the hall.
(17) The exhibitors in the several groups, with the number, heating surface, and water capacity of the boilers, the quantity of steam demanded of the contractors, and the quantity actually supplied, will be found in Table V.

Table V.-Particulars of the boilers for supplying steam for the Machinery Hall.

Names of the exhititors to whom the eondracts were andaded.	$\underset{B}{\underline{Z}}$				Water contents.			
		Pounds	unds	sq. feet.	Cufeet.	Pounds.	Iounds.	Pounds.
I Fontaine	1	90	\%	1.0 .6	3×7	2,2001		
1. Dulac...	1	120	\% 5	9:30	421	2.2003	7.700	1,400
(Weyluer \mathcal{A} Richmord	2	1:0	9.)	1,850	6.6	4,400)	4. 44)	
II. ; Companie Fires-Lit!e	1	1;3)	90	1,000	200	1,364	1.364	
1II. Belleville	4	150	1(0)	6, f(x)	6\%)	22,000	(2). $7(0)$	34,000
IV. De Nayer	5	150	100)	15, 130	3,070	22,000	22,000)	
Ino Nayer	1	1.50	100) ${ }^{\prime}$	2.710	52\%, '	5.500	$5,50 \times 15$	36, 510
V. Ruser	5	150	100	5,950	1,250	18.70)	18,700	20, 100
; Dayde \& Pille	2	150)	100	$2.3 \% 0$	34%	6,600	6,600	10, (a)0
	1	1331	10)	1, (30)	207	3,340	3,301)	
V1. - Baberek \& Wileox ...	2	1\%)	1010)	5,5は)	1,400	15. 400	15, 4*)	24.300
VII. Davay, Paxmand ('o.	4	1:0)	1(0) ${ }^{\prime}$	2.34		11.000)	14,3101	
Total	31			47. 120	9, 34,	114, 6\% 4	1:3.974	\cdots

Notr. The water-heating surface and water rapucity given in the table for the Balcock $\mathcal{\&}$ Wileox bublers do not inelude the surface and contonts of the "economizers," but for the De Nayrer boilers the surface of two ronomizers which were used is included. as the aggregate surface only eould !er ascertained from the data procuraile.

It should be stated here, that the engines by which the line shafts wre driven used less than half the entire steam supply, the larger part being required for the nuaterous other angines which were commected with special exhibits, particularly those for giving motion todynames and other high-speed machinery not driven from the lines. In addition to this large supply of steam demanded for Machinery Hall, there was nearly an equal amount required for supplying the angines in the electric-light stations, the pumping engines, and one on two of the large isolated exhibits of machinery driven by special engines: the supply required for these, about 100,000 pounds per hour. was furnished by other boilers than those specified above.
(1s) The prices paid the exhibitors who contracted to supply steam were as follows:

First. Fir steam supplied in the quantity contracted for:
For each 2.200 pounds, say 1 ton, of water evaporated every hour (or for ${ }^{7}$ tons per day of 7 hours actual working time), during the whole official period of 180 days
$\$ 1.700 .00$
Serond. Forextra steam supplied during the regular working term of i hours:
For each ton of water evaporated.
Thirl. For extra steam supplied in consequence of an extension of the daily working time beyond 7 hours:
(10) For each ton of water evaporated in this alditional time........ . . 60
(b) For each hour thus added (to pay for the lator) 60

Fourth. For extra steam supplied in consequence of the continuance of the Exposition beyond the official period of 180 days:
For each ton of water evaporated in the additional time
A single example of the application of the contract for supplying the steam will enable all the contracts to be understood.
Suppose an agreement to have been made with a contractor to supply steam at a rate equivalent to the evaporation of 22,000 pounds, or say 10 tons, of water per hour, under the conditions of the first clause of the contract. Suppose also that the demand for steam required that he should increase the supply to 12 tons per hour, or 2 tons per hour more than agreed for, beginning the thirtieth day after the opening of the Exposition. Also suppose that, from the date just mentioned until the Exposition closed, the daily working hours were increased to x instead of continuing at 7. Finally, suppose that the Exposition had continued open 6 days beyond the official period of 180 days. Then at the end of the Exposition the amounts to the credit of the contractor would be as follows:
I. Under first clause of the contract :

For 10 tons, at $\$ 1,700$.
$\$ 17,000$
II. Under the second clause:

For 2 tons per hour extra during 150 days and the regular working time of 7 hours per day, being 2,100 tons extra, at 60 cents.
III. Under the third clause :
(1) For 12 tons per hour during 150 extra hours (1 hour per dav
for 150 days), being 1,800 tons extra. at 60 cents.................. 1,080
(b) For 1.50 extra hours, at 60 cents per hour to cover labor of all
kinds in whatever quantity) 90
IV. Under the fourth clause :

For 12 tons per hour during 6 extra daysof \times hours running each, being isi6 tons, at $\% 1$
\qquad
The following additional particulars of the arrangements made with the contractors are extracted from the pullished regulations and the blank forms for the contracts:

The payments under the contract were to be made in three equal installments ; the first. as soon as a test of the quality and capacity of the apparatus should be made after its completion in full working condition; the second, on the 31st of August. 1889 : the last, one month after the close of the Exposition, but not later than November 30. 1889.

In the event of a delay by the contractor in having his apparatus in complete working order at the time specified in the contract, he was to suffer a forfeit for each day of such delay, in the amount of one-half the daily allowance provided for his service, the amount forfeited to be deducted at the time of payment of the first installment.

It was provided that the contractor might take one day each month. ralled a day of rest, for the repair, adjustment, or other attention which the apparatus might need, during which time he could disrontinue the service; but the time when this discontinuanes should ncour must be fixed by the administration, when not determined hy an accident which should necessitate a stoppage.

Recording steam-gauges and feed-water meters, the keys of which were held by the administration, were to be applied to the boilers of tach contractor, and the indications of these instruments read daily by an inspector.

All materials furnished by a contractor, as for buildings, chimners. etc.. belonged to him, and after the close of the Exposition could be removed or left, as he preferred.

It has been thought best to give an account of these contracts, beaase their terms were carefully considered, and they enabled the administration to estimate closely the cost of the various parts of the service and to avoid the expense of an extensive corps of assistants to take charge of the details which fell to the care of the contractors. who, as exhibitors, were willing to make terms exceedingly favorable to the administration, for there was active compertition to secure the contracts, which were distributed to as many different persons as practicable.

The working of all the details of the executive business relating to the mechanical service was exceedingly satisfactory. There was no confusion whatever in the conduct of this important branch of the sreat enterprise ; almost every contingency seems to have been foresien and provided for, and there was no confusion when they had to he met. The employés were not so numerous as to appear obtrusive. and yet an admirably thorough supervision of everything was maintained.

GENERAL REVIEW OF THE CLASSES OF THE SIXTH GROUP.

(19) A general review of the sixth group preperly includes separate notices of the several classes it includes. Gniter the conditions alrealy explaned these are necessarily brief and superficial. In some cases reference merely is made to the sperial report which relates particularly to the class. in others a brief review of the standing of the United States relatively to the other exhibitingr nations is given, and wherever it is practicable mention is made of our own exhibitors who received the highest awards. or whose -xhibits attracted such favorable attention as to show that they were features of the national display which added essentianly to its crodit; while in a few cases it has been possible to give descriptions of interesting exhibits which are not described in the special ruports.

The notices are arranged in the numerical order of the classes.

CLASS $4 *$, MINING AND METALLCRGY.

(:0) Many of the individual exhibits in this class were on a large soale. particularly those entered by the great mining companies of France and Belgium. Besides machinery for facilitating the varions processes of mining, the space allotted to these companies contained large models showing sections of the mines and illustrating the methods employed in working them. Some of these models were made of transparent material and others built up of removable layers, by means of which the geological formation of an entire mining district was shown, and in which the location of the mineral veins and the mines with their varions shafts and galleries could be easily traced. The ingenious devires by which the different features were displayed enabled the visitor to whtain a clear conception of the extent and character of the different mining enterprises represented.

France and Belgium necessarily filled the most important place is the space occupied by the mininer exhibits. The collieries of Mariemont and Bascoup, Belgium, were plated in a large special building outside of Machinery Hall, where were shown large models of their mines with the breakers and other structures, and miniature machinery in motion.

Two diamond mining companits exhibited models of their South African mines, and displayod the pronluct in all its forms. They also exhibited the processiss of mining. washing the dirt, collecting the stones, and finally that of cutting them. Their exhibits were among the most attractive of the whole Exposition and were cowded with throngs of visitors every afternoon.

Only four exhibitors from the Cnited States were represented in the catalogue for this class. All of them received awards. The Cyclone Pulverizer Company and the Ingersoll Rock Drill Company, both of New York, received gold medals; Mr. Theodore Blake, of New Haven, received a silver medal for his exhibit of a multipie jaw crusher ;* and a bronze medal was awarded to Elmer Sperry \& Co., of Chicago.
(?1) An importaist exhibit from the United States was placed in the section after the awards harl been declared and, consequently, too late to be entered in any of the catalogues or to receive the official notice of the jury of awards. It was a gyrating screen for coal or wre, exhibited by Mr. Eckley B. Coxe, of Drifton, Pennsylvania, the invention of Mr. Coxe and Mr. Samuel Salmon, of Drifton.

This screen is intended for screening and sizing ore on a large scale and is a remarkable machine in many ways. It attracted much attention and favorable comment, and its advantages were so highly appreciated that a license to manifacture and sell the machines for

[^1]rertain of the European countries was at once sought and contracted fir by one of the most reliable of the French firms, who manufacture mining machinery on a great scale, and who expect the extensive introduction of this machine in European countries, especially in the collieries of France and Belgium.
The improvement affords a solution of the difficult problem of the pratical adaptation of flat horizontal sereens to the handling of large quantities of heary material. The advantage: of the horizontal screen over those of cylipdrical form are well known to experts in mining processes, but hitherto the cumbrous form they have assimed, and the great power required to overcome their friction in working. have made their use unprofitable, except on a small scale. The Coxe \& Salmon screen is a compact cluster oi flat rectangular screening plates, one above another, which receive a rapid circular motion of translation in horizontal planes by means of an eccentric on a vertical revolving shaft. Figs. 1 and 2 show respectively one of the rolling bearings on which the screen is supported, and a perspective view of the complete apparatus.*
The principal feature of the invention is the manner in which the soreens are supported and at the same time guided in their movement:. The supperts are shown in Fig. 1. They consist of rollers in the form of two cones placed base to base. guided between slightly dishing conical bearing plates: the upper one, A. being fastened to the screen beneath the corners, while the lower plate, B, is stationary and fastened to the bed-plate of the machine. There is one roller

Fig. i. Roller bearing of Coze and Salmor's gyrating screen. under each corner of the screen. These anti-friction roller bearings guide and restrain the movements of the screen, as well as sustain its weight, in such a manner that every part of all the screens receives a circular movement of equal extent in horizontal planes without rising or falling.
Fig. 2 shows the general arrangement. In the form shown, two nots of screens are placed side by side and driven by the same shafts. In this case the eccentrics for giving movement to the separate sets are placed with their centers on opposite sides of the shaft, so that they stand exactly 180 degrees apart. By this arrangement the centrifugal force developed by the gyration of one set is balanced ly that of the other. This balance is so nearly perfect that,

[^2]

Fıo, 2. Perspective vlew of Coxp and Salmon's gyrating screen.
with the machine shown in the Exposition, the heavy screens, when empty. could be run at about 200 revolutions per minute without sinnible tremor.
By the use of these roller bearings the power required to run the machine is reduced to a minimum and is only slightly in excess of that necessarily absorbed by the action of the screens upon the material which is thrown upon them, because almost the whole of the frictional resistances occasioned by the weight of the screens and their centrifugal force are those resulting from the rolling of the smooth cones on the smooth surfaces which form their tracks, even axle friction being avoided in these places.
Two vertical driving shafts with their eccentrics, one at either end of the screens, are employad when two sets of screens are combined in one machine.
(: M) Many interesting objects exhibited in Class 48 are described in the special report on Mining and Metallurgy, by Mr. Henry M. Howe, contained in this volume.

CLASS 49, FARMING AND FORESTRY.

(23) In the classification by the French authorities this class, which was at first included in the sixth group, was afterward transferred to the eighth and ninth groups, covering agriculture and horticulture : the objects exhibited are therefore noticed in the reports. relating to those groups, and will not be referred to here.

CLASSES 50 AND 51, AgRICULTURAL WORK, FOOD INDUSTRIES, AND CHEMICAL MANUFACTURES.

(:4) The reports of Commissioners Chandler, Clark, Newbury, and Riley contain notices of the exhibits in this class.
(in) The exhibitors from the Cuited States numbered only twelve in Class 51 and five in Class 51 . These seventeen exhibits received four gold medals, two silver medals, six hronze medals, and two homorable mentions; fourteen awards in all. The ratio of number of awards to number of exhilitors is 0.825 .
There were eys exhibitors from all nations in the two classes.
The awards were: Grand prizes, 12; gold medals, 81 : silver medals, 119; bronze medals, 135; honorable mentions, 74 ; in all, $4: 1$: the ratio is 0.4%.

If, however, the awards are weighted according to the values which Mr. Carl Hering, in his report on electricity,* has given to them; namely, 20, 10, 5, 2, and 1, for the different grades, respectively, beginning with grand prizes and ending with the honorable mentions, and if we divide the sum of all these values by the number of exhibitors, we find the average value of all the exhibits from

[^3]all nations to be represented by the number 2.33, and those from the United States by 3. ~ 6. The number of exhibitors from the United States was so small that this comparison does not really represent the relative importance of the display, but goes to show the appreciation in which the articles exhibited were held by the jurors of these classes.

CLASS 52, GENERAL MECHANICS.

(26) The special report on this class is contained in this volume.

CLASS 53, MACHINE TOOLS.

(27) Of twenty exhibitors from the United States seventeen received awards, of which two were grand prizes and nine gold medals. There were one hundred and seventy-four exhibitors from all nations, and the United States, with less than one-eighth of this representation, received two-fifths of all the grand prizes allotted to the class, one-eighth of the gold medals, and one-sixth of the silver medals.

The Brown \& Sharpe Manufacturing Company, and William Sellers \& Co. received the grand prizes. The gold medals were given to the American Screw Company. G. F. Simonds. Stiles \& Parker Press Company, American Tool and Machine Company. E. W. Bliss \& Co., Morse Twist-Drill and Machine Company. H. J. Sternberg \& Son, the Tannite Company, and Warner \& Swasey. This showing gives a good idea of the standing in which American machine tools and their appliances are held in Europe. Professor Barr, in his special report, which is contained in this volume. has weticed many of the exhibits in this class.

In general the display was attractive :nd instructive as showing great progress on the part of the continental builders of machine tools. The English and American styles are generaliy adopted, and excellent workmanship is a characteristic of the machinery exhibited in this class. The machines constructed by the builders of best repute are massive and with outlines which suggest strength and rigidity. Those features of American machine tools which relate to convenience of manipulation, and have made our machinery so popular in Europe as to have obtained a large market for it there, have been adopted by the manufacturers of machine tools in France, and these manufacturers are, therefore, more formidable competitors than heretofore.
(28) The commissioner for the sixth group visited the works of the Messrs. Steinlen \& Co., in Mulhouse, Alsace, who also have a manufactory in Belfort, France, and found the methods employed in building their machine tools to be of the most advanced character.

Milling processes are employed in that shop on a larger scale and
for a greater number of general purposes than is usually the case in our own shops, and often take the place of operations ordinarily performed by the planer. It is claimed that the work is equally well done by less skilled workmen than are required to manage the phaner, and that the product is consequently cheaper. The finished work and work in progress shown in the shop and at the Exposition were certainly excellent and left little to be desired. The surfaces as the cutter leaves them are remarkably smooth and regular, so as to require but little subsequent filing or scraping in fitting.

The shops of the Messis. Steinlen are excellently organized, and the small tools, the system for their distribution, and the arrangement of their tool rooms are of the best. They reproduce American machine tools of the most popular designs, and advertise this fact as their recommendation. But in addition to these reproductions Stein$\operatorname{len} \&$ Co. are introducing a line of well-designed large lathes, horizontal boring machines, and other machine tools, in which original and improved features are introduced.

The special building on the exhibition grounds in which the Messrs. Steinlen placed their exhibit was one of the largest of the buildings erected by exhibitors, and contained a magnificent display of machine tools, machines for engraving printing rolls, calico printing machines, calendering machines, dynamos, shafting and its accessories, and steam-engines. Six of the latter were shown, all of the "straight line" type, a license for the manutacture of which this company has obtained from the United States patentee. Steinlen \& Co. received a grand prize.

Grand prizes were also awarded to two French exhibitors, Bariquand \& Son and Bouhey $\&$ Son, the most interesting of whose machines are described elsewhere in Professor Barr's report, which also contains notices of the English, Belgian, and United States exhibits of machine tools.

There were two exhibits of special machines in the United States section which did not come within the scope of Professor Barr's special report and must be noticed here.
(29) The American Screw Company, of Providence, had a wellarranged space in which they exhibited in operation a set of machines for making wood-screws on a new system, which has been adopted by them in the United States, and by means of which it is said onethird of the enormous output of their shops is now being manufactured. The screw produced by the machines is in itself a new article of manufacture. It is a wood-screw, of which the thread is raised on the outside of the wire, so that a screw of size No. 13 outside the thread is made from wire as small as that required for a N o. 9 screw of the usual kind: the head, however, is as large as that of the No. :3 screw. The nick is indented in the top of the head and does not extend all the way across it ; the head is therefore not weakened by
the nick. The screw itself is better than the old form, and there is much less waste of material in its manufacture. The wire is cut off, headed, pointed, and nicked in a machine resembling a common heading machine, but in which the blank receives three blows from three separate punches successively so as to produce the large head on the small wire without displacing too much metal in each process. The indentation of the nick also helps to spread the head and fill the heading die. The blanks, after being headed, are placed in the hopper of the threading machine and fed to the dies, where the thread is raised by a process of rolling. The f flowing brief description and illustrations of this process have been taken from Engineering, London, November 22, 1889:

The blank drops vertically into a short guide, with the greater part of its length protruding below, like a skater who has gone through a hole in the ice and is supporting himself on his outstretched arms. The blank is then seized between the dies and the thread is rolled onto it; luring this process the blank rotates, but has no movement of translation. As soon as the rolling is complete the screw falls through the guide into a hopper below and a new blank takes its place.

The dies are two that plates, standing face to face, and having lengthwise reciprocating horizontal motions in opposite directions. Ribs corresponding to developed screw threarls are formed on their faces as shown by the sections, Figs. 4,6, 7, and 8, and in elevation and plan. Figs. 3 and ;. These ribs all stand the same height from the hack of the plate (Fig. 4). but the grooves between them gradually decrease in depth. At the entering ends of the dies (Fig. 5) the ribs are narrow and immediately penetrate the blanks to the full depth of the thread. The ribs grow gradually wider, and as the blank rolls between the dies the metal. caught between one rib) and the next, is gradu "iy compressed and made to flow outwards, until at the point oo, Fig. 3. it has assumed the form shown in Fig. 7. and is filling the groores $b b$. As the rolling proceeds this action continues. and at $p \boldsymbol{p}$ (Fig. 3) the screw is partly formed (Fig. 8). When the process ends the die has the sertion shown in Fig. 6, and thescrew thread is complete. There is nocutting of the blank whatever, neither is it lengthened nor shortened : its skin is male to flow endwise and outwardly by means of a pressure which is mainly longitudinal insteard of being radial.
These two machines constitute a set and produce the finished screw. (30) George F. Simonds of Fitchburg, Massachusetts, exhibited a forging machine overating on the same principle as the threading machine just described. It is for forging pieces which are solids of revolution, such as the balls for bicycle bearings, certain parts of carriage trimmings, small handles, the blanks for screws or roundheaded bolts, and a variety of objects employed in the arts.

In this machine the piece is forged on the end of a heated rod, or from a detached piece, by being rolled between straight-grooved dies one or both of which have reciprocating movements. The grooves have the shape of the profile of the finished forging. Repeated rollings reduce the piece to its form with great accuracy, leaving nothing to be desired in smoothness and uniformity.
The exhibit deservedly received recognition by the awarding of a gold medal.

AMERICAY SCREW COMPANY'S PROCESS FOR THREADING WOOD SCREWS.

Fig. 3. Eleration of one of the dies.

Fig. 4. Longitudinal section of the die.

Fig. 5. Entering eud of the die.

FMg. :- ('rus section of die, at o. o. Fig, 3, show. ing the beginning of the threading jrucuss.

Fing. G. Finishing rad of the die.

Fig. 8. Cruss wetion. at p. p. Fig. 3, showing a screw nearly threaded.
(31) For particulars relating to the different displays of machine tools the reader is referred to the special report by Prof. J. H. Barr, contained in this volume.

CLASSES 54 AND 55, MACHINERY AND PROCESSES FOR THE TEXTITE INDE'STRIES.
(32) No improvements of special value or novelty were noticed in the machinery for spinning and weaving cotton and wool. This review of the class is therefore limited to the mention of those exhibitors whose displays obtained the highest awards, and who may be regarded as representative foreign manufacturers of the kind of machinery in question. There were large displays in the sections of all the great nations excepting that of the Cnited States, which was represented by only three exhibitors in each of the two classes. Of these the National Cordage Company of New York received a gold medal for their exhibit of rope and cordage, and the Eureka Fire Hose Company a gold medal for a loom for weaving fire hose.

In the French section the finest display of pickers, carding and combing machines, and spimning frames was made by the Société Alsacienne, Mulhouse, Alsace, to whom a grand prize was awarded. They exhibited a picker with Lord's apparatus for regulating the speed of the feed apron, the operation of which is to deliver the material to the picker at a uniform rate, so many pounds per minute, whether it be spread thickly or thinly, evenly or unevenly, on the apron; it also contained a safety arrangement for preventing the covers from being opened while the machine is in motion.

Carding and combing machines, spinning frames, and looms of different kinds, all of excellent design and workmanship, were also exhibited by this company.

A grand prize was awarded to the De l'Horme Company* for a great collection, in their own special building, of a variety of looms for weaving fine goods, velvets, damasks, foulards, and other silk goods.

Lenique, Piquet $\&$ Co., of Calais, France, exhibited lace looms which were deemed worthy of a gold medal.

A German firm, the Saechsische Webstuhl Fabrịck, Chemnitz, Saxony, one of the very few German exhibitors in the sixth group, displayed looms for weaving cloth, velvet, silk damask, etc., and received a gold medal.

In the British section, Mr. George Hodgson, Bradford, England, made a fine display of excellent looms, for which he received a grand prize. A wide loom, capable of being adapted for goods 3 yards wide, was shown by him, also a "Revolver" loom for six shuttles, and several improved Crompton looms for cloths and cassimeres.

[^4]Paget's warp-weaving loom is noticed in Mr. J. N. Merrow's special reprot.
Three grand prizes were awarded to Belgian exhibitors as follows:
To Célestins Martin. of Verviers: to the Socifte Verviétoise pour lat construction de machines, and to "Mathieu Snoeck, Verviers, all of whom exhibited wool-working machinery, either for carding anf combing. spinning. or weaving. Four gold medals wrere also awarded to other Belgian exhibitors in the two classes.

In the Swiss section the Ateliers de Construction de Ruti (successors of (Gatard Honegger) received a grand prize for looms of excellent design and construction, while Jacob Rieter \& Co.. of Winterthür, made an equally fine display of machinery for carding and spinning. The only self-acting mule for cotton spiming shown in the Exposition was in this space. Several mules for woolen yarn were, however, shown elsewhere. The carding mathines shown by Rieter \& Co.. like those of other exhibitors, embodied the English system of movable top cards fastencd to an endless chain, by which they are automatically and successively removed, cleaned, and returned to place: the modifications applied by the different Continental manufacturers relate chiefly to improvements for facilitating the adjustment of the movable cards.
Reiter \& Co. also exhibited self-ating embroidering machines. and machines for threading the double-pointed needles used in the embroidering machines.
The Fives Lille Company* presentell an ingenious machine for netting fish nets, which attracted much attention.
(3:3) The special report of Mr. J. M. Merrow contains an acoount of knitting machines and power marhines for embroidering, which wre included under Class 5 ; and in the report of Mr. C. R. Wedre, in vol. may be found a motice of machinery and promestes for the preparation of ramie, and of the new processes for making artificial silk.

(LASS Si, SEWING AND THE MANCFACTRE OF (LOTHING.

(:34) Besides sewing machines this class contaned machinery for making buttons, hats, ete.. and aparatus for cutting out stuffs for making articles of clothing.

The one hundred and thirty-five exhibits may be divided as follows:
Stwing............................... 4 49 stamping 9
Making shoes. 40 (overing buttons
Measuring and cutting 30 Hat making. is
Fmbroidering . is
There were many appliances for the use of tailors and dressmakers, for taking measures for clothing, or for laying out work,

Which were mot remarkable in any respect. Several presses for forming felt into hat bodies were shown, all of simple construction, without impertant novel features.

The most interesting displays were those of sewing machines and shoe mathinery, of whieh there were numerous and extensive collections.

In this clase the mathimery in the [aited States section held a most (reditable pesition. There were bat fourtern exhibiters from the Conitedstates, of whom eight mate attractive displays of sering marhines. including machines for sewing leather, making fancy stitrhing. ambroidering. working buttombules. rte.: two shewed - Pocial huttomhole-working marhines: threr oxhibited lasting machimes of other mathinery used in manufacturing shoes. and whe a mathind for cutting out work.
(:3) The fator with which the machines from the United states were perarded is indieated hy the awards of the jury. The erand prize and gedd and siber medals were distributed as follows.

There were in addition four moneompeting French exhibitors, members of jurios. who would douhtless hate reerived grold medals if then exhibits had been in competition.
(:36) Of the exhibitors of the L'nited States. the Intermational Buttomhole Sewine Marhine Company. Boston, amd Wheeler \& Wilson Mandacturing (ompany. Bridgeport. (ommecticut, received gramd prizes. Thu Davis Sewing Machine Company. Watertown. New York. the New Home and Singer Sewing Machine Companies, New York. the White Sewing Machine Company. ('leveland. Ohio, and the Pathe Shoe Lasting Machine Company. Rochester. Now York, obtained gold medals.

Nearly all the sewiner marhines were placed in the grallery of Machinery Hall, where those from the Cnited States were arranged in tasteful pavilions which attracted many vi itors.although the location was not where the general puhlic would be the most likely to find its way, and consequently not altogether favorable.
(3i) The exhibit of the International Buttonhole Sewing Machine Company was in the body of the hall with the shoe machinery, and
attracted as much attention as ary single machine in the Fxpesition. the rapidity with which it performed its work amd the perfection of the product were so remarkable. The mathine is su well known and extensively used in the Cuited states that a description of the mechanismin detail is not needed. A general view of the machine which formed the principal feature of the companys display at Paris is given by Fig 9.

Fig. 9.-The Reece buttonhole sewing machine: by the International Buttonhele sewing Machine Company. United states.

It works a regular eyelet butconhole, with a cord set in the stitehing around the hole, and makes a sulure har adress the small end.

The work is clamped immorathy to a stationary bed. the matehine then cuts the buttonhole. after whirh the netelle and wher stitching mechanism travel aiound the hole athomatically. The needle works along sne side of the hole, then around the evelet end. turning about its axis meanwhile, then works hack aloner theother side of the hole, and finally moves bark and forth eroswise of the end several times to form the bar. and stops automatically. When stoperd the needle stands out of the eloth, so that the work (an be shifted or removed without obstruction. The movements of the stitehing mechanism are given by eranks, and very quiet working is ohtained at a high rate of speed.

The loose ends of thread and cord are fastened hy hand. or, on shoe work, the ends are stitched to the inside of the buttonhod pieces by a special machine. which will do the finishing for eighteenor twenty cases of shoes in a day.
(38) The exhibit for which the Whemere \& Wikon Company reeqived a grand prize contained a buttonhole machine which is also atutomatic in its action. stitching along the sides of the hole and across the end, but not aroumd either erid.

The company also exhibited seremal interesting suecial sewing machines, among which was one for making automatically a great variety of zigzag rows of stitches for ornamenting cloth, leather, ete. Also a twin needle machine for making simultaneously two rows of stitches interlocked by a single shuttle thread. Ry means of this machine a rib, with or without a cord inserted in it, can be formed
in the grools and a row of stitches made on each side of the rib at once. The stitching is like that made on the backs of gloves. Machines with four needles. for making simultaneously two rows of stitches on both sides of the rib, are also made.

The machine. however. which won for this exhibit its greatest prestige was the new high-speed family machine, used also for manufacturing. in which the rotary hook-the original distinctive feature of the Wheelter \& Wilson marhine-is appled with an improved and very simple devioe for givine it a variable instead of uniform motion of rotation. by which less of the uper thread is drawn through the goods by the hook in forming the loop. This machine works with a straight needle and has a take-up on the arm above the gools. The feed is in the direction away from the "perator. instead of from left to right, resembling the shattle machines in this respect.

A large manufarturing machine on the same principle, to which a wheel ferd is sometimes applied. was also shown. It works at a high sped, has a large bobbin in the hook, and is adapted for heaty taloring work and to be run by power.

The rotary hook is adopted by several of the largest of the French manufacturers of sewing machines, and seems to be preforred to the shuttle: in fart. modifications of the hook. having vibratory movements instead of eomplete rotation, are being adopted by manufacturers of shutle machines.
(39) In the patilion of the Singer Company were alko a great variety of special sfoing machines. among which may be mentioned a buttonhole machine: a machine for overseaming and zigzag stitching : a machine for working eyelet holes, used in shirt manufacturing. ptre: cylinder machines for sewing hollow goods. sleeves, trouser legs. bats, ete.: a high-speed chain-stitch machine with automatic devices for trimming the edge of the material, for knit grows: a portable machine for sewing rarpets. and a gigantic marhine with roller feed for sewing canvas. leather, and rubber belting up to three-quarter's of an inch in thickness.

In the Singer buttonhole machine the work is clamped to a plate and the hole spread open for stitching : it is then fed in the direction of the length of the buttonhole, while the needle stitches along one edge : the whole work is then turned around automaticallyand fed in the opposite direction while the othre edge is stitched, and in one form of machine the end of the hole is finally barred. A cord is inserted and inclosed in the stitching.

The smaller forms of the Singer mathine, for family and manufacturing use have an oscillating shuttle, consisting of a hook vibrating about a horizontal axis and containing the bobbin, which is ercentric to the axis, so that the action is that of a hook and shiuttle combined.
(40) The Davis Sewing Machine Company, Dayton. Ohio, and Watertown. New York, exhibited mathines which have long been known in the markets of the United States and Europe. The ford is the distinctive feature of these madhines. beiner a top fered. When the needle descembs inter the eloth the presser fout is lifted shightly amd at this time the feeding is produced hy moans of a foed hat alongside of the needle. with a torthed foot which is fored downward ugon the choth and moves laterally together with the meedle. pasising the cloth alomg. This simultameons movement of the fowl foet and needle insures that all the plites of ther eloth through which the thread passoss all be moved equally without relative diephanement. The meehanism of the mathint is simple.

The shattle of the manufarturing mathine which they shown! rarries a bobhin holding a largesupply of threal. An atutomatio buhbin winder, by which the thread is lad avenly in windine. is applied to these machines.

The exhibit of the New Home Sewing Machine Company onntained a large assortment of machines of various styon of tinish.

This is a shattle machine, with an under" ${ }^{\text {a }}$ drop" fied. In the family machine the shattle is thrown by a combination of levers beneath the phate. In the manufacturing machime the shuttle oscillates about a horizontal axis. and its arrangement allows a short, stiff needle to be used.
(41) The White Sowhir Marhine (ompany rutered only family machines in competition. and showed an assortment of exeellent work produced hy them. the oxhibit brimeing them a erod medal. as hats already bern said.
(4:) In the Fremeh sertion there were few interesting displat: of sowing machines, although much pate was covered.

The most important was that of Masers. Hurtu \& Hatuth, who hate built up a large business in mathines of thrir own manufacture. They exhibited more than thirty variotits of sewing mat chines. Their latest pattern is a lock-stiteh marhine for tamily and manufacturing use hating a revolving hook of which the rotative
 instead of miform: in fact. this variable movement is produred by moechanism resembliner that rmphered for a similar purpose in a mathine introluced matny vars ago hy the Wharler \& Wilson (ompany, hut displaced be lateraml simplereontrivanes. The bohbin for the unler threal is in a rase. The semed is said to be as hish as ad. 50 stitrhes per mimute.

Among the machines exhihited be this Fremely tirm was a waxelthreal mathine. for operating on harness and saddlery work, mat chine belting. etc.. capahle of sewing through a thickness of leather as great as 18 inches. This mathine is provided with an awl for perforating antomatically the hole in the work through which the needle descends. The needle thread loop is spread hy a hook at the
end of a revolving cylimhical shell, which forms part of a shuttle race through which the shuttle is driven without contact with the Waxed loop. A small lighted lamp hemeath the hook. near where the needle comes down, keeps the waxed threads warm and prevents them from sticking in the leather.*

In a machine. " La Comesese." made by Leeronte. Paris, the under thread is on a spool which stambs in a sood case at the tope of an upright revolving shaft bearing a hook by means of which the loop is spread and carried around the spoel case. A great length of the uper thread is required for the long. which is drawn up hy a takr!! ! on the arm.
(4:3) Embioniderin! mor-hime.t- Nearly all the American and fordign sewing machines have sereial attarhments for embroidering. Elegant specimens of work were shown, executed on the Datis. the Singer, and the Wherler We Wilson machines. Sereral Fredeh manufacturers. however. exhibited machines made particularly and soldy for this kind of work. and it is to these that this notice relates.
E. Comely exhibited sereral tyne of an embroidering madrime ralled the " ('ouso-Brodeur." It is : rhath-otitrhmathine. in which the design is brought wht he the ehain itrelt: that is. the rhan is

 prowments on the wrisibal :1 : : :

 bern fed ahead, and the tirst lowh is tightemed aromul the seeomd one, and so ont. The movement of the trealle is communicated to the mathine throurh a slidiner dhteh in the head of the mathine. and a spring throws this clutch out. unless it is held in place by means of a hamdle placed umder the table. This allows the foot 2 a ar to work contimundely and get the meedie jo controlled wo that it ran continure stitehinge or make only a fere stitele in suceresion, or eron only a single stiteh. and be stopped instantly hesmpletting gothe handle. Where the marhine is run be powe the rhgaging merehanism is worked by a pedal with the left fort. For foot-power matchines beth feet work on the machine treadle, athe the elutch is worked 1,5 the hamd.

In order that the work need not he turned atomed in following a

[^5]design, the Couso-Prodeur hats what is called the " miversal feed." which is Bomates in.genions intention. This is a top foed in which
 the needle and reeriving its vibratory movements from a small herer forinted in a sleeve which is comerntrice with the needle hatr. The
 an axis. so ats to give the vibratory movements to the presser for in any desired direction, the and of the lever. when it is turned. trateditis aroumd within a ring attached to the vibratory hat of which the presser foot forms the lower extremity By turning the shere. therefore. the feed maty be mathe to operate in any direction which the pattern of the work may require. This turning can be prolural while the mathine is in motion. by means of at cramk. bernath the machine, with which the shere is commected throurh a train of bevel grats, and by changing the direction of this ramk the direction in which the work is fed maty be chamered at will. the moverment of the work being always in the direretion in which the arank is peinte.. Solong as the directing crank remains peinted in ond direction. the feeding continues in a straght line in that diretion. whil. her wrolving the erank eontinuously the feedines is in a rireular dirextion. and thas the mathine ean be made to prochere ant dasired pattern in a more definite way than he turning the work about in the u-nal manner. The stitching can be stopped and stated at any instant by lifting or pulling down the hamelle of the ramk, which is commerted hy levers with the elutehins merhanism.

The mathine is said to work at the rate of $1.2(0)$ stite here per mimute.
Mr. Comely exhibited tiwe different styles of this marhine:

1. A single-thread single-needle mathine, suath ats the ohe desoribed, intembed for pain ehain-stiteh embroidery, but which. by allowing the hook to miss stitches, will also make mose ambrointery, which comsists of a surites of lowps viry elose torether.
\because. A two-thread single-hewdle marhine. in which a seromel thread. placed on a spow above the work, is womd around the lowp of the Chain stiteh as it is made. In addition t., the parts of the first machine this one hats a thread gruide that revolves aromud the merelle. holider.
2. A three-thread, single-needle mathine. in which a threat or cord passes down through the neer?le holder and forms a core aromel which the second thread is wound, and makes a mowh more raised figure. This machine (an ber used with two throals. or with omly ome if desired.
3. A single-thread machine with seroral meders. This is for forming several parallel or concentric rows of ehain-stitch embroidery, as for edges of muslin rurtains. atc. Tho needles are placed side by side in the needle-bar, and as they pass through the work the threal is foreed intorngarement with the merdles ley a fork which transfers it from a toothed holder. after whirh the threall is
brought upthrourh the work in sureral lonps side heside. The work is like sereral rows of ehain stitch, exerpt that all are formed from ohe thread. Py settine ont needle hisher thath the whers it ran be made toskip the stitehes and leatreatrow bi lonse lowp on the erlige.
 which the thpe of the lows atresheared oft as they are formed atho. the work. and thus an appetrance of velvet or rhonille s given to

the work. A nosel feature is:a pair of plitrs, he which the portion of the low, that is cut off is picked up and brought arouad in frontoia thbe through which it is hown away from the work. a small air prop being attached tw the head ot the machine. athl a rubler pipe led from it toa nozzle in front of the needle. This mathine (an be operated as the simple ('ouso-Brodrur if desirel.
(4t) Mr. Jules Derriey exhibited a large embroidering mat chine which works fourtern newdias on fourtew repetitions of the sanse pattern at once. The stitch is the same as with the (buse-Bromene It is desimber to embroider muslin curtains. etc.. and is usid hy mamufaturers in the north of France, at Tamare. St. Quentin, and other places. It will do the work of tive of the Romnaz mat(himes. The machine was invented by Mr. Klans and improved and brought intoworkiner shape by Mr. Jerriey.
(45) Masis. Hurtu \& Hatutin showed ant embroidering machine that will take in any length of work, and is marle in
 wore. It is formed of two distinct parts: the tahle or frame that holds the work, and the sewine arm or marchine prower, which is suspenderl from at andand on rame. allowing the whole thing to swins in any direction. Fix. lo shows this machine.

The table is an iron frame with rolls on aither side to fasten the work to, and having four casters allowing it to be moved laterally.

The working merhanism eonsists of a $د$-shafed frame. containins all the merhanism of an ordinary sewing machine. The upper limb, of the \boldsymbol{D} arrias the main shaft. terminatiner at the heal which hohds the presser foot ami noedhe merhanism. This heal ran tip ahout the main shaft as an axis suas toallow it toswine past the roll of work. It alsw hats a hamdle be which the operator sudes it wer the work as desired. The lower armof the \mathbf{U} antatins a smaller shaft todrior the shuttle. which areillates about a horizontal axis. The treadles amid driving pulley are attached to a separate frame made fast to the flow, and the belt passesorar a series of small pullegon the standard or crane, and is then brought down to the pulley on the main shatt of the \boldsymbol{D} frame. The operator gruides the needle orer the design, reswhating the seed of the feed acoorling to the kind of work to be done. When the arm can mot reach the design, either the work table is moved along latterly or the work is rolled up on the upper roll and released on the lower ore

This mathine is used for different kinds of imitation lace work, as well as embroidery, and for owrlaying, applying brad, ote. A barge size, run by power. is made for sewing coverlids, counterpanes. bankets. etc.
(46) Marhimes for senting stren.-There were several machints exhibited for sewing straw hrad for the manufacture of straw hats. For the most part these are adaptations of the ordinary single-thread Wileos \& Gibbs sewing marhine. with a seecial feed arranged for fieding the straw. On these maehines the straw is very apt to get broken. The stitches are the same size on both sides, se that th hate a fine and almost invisible stiteh on the right side the stitehes must he very near together. They usually have adrop leaf in front to allow the hat to pass aromod as the work progresses.
One of the principal exhibitors in the French section was the firm of Legat \& $\mathrm{H}_{\mathrm{H}} \mathrm{r}$ bet, of Paris. who showed I). Legrat's straw-hrail sewing mathine. In this machine the needle has a hook near the f"int like a \quad rocher needle, and takes the thread from a shuttle troneath the work. The machine is quite intricate in respect to the moving parts that help to make the stitch, which. although formed of a single thread. will not ravel easily. The machint is worked hy fort pewer or be machinery. The shutter is contained in a cylinWheal box on the front of the table, just below the needle, in which all the parts that need frequent attention are contained. This can b.e seen in the general view of the mathine, Fig. 11.

The operation is as follows:
The needle passes down through the braids. catches the shuttle thread in its hook and rises. bringing the doubled thread up with it; the braid is then fed forward about one-sixterenth of an inch and the
needle again descends, while. in order that the thread may be carried down through the straw hy the needle, a wire finger comes forward so as to hold the threan in the howk until the needle has agran pernetrated the straw, after which the finger retreats and when the needle rises the second timu it fails to hring up the thread, leaving a loop, below the hraid through which the shuttle glides and thus forms a knot ; then the braid is fed athead about half an inch, and the needle. descends again to pick up the threat for forming a new stitch; the thread is put on the needle be three arms that come forward below

Fig: 11. Lefrat's mathine for sewing straw braid.
the braid. opposite the thread as it is stretched from the shuttle to the last stitch madr: the thread is again drawn up through the straw, the braid is fed athead one-sisteenth of an inch and the needle descends agrain. There is thus made a short stitch on the face of the
work and a long one on the hack. The hength of athe of then eant the varied acooding to the elass of work and the finemess of the -traw. The topstitch shews the thread doubled. whild amderneath it is single.

This machine uses only one-thind as much threand as the ordinary twothreat machines, and omly one-fifth as math as the resular
 , in this machine in 16 hours.
 manufacturing machines that of the Paine shone-lating mathmu. the imbention of Mr. S. White Pathe. of Rowhestor. New York was probably the most interesting. The mathine has hern introlurend muly recently, :ad performed its work in so exaellent a manner diarEng the Expesition that it received the highest award wriven that - lats of machines, although in compertion with several others that wre better known.

An illustration and desiription of the machine (an mot he wiran here.*

Solasting tacksare used in working with it. A "rubher" $\cdot \boldsymbol{r}$. \quad ment is applied to the insole. and them. hy the ad of the machine. the upper, to which the lining has previously heen stitehed, is tightly and wer uniformly stretched over the last by moans of pinchers. the that -ion of which is limited by sprines and thus made independent of the judgment of the operator. after which. by a very ingemions modanism, the edges of the upper are turned owe upen the insele and pressed firmly upen the cemented surfiae of the latter: this "peration fastens the upper and insole together and completes the lasting.

The madhine is adjustable to almost any desirable extent for the aroommodation of shoes of different shapes and sizes.
-I.ASS 5\%. MANCFACTERE OF ARTICIES FOR FLRNITLRE ANI) JWELIIIN(iS.
(fs) This class contained wool-working machinery of all kinds; mathines for making papier mache and working in bont and horn; tock and machines for carving in stome. engraving. and engrine moning : also machinery for making hrick and tiles, and for moldinis and pressing percelain. pottery, terra eotta, ete.

There wre fewer exhibitors in this class than in any other. but whe of the exhibits were hardly exreded in interest and rextent by those of any class.

In the United States section the space occupied by the woon-work-

[^6]ing machinery axhibited by Messrs. J. A. Fity \& Co. C'incinnati. of which Mr. W. H. Dome, the president of the company, was the reperentative wats, with the exception of the Edison Companys space. the largest in the sertion. and one of the largest devoted to any single display in mathinery hatl.

Plate II shows a view of the exhibit.
Only thre grand prizes were awarded in this class to exhibitors of all nations. and Mesors. Fily \& ('o. received one of them.

In weremal apparance and charatore of the machinery this exhibit wal- incomparally superion to any other in the class, and it afforded an exerllent example if remesentative American practice in wond-working marhinery.

The style and finish of the mate.ines. their handiness. and special adapthtion to the purposes of their use. were excellent, and a number of important imporements. new in the European market, attracted the attention of visitors and made the exhibit particularly interesting to the expert, so that the attemdants were kept constantly emploged in explaining and de honstrating the operation of the various mathines.

The space contained about twenty different machines. driven from countershafts beneath the foor by power deeived from a sereial "straght-line" engine placed within the inclosume.

Much of the machinery was of the kind used in the manufacture of ralroad cars. amd aldpted for working large timber.

This class of mathinery, while it is companatively new in Europe. is extensively introluced in the Cnited States, and its general character is quite familiar to all who are interested in the class of work for which it is used, so that the machines in gemeral need not be described.

In a series of illust rated artielesin Engrineeriner on the word-workine machinery of the Exposition, thirteen of Messrs. Fay \& Co.s machines are shown and described.*

Two rapid-working mortising machines attracted more attention than any of the other madhinery.

They operated by making square holes side ly side. so close togrether as te open into buth other. The holes were cut be means of a hollow tool in the form of a square chisel-edred pipe with an aluger revolving at great speed inside it. The chisel removes only the corners of the hole left he the augur whic! does the hulk of the rutting. In the C'nited States this device is not new. In the largere of the two mathines the hatk-and-forth lengthwise movemunts of the boring chisel were automatic. but capable of heing regulated by the operator by means of a treatle. This machine was adapted for

[^7]
J. A. FAY \& CO.'S EXHIBIT OF WOOD-WORKING MACHINERY.
making mortises as wide as 1 ! inches and of any length. The - maller machine. which was mot antomatic. was adapted for mortiors from threeroishthe there-quarlors of an inch wide. The larger machine is shown in Fis. $1 \because$.

Fif. 1:-Large mortising marhine : hy J. A. Fay dio. lonited states.
A mitering saw bench. of whichthe tahle is stationary and the saw arther adjustable in a vertical phane to any angle with the horizontal up to 45 degrees, seemed to hate movel features. It is particularly adapted for cabinct work and manufacturing. Its gentral appearance is shown by Fig. 13.

Fig. 13. -Saw bench formitering : by J. A. Fay \& Co. C'ited States.
A noticeable feature of the machines in this inclosure was the care which had been taken with the patterns. The designs were studiod with a view to the apparance of the machines, as well as to their merchanical features. The machines looked substantial. and yet There was a tastefulness and elegrance about them which was not set in the machines of the same class in the other sections.
(49) A number of French manufacturersof wood-working machin-
ary made extensive exhibits. Several of them showed special marhines for making wooden shoes, and lathes for turning irregular forms. The lathes were modified Blanchard lathes. with arrangements for making one pattern gruide the movernents of the eutters for a number of different pieces. none of them new. (n ne of these exhibitors of seecial mathines recoived the award of atrand prize.

Messres Thomas Robinson \& Som. Rocholale. Englamd, exhibited hand saws, modring mathines, and suecial machines fordovetailing. reti.. for whirh they received a goded metal.
((an) An interesting hand tool for smonthing. shapinge and soulpturiner stome-applicable also to a varicty of other nses-wats shown
 phrmatic tonl. ©omsisting of a crlinder of comvenient size for holdintr in the hathe containing at rediproating piston of very shom streke which is worked at a serat sperle saty tran of tiftern thonsamd strokes per minute. Wy meathe of compressed air. The piston delixers its shower of hlows upen a lowse tom-halder at the and of the rylimer, and the peint, chisel. or other towl mequired for the work
 very shot range. The fundamental pinciphe of this instrument is similar to that employed in dental phageres and rock drills. The compressed air is combucted to the tonl thromgh a flexible piper and the towl is held in the hamd while the proint is aplied to the work with firm presure. the sharp, short strokesof the tool peint performing the ratting with great rapidity.

Berallse of the rapidity and mimuteness of the movements of the fow peint its action is almost continuous. and in cutting with it the proces is more ilke that of paring than like the working of a chisel driven heramallet. The touch with the tool is thas rembered so delicate that the finest work ean be executed with it. while with the larere forms of the tool heaty rutting can be done rapiclly. The applicability of the tool for chipping catstiron was demonstrated at ther Exposition.

These towls. execially arranged for shathing or embesing hollowware. Were shown: also tools for executing tine repusse work. Calking towls on this principle. for calking the seams of beiler and tank work. are made and in suroessful use.
 hemachinery for making brick and tilos. and for mohling and shaping articles of pottory and porelanin, and for the preparation of the materials for making them.
One of the most striking of the exhibits was hy Mr. Pierre P. Fature. who showed in operation a complete series of machines used in the manufacture of fine percelain. He exhibited filtering presses in which the mixture of clay and water is forced through wire gatuzand the clay delivered in the required state of finentes and homogeneity.

He also exhibited a mombrof machines for shaping phates. satucers, and cups, in some cases by presure in molds. tw ente the tirst approximately correct shater and in others bereans of tomplets. by which the roughly molded piexe phaced in or on a revolviner ehurk. is seraped to exatly the poper form amd thickness. The merehanism be which the tomphes ate held. aljusted, and aphlind comstitutes the chate feature of these last mathines: ant. while simple. they ate \therefore efficiont that be their use an excellent qualit! of work can b. thrned wat rapidly and with lesskillal labur than he the ohd pros-

 rombination of an ereentrir ant shles resembline the wal whek wised in lathes for thrmine wals and fan? work. While the tomple: reveres at slight fortical motion from a cam. the shate of which cath be madeso as to sibe different thinknes to diffornt parts of the wherk as desired.

Mr. Fanmes mathinery is usel in all combtrite where porcelath is manufacture 1 and its utility is widely remernizel.

A grand prize wats atwarded to hian he the gurs.
A special report he Mr. H. D. Winde on mathinery for the mant-
 rolume.

(LASC: ix. PAPER MANIFMCTRE ANI) PRINTINI:

 -pare. forming prohahly the lares rollection of paper-makiner amd printing mathinery and applamers ever brousht terether. The colleretion was far from complett. hownore and there wat but little which was new to he found amoner the marhines exhibiterl.
 werent up in Mathinery Hall: one from Franme hy the Mesors.

 zerland. hy Fecher, Wyss ('o. Zurich. The twotirst mentioned were in motion.
-The mills of the Messe. Darhlay are among the most important for the manufacture of paper in Europe. More than 刃onn hamds
 They make paper of all wrados. Nomefinite information repeetiner the paper machine whibited could be obtainol. It dues mot seem
 States. The wire webl was about is fout wide and :3 fewt long. Eleven crianders are und for dryine the paper and felt. The heatfing rigine. from which the mathines are feil with pulp. Wats made of romerete.

The De Nayer inachine wats desintel for makine wider paper than
the Dartlay machine, and had a weh! feet wide and 35 feet loner. The couch rolls ate of bronze and is inches in diameter. The uperer rolls of the felt presses of which there are three are also bronze. There are fiftern crlinders for paper and felts. The beating engrines commerted with the mathine ate of cast-iron, and the pulp hefore being pumped to the mathine is well stired in large receiverby rotary aritators.

The Messes. De Nayer also exhibited a arlazing calender of the. uenal comstruction. having twelverolls a feet longe of chilled iron amblaper altermately.

The other Belsiam marhine presented at the apmearance. The following deseription of some of its features is takth from Engineeriner. Lombon, Novembar : \because, las! :

Before the wire there are two flat strainers having a cam motion. The continnous wire has a length of 40 fert, and will makr paner: cht and dried. 6 feet in width. Noticeable here is a flat. narrow plate of fom metal immediately after the breas roll. Which serves for the better regulation of the flow of pulp onter the wire. There are three vacum haxes under the wire the tops of which are conered with wand. The couch rolls are beth alout is inches in diameter: the uper one is of cat-irom, the lower of hard rublier. Following these are the the e two roll felt presses of cast-iron. The diameter of the rolls is almut 14 inches, and the first wet felt is provided with an apmaratus for washing it comtinuonsly. In this part of the machine is the chief nowelty, tw which we would direct sperial attention. Insteal of hatiag four separath standard for the fome presses. they are phaced on strong cant-inen wertical framesor columns. which are mounted therether. the whole forming one solid erection, some what similar to the framing of the drying machine. On the whole. this setme a gowd arrangement. and peseseses sereral advantages. By these 'mans the press rolls can either be kept vertically above wach other or slightly incined.

The drying machine proper condists of fourtern drying colinders for paper and felts. arranged in such a way that ach gromp of one or two eqlimers with the exeption of the first has its felt and felt dreer. The diancter of these estindere
 with its doctor. Here we oheere that the stem is sent into the drying ervinderand the combensed water het out on the same side. and not at "ppenite sider of the. makhine as is often the "ats. The framing is wery well arraged for leading the parer quikly through the madhere and there are many points of det al which have been well studied. After the drying eximders there is a att of theer-roll ghazers 14 inches in diameter. The cooling celinder comes next and is followed hy an arrangement for damping toth sides of the paper. It is then cut with circukar aitters and reted.

The last great pater mathine to be mentioned is the one in the Swiss section. The whole length of this machine is about son feet. It will make paper \boldsymbol{i} feet 3 inches wide. the lengeth of the wire weh. under which are three separate varuam boxes. hering te feret.

The dianeter of the upere couch roll is 1 fort x inches, that of the lower 1 fowt \because inches. Next ceme the felt preses, of wheh there are three: fach has two rolls and is arramged with the upher roll slightly inelined. or not quite vertically ower the lower. All the presses are of cast oron. and earh has its separate strong standard. The top rolls of the felt presses are 16 inches and the bettom 1 foot $\stackrel{2}{2}$
inches in diameter, and the sides heing ofen the felts can wasily be renewed. I'res--ure is given by means of levers and weights.

The drying nachime consists of ten celinders for drying the paper and six for drying the felts. It is divided intotwoparts, with a two-roll damp press betwern thein. In the first part are seven drying colimers and four felt driers, arra and in four groups, each provided with its felt. The second part consists of three drying eylinders and two felt driers. All the cylimers but one are felted, and -rery felt has its drying cylinder. These vary in dianmer from ahout $: 3$ feet to 1 fert : most of the felt driers are about 3 fert $: 3$ inches in diameter, hut some are smaller. The shafting has the usual conical pulleys. In this drying machine a
 he tasily and quickly adjusted as redumed. The drying eylimbers hate doctors as aho the damp pros. eath provided with a to-inulfor motion. Immediafely after the drying matchine comes a cowliner relinder. and next a calember for miazing the papre consisting of six molls of vatoms diameters. Finally, the paner is slit hamithdinall. with circular cutters amb refled in the nemal way

The atachine was mot in motion.

 coulh rolls and pres. hut without a dryiner machime. The pulp shere from the wire is wound on a crlinder matil suthicient thickmese is ohtained. when the rylindrical beate thas formed is wat "pern and removed to wise pare to another acemonation of sheet fulf on the colinder. The eglindrical beard thas formed is afterwamblattemed in a press and the Watere - fueczed out. A miform quality of board is made hey this process.

The same exhibitor shows in his catalughe millhoard mathints resembling the ordinaty pape mathines amd hatine a sumersion of drying evinders and roller presses. This mone complete mathine is capathe of problacing 10 toms of boam per day.
 minting presse in the L'nital States section. The (amphell Printins Press Manufaturine (ompany, New York, whibited the wedlknown (:amplell relinder press: the Casey Marhine and suphy ('ompany. New Vork. showed a douhbe joh perss: (iolding \& Co. Buton, shownd seroral examples of American presses: the Liberty Mathine Works. of New York. han seroral of the Liberty presses at work, and Mr. John Thomson, of New York, exhibited the Eniwasl preses, ond of which was alapted for embessing, cuttingout. and reasing. and is much used be manufacturers of paper boses.

The awards for these exhibits were of less value than the merits of the sevoral ohjoets displayed would have warranted. Messrs. Golding \& C'o, and John Thomson received silver medals, and the whers only mention or mo notire at all, while the extensive introduction of all these presses and the faver with which they are regarded in the United States, testify to their excellenore son conclusively that their neglect be the jury appears the more surprising. The work proluced by the American jobbing presses is superior to H. Ex. 410-Vol Hill 4
that of other presses designed for the same kind of printing. and the handiness of the presses in our section was in contrast to the more cumbrous machines exhibited elsewhere. The elegantly printed books issued by the French publishers show that the foreign printing presses designed for use in that branch of the art are well adapted for it: hut if the vast number of ill-printed cards and circulars distributed at the Exposition, and the almost entire absence of a high gramle of such examples of the printers art, afford evidence of the rapabilities of the European jobbing presses, then it would appear that our own greatly exerl them in effiedeney. and a critical examination of the mechanical features of the presses themselves strengthens this imperssion.
 exhibitel a high-iped rotary newspaper pres for printing in black and colors. Editions of the " Figar," newnaper were printed on this prese and distributed in the Exposition. On whe side of the sheet the hearlings of the various articles were printed in five different colors, and the adrortisements displayed in the same variod way. The whole paper is printed on both sikes in passing once through the press. The press has two type cylinders. servine to print that part of the thex which is in hack. and one other tye "ylinder for the sereral different colors. Sofar, then, as the hatek impression is concerned the matchine is a perfecting press, while the color printing is necessarily limited to one side of the sheet. The forms for the type cylinders are bent so that the lines of type ancirele the cylinders, and the columns lie parallel with the axse. The sheet, therefore, runs through the press sideways instead of in a direction from top to bottom. This enal)les the single color celinder to be used for all the colors, and yet the advantare is obtained of having as many of the colors appear in the same column of the printed sheet as may be desired : all five may in fact be distributed with the hack in different parts of a single column, or their distribution among the columms be varied at will. The color printing appears in horizontal zones of onsiderable width, but the apmeanance of miformity in this respect can be avoided by a judicious distribution of the variously colored headings or cuts. The colors are appled to the single cylinder from an ink tray divided into as many compartments as ther are separate bands of color on the colinder. The two stereotype plates for the black impression and the single one for the color printing are cast from the sarme form, and the removal of those parts of the faces which are not recpuired to produce the impressions is effected by routing them away or preferably hy filling up parts of the mold. In the plates for the harkimpression the face is removed in the places which correspond to all the color impressions, and in the phate for the color eylinder only those parts of the face are left which are required to make the color impressions in the desired
places. An electrical stop motion is applied to this press to stop the press whenever the paper becomes torn. The speed of the pras exhibited is said to be $1 ? .000$ to 14.000 coples per hour.

Another press shown by this firm was for printing two colors on whe side of a sheet only; it is not new. Whe press has a recturocating bet, on which four fomms may be fastemed-two at ath and of the bed. The impression celinder makes two revolutions, whe tor eath form, at eath stroke of the hed. The means proviled for registering are efficient, and the press was at work on forr-ondor work, printed by ruming the sheet through the press twice in sucoessive movements of the bed: applying it the first time to the pain of forms on one side of the bed and the next time to the pair on the other side.

The same firm also showed lithographic. and phototype and copprrphate presses which profuced work of remarkable excelleme and delicacy.
(5s) Messrs. Kientzy Brothers.of Paris. exhibited a simple madehine for printing childrens school appooks on both sides of the sheet. The paper, in a continuous strip. passes under an engrated roll at one ent of the machine. by which a strite of impressions ate produced on one side the paper being presed upward against the entraved roll by a roller lifted by a heave weight. The strip then patses over guide rolle:s, which lead it tirst upward and then horizontally. through quite a distance, to the oflaer emb of the machine. where it is printed on the opposite side. The ink on the side first printed becomes partly dried before the second impression is produced.
(59) Type and printing muterial.-Many extensive displays of type were made in the French section. The jury indicated its high appreciation of the exhibit of type in the [nited State: section by awarding a gold medal to the Mackellar. Smiths \& Jor lan Company, of Philadelphia.
(60) Type-setting and distributing muchines.-These were assigned to this class, and were represented by five or six different machines. Several of them were of the Delcambre type. one of the oldest of all. This style of machine, though simple, is necessarily cumbrous and slow.
(61) An ingenious machine for putting the type in line when selected from the case by the compositor was exhibited in the British section. It is the Lagerman machine, a Swedish invention. It is not practicableto describe it here, but a completedescription can be found in the United States Patent No. $36 \cdot 251$, to A. Lagerman, dated May 111. 1887. The compositor selects the type from the case and simply drops them in rapid succession into a hopper in front of the case. If a type drops sidewise the machine rights it. if wrongend up turns it end for end, but if right end up it retains it so. The machine also
turns the type about its rertical axis. whon it falls in such a way that the character would print upside down, amd finally places the type in line properly righted in every way. Spaces of one thickness only are put in by the compositor.

The justification is efforeded in aseparate machine, which wasexhibited by the same inventor. 'This suphementary marhine greatly facilitates the operation of justifation. A line of matter from the galley is pushed into its phare in the machine an index then shows how much tow loner or tow short the line is. the rompesitor moves a lewer the proner pesition. and the mathine pushes wat the space alrealy in phace and sulstitutes others of preper thickness. The marhine si+ems to work satisfartorily, and would doubters be a valuable ateressory to any composing machine.*

The type used in the Laterman machines are of the usual form, with a single nick in the side. There is therefore no sereial provision for distribution and modistributing mathine was shown by this exhibiter. The system as a whole is therefore very deficient, as the process of distribution requires as murh skill aml care as that of setting. though it involves less time.
(\because) Fraser, Alexander, Neill \& Co. exhibited in the Pritish section a pair of machines for tye setting and distributing, both of the Delcambre type. The principal feature of ach is a vertical or inclined grlass-owered plate called the type board, having numerous type-converging channels, which in the setting machineconverge from the type reservoirs at the top of the board and meet at the bottom, where they discharge the tye through a single spent into a galley. In the distributing machine they diverere from a single receptacle at the top, and end in a number of type reservoirs at the bottom, the type from the receptacle falling through one or another of the slanting grooves and into one or another of the reserveirs at the will of
 scribed. Ordinary type, having omly the printer:s nick, are used in both machines. The distributing machine is not automatic. The matter from the form is placed before the compositor, who has to read it and distribute it character by charactor, ome at a time, by toucting successively those keys of the keybord which correspond to the proper characters. The artion of depressing a key pushes a type from the matter into the receiving groese or receptacle of the keyboard, and at the same time turns a switch which throws the type into the channel leading to the reservoir containing that kind of character only. The reservoirs are narrow brass troughs into which the type fall so as to stand against one another, flatwise, and are the reservoirs adapted for use in the composing machine. As a means of placing the type in line in a special reservoir adapted for a setting machine, this distributor does its work more rapidly than the

[^8]same work could be done be hand. but the distribution is not so rapid as that done by a compositor in distributing to a case.
(6:3) The Thorne combimed t!ger settingamdaistributim! machlime.This remarkably simple, ingenious, and efficiont mathine was exhibited in two places in the Cnited Statessection: in the space allotted to the Thorne Typesetting Company of Hartford. Connec-

Fia. 14.-The Thorne type setting and distributing machine.
ticut, and in the Edison space. where it was shown in use in connection with a phonograph. the utterances of which served in the place of copy for the compositor.

A general view of this machine is shown in Fig. 14. Only a brief and very general notice will be given here, as the machine, which has become known in our own country within the past two years, can be seen in operation in many printing officess and accounts of it have been published in our journals. The following is taken from one of the company s circulars :
The Thorne typeseting machine consists of two iron cylinders, about 15 inches in diameter, placed perpendicularly one above the other, in the external surface of each of which are cut longitudinally ninety chamels or receptacles for the types which are to be used in it. Within the damels of the lower celinder are inserted " wards." or small sted projections extemding in varions relative positions through their entire lengtl. which correspond respectively with " nicks" specially made in the type. the purpose of which is. in distributing the letters. to automatically divert each letter from the mass of letters in the upper or distributing celinder to its appropriate place in the lower or setting evlinder. कo that each chamel in the latter shall receive types of only the particular chamater intembed for and alapted to it. The work of distribution is thus carried on automatically by the revoiution of the upper cylinder upon its axis. which in rapid sucersion places the various types in position to be released from the distributing evlimler. when they instantly drop of their own weight into orderly pasition in the proper grooves of the setting calinder as above indicated. The typesetting is performed by manipulations upon a keyboard on which the characters of the language are represented. very much as uph an ordinary typewriter. These keys commmicate directly with the setting cylinder above mentioned, ach stroke of a key releasing a letter, and, by the aid of a revolving dise, transferring it from its chamel in the evimi"r to its place in the continuous line of reading matter which the 'qurator is "setting." This continuous line is broken up into shorter lines and justitied to a proper length for the columns of a newspaper or the pages of a book, according to the work on which the machine is employed.
The process of distributing the types is carried on, as lufore in icicatel, automaticaliy. and with very much geater rapidity than and at the same time with the setting. When the setting eqlinder is full the distributing celinder ceases to revolve, but may be started again instantly at the will of the enprator whenever it becomes necessary to replenish the former: and thus the distributing mechanism is active or at rest according to the demand made uren it by the activity of the operator. It is an exceedingly interesting feature of the machine. which alone gives it great advantage over hand work, that no time is required to " fill the cases," the automatic distributing cylinder rendering the sapply of types in the setting cylinder continous and ine xhaustible.
Three persons are required to operate each machine: one at the keyboard, a second to break up and justify the lines, and the third to keep the distributing cylinder "loaded" and maintain a general supervision. With expert help one mat chine will set and distribute 6.0 ow ems erer hour, or from tive to six times as much as the most rapid hand compositor. The work is not particularly laborious, and it is found by experience that intelligent girls are fully as well adapted as men to become efficient compositors. *. * * The machines are so light running that a single horse-jower is sufficient for half a dozen of them.

The type board is skillfully arranged. Some of the letters are repeated several times, and their arrangement is such that the keys for the leters forming certain prefixes and terminations of words that are most frequently used, such as re, coul, ϵl, al, ion, etc., and
short words that are often needed, such as an, at, in, the, etc., can be touched simultaneously and yet the type follow each other in the proper succession, one movement of the hand only being required in setting such combinations.

This machine was not properly presented to the attention of the jury, and failed to obtain the award it deserved. None of the other machines exhibited could be compared favorably with this ont. either in scope or rapidity of working. It is thoroughly practical.*

('LASS 59.

(64) Under the denomination \cdot Machines and implements for miscellaneolis industries and arts," this class contained those mathines and tools, adapted for a great variety of mamufactures, which weme not named under the more general heals wish designated the subdivisions of the other classes. It embrated typwriters. paper-hag mathines, cash registers. ate.. and to it were alonassigned numerous ingenions mathines and implements used by those manufacturers who work on a limited scale, and are engaged in making ther great variety of articles known in the French markt as "article de l'aris," and the different articles formerly known in the Conited States as " Yankee notions," as, for example. toiket pins. hair pins. brushes, combs, eyelets, covered buttons, match boxes, keys for musical instruments, corkserews, and a multitude of objects difficult of classitication except as " miseellaneous."
The extensive dieplays made by the departments of the French State manufactories and the mint were assigned to this class ; they included machines and tools for the manufacture of tobacoo, abo coining presses, and machines for weighing and sorting coins. These two great govermment exhibits were the only ones which received grand prizes in the class.
(6;) Twelve gold medals were awarded in all ; of these France received seven, the United States three, and Great Britain two.

The limitations which prevent a full report in detail upon the objects in every class apply also here, and a few only of the most important exhibits, particularly those which gave the United States a representation in Class $5!$, will be noticed.
(66) Typeuriters.t-Few exhibits attracted more general interest than the typewriting machines. During the busy hours of the day, from 2 until $6 \mathrm{p} . \mathrm{m}$., the portion of the United States section devoted to tyewriters was blocked by eager and curious spectators, some secklige for specimens of work, others bent upon an investigation of

* The company has sold ninety machintes within the last 6 months, and the demand is increasing so rapidly that facilities for prolucing twenty machines per month have been provided.
+ The greater part of the notes on typewriters was furnished by an expert in this specialty.
the relative merits of the different machines now presented to most of them for the first time. Of these the following were represented :

The above indicated groupings are it will be seen, made from two points of view. First, with regard to the speed or ability of the machine to compete with the pen in ordinary writing. In the first class of this group belone naturally the machines which are operated from a keybatd or series of finger keys: the second class beinge represented be machines that are operated by means of a single key, or like the Mercury, which, although provided with a keyboard, effects itsimpression, hevertheless, by means of a separate key. The grouping from the second print of view is based on the question, whether the trpe are placed on separate pieces (type-bars), which move individually to a common point when a letter is to be printed. or whether the types are erouped torether upon a single piece and require an additional movement to print any letter when brought to position.

Of the differences existing between the machines which employ the type-bar we will speak briefly. They consist: First, in the manner in which the type-bar is jointed or hang. and in its mode of connection with the key-lever. In the lemington mathine the typebar is hung from a "trumion-like bearing." In the C'aligraph the trumion-like bearings are transformed into pivots with adjustments for taking up wear. In the Bar Lock machine a ball-and-socket joint performs the same function. Whether these differences, which form the subject-matter of patents, are of as much practical importance as their respective representatives maintain, it is not necessary to discass. The second difference noticed between the type-bar mathines is that two of them (Caligraph and Bar Lock) have a separate typebar for every character, while in the Remington two characters are placed upon each type-bar, which reduces the namber of hammers, pivots, and connections, as well as finger keys, about one-half, but requires some additomal adjustments with the carriage that are unnecessary with the Caligraph and Bar Lock.

It is evident that the multiplication of type-bars demands a larger circumference in which the bearings are hung, or else a diminution of the space allowed for the hangers of each individual type-bar. An increase in the number of type-bars consequently involves a longer type-bar, and, with equal solidity, a correspondingly greater weight, with greater liability of collision in rapid work. From a theoretical
point of view it would seem that the reduction in the number of typebars, and consequently in the number of finger keys to be operated, is in the line of progress, and as the mannfacturers of the Remington typewriter control a patent covering this peculiarity, it would appear as if the other systems, which are later. wree alopted rather of necessity than of choice. It may he said. howorer. that the double keyboards of the Caligraph and Bar Low mathines, if open to the theoretical charge of unnecessarily multiplying similar parts performing the same function, are, nevertheless. su thoroughly mastered by expert operators as not to leave much choice betwean the two systems.
The Bar Lock machine (type-bar) has some (haracteristices which distinguish it broadly from the Caligraph and Remingtom. First. the type-bars are so hung that they strike downward insteal of upward. This enables the work to be seen without lifting the carriage. Second, only a portion of the circle, and that on the same side of the machine as the operator. is employed ior hanging the type-bar. This admits of providing a solidy fastemed piefe (barlock), upon which stand several wires armangel in a dircular arc. serving as guides to the type-bars at the moment of impression, to awoid the danger of bad aligmment. Critics of this machine raise the question whether these gruiles, if sufficiently chse logether to secure the great accuracy required in typewiting, are not likely to lock the type-bars so as to prevent them from moving freely to position: and, on the other hand, suggest that use might easily wear the guidepins so as to impair their utility. The care and ingemuity displayed in the construction of the Bar Lack machine wives promise that it may occupy an important phace among the typewiters.

It must le remembered that the type-bar did not orioninate with the inverere : 'er of the machines in question. John: Batin, the
 series of type-hars striking at a common center. Tha Frameis patent of 1850 , and some other subsequent American patents.also antedated the modern type-bar machines. Nevertheless. to the "Remington" belongs the unquestioned and distinguished homor of being the first typewriter brought into genoral use.

In considering those machines in which the type are placed on a single niece, and therefore all move together whenever a letter is hrought to position and printed, the Hammond first claims attention, as the only one to be classed among the fast machines. It would he natural to suppose that a machine which is so constructed that ninety characters, or even half that number, must be moved every time a letter is printed. would requireso heavy a type-carrier and cöpperating parts that its action would be necessarily slower than that of a machine in which a single type only has to be moved at every impression. And when it is further considered that in a type-bar machine only
a single movement is required to bring the character into position and produce the printing, while in the Hammond machine the character must first be brought into position by one movement, and dwell in that position until the printing is effected by another movement, namely, that of the impression hammer, it would be still more natural to conclude that it must he impossible to attain so high a speed with this machine as with those employing type-hars. Experience, however, shows that this is not the case; for. in the Hammond mathine, the ingrenious devices by which a perfect cö̈peration of the different pats and their prompt response to the touch of the operator are secured, have made it pessible to reach the almost incredible seed of more than eleven impressions per second in writing actual matter, a higher semed than has been read : by other machines. Even at this erreat spered, involving what w...ll seem to be a bewildering flight of small letters, capitals. punctuation marks, ete., the quality if the work remains exerllent. the alignment and spacing being practically perfect and the impression uniform.

Like the other mathines which operate with two movements, the " Hammond" allows of an indefinite number of changes in the style of the characters, or in their nature: as, for example, in the substitution of characters adapted for one language to those required for another.

Concerning those machines in which the type are carried upon a wheel or single piece, but have no keyboard comection, little need be said in general. The broad principles involved in these machines are common property, and so great originality is observable in any, excepting perhaps in the Hall machine. in which one important feature in typewriang machines, viz, the elastic platen, was first introduced. The machines exhibited show some interesting peculiarities. but are not desirnod for serious competition with the pen. and much less for competing in speed with the principal keyboard machines. It can. howerer, be said of this entire class that the slowness of their operation, and the fact that the type comes first to a definite position while the printing is produced afterward, and also that a change of type-wheel or type-plate can casily be made, adapt them for doing work of great variety and excellent quality where speed of operation is not essential.

Finally. one familiar fact observable in the domain of natural history may be noted also in the development of typewriting machines: viz, that the reduction of the number of similar parts, where each performs the same functions, appears to be in the line of progress, while at the same time two distinctly different functions, such as the presentation of the type and the production of the impression, are executed lest when the separate functions are performed by separate parts.

Gold medals were awarded to the American Writing Machine Com-
pany, of Hartford, Connecticut, for the "Caligraph" machine: the Hammond Typewriter Company, of New York, for the " Hammome" machine: and Wyckoff, Stamans \& Benedict, of Now York. for the "Remington:" silver medals to the Columbia Typewriter Manufacturing Company, New York, who exhibited the " Bar Lock" and "Columbia" machines; Freder. a Myers, New Sork. for the "Marcury:" and the World Typewriter Company, New York. for the "World" mathine. The Hall Typewriter Company received a 'ronze medal for the " Hall" machine.
(6i) A typewriter of Danish origin, of somewhat andient date, wats also shown in Machinery Hall. The type are appled to the lower ends of converering rols. which are guided in a hemispherical keyboard. from which they same out 'ike pins from a pin-roshion. Button heads on the upper extremities of the reds form the key: which are pushed he the fingers in writine. The rock all perim toward the center of the sphere and the tyen all strike in the same spot to print. The paper carriage is semicylindrical and swings on its axis in printing a line, but moves lomgiturlinally in spacing from line to line.

Maskelynes tyewriter, exhibited by G. N. Maskelyne \& Son, in the British section, is a machine havins horizontal type-hars radiating to a common print where the impresion is printed. When not in action the typer. which are on the ends of the lower edges of the bars, rest on an inking pad. When a key is touched the end of the corresponding type-har is lifted slightly. then the har is thrust forward to the printing pace, and. finally. the type is hrought down upon the paper to prombe the impression. The spacing is different for the different letters. so as to give a better appearance to the work than is obtained by uniform spacing. The machine is said to work rapidly, noiselessly, and with a very light touch.

The Messrs. Maskelyne exhibited cash registers also, and received a silver medal.

A typewriter was exhibited in the Swiss section. It is a dial machine. called the Velograph. and received a bronze medal.
bs. Machines for moking finper bogs.-A very ingenious and practical machine now extensively used in the Lnited States for making an excellent form of paper hag was exhibited in operation in the Cuited States section by Mr. M. F. Leinbach, of Bethlehem, Pennsylvania.

The product of this machine is itself a new article of manufacture. being a bag which is folded flat and has all four side corners creased lengthwise, so that when the bag is inflated by being held by one edge of the mouth and swung with a quick motion through the air.it opens out so as to assume a square. parallel-sided. flat-bottomed form. and will stand eroct when set on a counter or table and remain wide op $\cdot \mathrm{n}$, so that it is in the best form for receiving what is poured
into it. The bag when opened is also free from reëntrant folds which would form pockets inside the bag and afford places of lodgment for the contents ; it can therefore easily be emptied completely. As they come from the machine the bags are folded flat and narrow, and take up less shelf rom then square-bottomed bags of equal capacity made on other machines. The folded bags need not be inflated in order to be opened, Fut can be spread wide open by pulling slightly on one edge of the mouth and one fold of the bottom, when two hands can be spared for the purpose. One edge of the mouth is left slightly longer than the other, so that it can be grasped with one hand when the bag is tightly folded. without the necessity of unfolding it far enough to insert the fingers. The machine makes the bags from a continuous strip of paper of any quality, and turns them out at an exceedingly rapid mate.

The Leinbach machine is the outgrowth of a necessity for supplying the market with this greatly improved form of bag, and is the successor of other machines long used in the United States by the same company that now emploss the Leinbach machine, but who formerly manufactured the form of square-bottomed bag shown in the British soction, as the product of a machine in operation there which will be mentioned further on.

The Leinbach machine is made in several sizes, one for each different width of bag, and there are no adjustments for enabling bags of different widths to be made on the same machine. The leagth of the bag can, however, be varied at will. This limitation of the variety in the product of a single machine is not deemed an objection, for the demand for paper bag: of all sizes is so enormous, particularly in the Cnited States, that companies for manufacturing them seldom make so few bags of any given width that one machine is not constantly employed in making them. It is also a well-recognized fact that machines adapted for a definite kind of manufacture are unreliable, in respect to quality of product and certainty of action, almost in direct proportion to the variety of adjustments that are provided for changing the character or proportions of the work producerl.

The Leinbach machine unfortunately failed to receive proper recognition from the jury ; for the value of the award given for it, when compared with other awards for the same class of machinery, was very far from being proportioned to its merits.
(69) The paper-bag machine shown in operation in the British section was exhibited by Messrs. Bibly \& Baron, of Burnley. England. This machine, and the bag made by it. are said to embody as many as twenty-two patents originally obtained in the United States and worked there. The machine is simple, efficient, and rapid working. but the product is inferior to that of the Leinbach machine. The bag has a folded bottom and can be opened out so that the bot-
tom will be square and the bag stand upright, but as it is creased lengthwise on two opmsite sides the mouth tends to remain closed and must often be opened with the hand to receive the contents. A simple machine for making a similar form of bag was exhibited by Planche Brothers, of Saliens, France, and another different machine by Claude Rochette, Paris.

A very simple and ingenious machine for making small corkscrews wholly from wire was exhibited by Messrs Clough \& Maconnel, of New York, and received a silver medal.
($\boldsymbol{r}(1)$ Silver medals were also given to the Lamson Consolidated Store Service Company, Boston, for their exhibit of cash registering and adding machines, and to the John R. Williams Company, New York, for machines for finishing and bunching cigars.

CLASS 60, CARRIAGES, WAGONS, HARNESS WORK, AND SADDLERY.

(${ }^{(1)}$) The greater part of the display in this class was placed at the side of the main building devoted to the various groups, adjoining Machinery Hall. It orcupied about $2(, 000$ square feet of floor space. and was remarkable for the striking appearance presented by the great variety of handsomely finished coaches, carriages, wagons, etc.,

Fig. 15.-Bicyclette: Howe Machine Company, Glasgow.
In the United States section the dispray of fine carriages by Messrs. Healy \& Co. of New York, was so favoralily regrarded as to receive the distinction of the only grand prize awarded to a foreign exhibitor in this class; only four other grand prizes having been awarded in all, one of which was for articles of saddlery.

It must be said, howerer, that several of the most prominent French exhibitors in the class were members of juries, and consequently noncompeting.

The report of an expert in the particular specialties of this class could not be obtained.
(72) The display of "cycles" in the British section was large and interesting. Humber \& Co. and the Rurlge Cycle Company received the only gold medals awarded for cycles. There were but few large-wheeled bicycles, but a great variety of bicyolettes, or "safety" bicycles, none. however, having strikingly nowel features. Fig. 15 shows one form made by the Howe Machine Company, (rlasgow, and gives an idea of the shape of frame which is the most in favor.
(i3) A great variety of single and tandem trycicles were shown. Fig. 1t gives a view of a form different from the others, made by Humber \& Co. The crank and transmitting gear are connected with the two driving wheels, which are in front instead of behind. The rider sits well over toward the front axles, so that his position is much the same as on a bicycle. The arrangements permit of steering without the use of the hands.

Fig. 16.-Tricycle; Humber \& Co., London.
Humber \& Co. publish the "Amateur's" records of the several types of their machines, which are interesting as showing how little practical advantage one form has over another in speed.

The records are :

(it) Fig. 1r shows a steam tricycle constructed by the Messers. Serpolet Brothers, Paris. It will run with considerable speed, climb
quite steep grades, and, though not light. is not excessively heavy. weighing $\mathrm{f}^{\circ} \mathrm{O}$ pounds when loaded with enough fuel and water to last for a trip of several miles. The speed is regulated by limiting the supply of feed water to the boiler by means of a cock in a bypass from the feed pump. The boiler is practically safe. containing only the quantity of water that can be held in a capillary opening which forms the inside of a thick. flattened pipe of which the boiler is made.

The boiler is described in the report on Class 5\%.

Fig. 17. Serpolet's steam tricycle.
CLASS 61. RAILWAY MATERIAL.
(75) For this class see Professor Haupt's special report in this volume.

(LASS 62, ELECTRICITY.

(\%6) Mr. Carl Hering's report on this class contains a full account of the exhibits, and will be found in Vol. IV.
(LASS 63, CIVIL ENGINEERIN(. PCBLIC WORKS, AND ARCHITECTURE.
(ar) Prof. William Watson's special report in this volume. on this class, and Professor Chandleres report, in Vol. II, on the preservation of wood, cover sround oceupied he this class.

CLASS 64, HYGIENE IND PCBLIC (CHARITIES.

(rs) Professor Chandlers report on hospitals, in vol. ir, is referred to as treating of the most important subject in this class.

Classes 6is and 66. Navigation. life-saving. and military
(79) For these classes see Capt. D. A. Lyle's reports in Vol. IV.

REIORT

on

MACHINERY AND APPARATC'S adAPTED FOR GESERAL USE IN MECHANICAL EXGINEERING

HY
CHARLES B. RICHARIAS, M. A.,

II. Ex. 410-MVOL III——

CONTENTS.

I.-General Remaris.

Page.
Space occupied by the class T1
United States section 71
The jury, and the system of awards T2
Distribution of awards, and standing of the different countries. 72
sicope of Class 52, and subjects assigned to it 73
Statements furnished by exhibitors 74
II.-Steam Boilers.
Gineral remarks on sectional boilers 76
Balcock \& Wilcox boilers 80
Knap \& Co.'s Root boiler 82
The De Nayer boiler 84
Roser's fire tube tubulous boiler 86
The Belleville boiler $3:$
shell boilers 90
Galloway \& Sons exhibit 90
Lulac's cylinder boiler with Field tubes. 91
Boilers with removable furnaces 02
Srpolet's instantaneous steam generator 9:3
Test of Serpolet's boiler 96
ili.-Steam Engines.
Gineral description of the exhibit 99
Compund and concensing engines, and steam jackets. 98
Table of compound and other types of engines. 98
Inthunce of American practice. 99
Quality of exhibits 99
Weyher \& Richemond's exhibit. 99
Test of semi-portable compound engine 103
Farcot's Corliss engines 104
Farcot's vertical engines. 106
Brasse ur's compound Corliss engines 10\%
Lecouteux \& Garnier's Corliss cut-off gear 107
Crinder of Lecouteux $\mathcal{\&}$ Garnier's engine 110
Bonjours engine with cui-off valves actuated by steam 110
Frinart's releasing valre gear 111
De Ville-Chatel \& Co.'s engrine with Fricart's positive motion valve gear and halanced ralves 115
Sulzer Brothers' engines. 116
Sulzer compound horizontal engine. 117
Results of the test of a Sulzer engine. 118
Sulzer triple expansion tandem horizontal engine with a single crank 118
Triple expansion rertical Sulzer engine. 119
Escher, Wyss \& Co.'s compound engine with Fricart's valve gear 120
Other engines by Escher, Wyss \& Co $12 \cdot$
Carels Brothers' compouid Sulzer engine $10:$
Test of Carels Brothers' engines 122
Steam engines in the United States section $12: 3$
Jerome Wheelock's system of slide valves 124
Steam engines in the British section 125
Parsons's compound steam turbine. 1215
IV.-Gas Evgines.
General remarks 1:31
Different classes of gas engines $1: 31$
The "Otto," or "Beau de Rcchas," system $1: ?$
Other systems. 13:3
Methods of ignition $1: 3$
Economy of gas engines $1: 3$
Small Otto vertical engine. $1: 34$
Horizontal Otto engines of great power 137
Single cylinder "Simplex" gas engine of 100 horse-power 13%
Arrangement for starting the Sinplex engine 141
Carburetter for petroleum vapor 14:
Tests of the Simplex engine. $14:$
Louis Charron's engine $14: 3$
The Lenoir engine 144
Rouart \& Co.'s portable vapor engine $1+i$
Ravel's gas engine. $14 ;$
Ragot's petroleum engine $14 i$
The Taylor gas engine 14
Griffin's double-acting gas engine. $14!$
Crossley Bros. Otto engines. $14!$
Baldwin's gas engine in the United States section $10:$
V.-Hydraclic machinery.
Turbines:
(ieneral remarks, 1.4
The Jonval and Girard turbines 1.4
The Pelton wheel in the United States, and other turbines 1.1%
The waterworks at Chaux-de-Fonds 1.5%
Escher, Wys \& Co.s Girard turbines and pumps at Chaux-de-Fonds $1 . \%$
The waterworks at Genewa 161
Comparison of different systems for distributing power in cities 161
Hydraulic system adopted in Geneva 16:;
Description of the works and machinery at Geneva 16:;
Systems of water distribution in Geneva $16 i$
Charges for water power and profits of the water department in Geneva. $16 i$
Escher, Wyss \& Co.'s small Girard wheels liv
Reiter:s exhibit of turbines 1iく
Brault. Tisset \& Gillet's Fontaine turbints $11:!$
Brault's small Girard turbine $11: 1$
Bergès's installation of wheels under very great heads 1:1)
Pelton wheel used in the United States under similar conditions. 102

contents.

I'umps and pumping engines:
Hand and power pumps $1: 3$
Montrichard's pump without ralves $1: 3$
Direct-acting steam pumps $1: 4$
The Worthington high-duty pumping engine $1 i .5$
Worthington pumping engine in the Eiffel Tower 1:0)
De Quillac's pumping engines 1×0
Centrifugal pumps:
Farcot's great pumps in Egypt 1×0
Farcot's experiments on centrifugal pumps 18.5
Farcot's small centrifugal pumps $1 \times$
Decour's centrifugal pump, with " diffuser 1×9
Nezeraux's centrifugal jet pump 190
Hydraulic rams:
Bollée's" Giant" ram 192
Efficiency of hydraulic rams 194
Air pump for hydraulic rams 19.9
Durozois ram pump 196
Bollée's ram pump without a diaphragm 198
Hydraulic rams in the United States section 199
Hydraulic elevators:
Elevators in the Eiffel Tower 199
The Roux, Combaluzier \& Lepape elevators. 200
The Otis elerators in the tower 202
The Edoux elerator 204
Power and water required for the elevators 20 s
Ellington's hydraulic elevator using water at high pressure 209
Otis high-speed elerators 210
VI.-Transmission of power by compressed and rarefied air.
(omparison of different sestems for transmitting power $\because 11$
The Popp compressed-air srstem employed in Paris 212
R - ults of experiments and cost of power $\geqslant 1.5$
Mekarski's system. 217
Rarefied air system 218
ViI.-The pnecmatic postal dispatch.
Gieneral description of the system 219
Description of the instruments 221
Vili.-Instruments for meascring presslre, speed, etc.
Presure gauges:
Bourdon's gauges 224
Bourdon's hydraulic press for testing ganges 226
Double-faced gauge for air brakes 234
Buss's speed indicators and speed recorders 231
Stanu-engine indicators $2: 33$
Water meters:
The Schönheyder meter. 2:34
Tests of Schinheyder's meter 23:
Thomson's water meter in the United States section 241

REPORT ON CLASS 52: GENERAL MECHANICS.

By Charles B. Richards, M. A.

I.-General remarks.

(1) This was the most extensive of all the classes of the sixth group, both in the scope of subjects coveren and in the space occupied by the exhibits, while the number of exhibitors was greater than in any other class except No. 13.
The space allotted to it was distributed as follows:

In Machinery Hall:	square feet
Grouped French exhibits.	5.5 .000
Exhibits of other countries,	111.1~\%)
Annex on the quay	19.0100
Boiler houses	12.000
Pumping stations.	13.000
Annex on the Champs de Mars.	\checkmark *. 100
Megy's pavilion	1.1000
Serpolet boiler houst.	1.1100
Total.	124.0)0

This does not include the space occupied by the thirty-two large steam engines and numerous gas engines employed for driving the shafting and special exhibits, nor that required to accommodate the lines of shafting, the pumping apparatus for the Eiffel Tower. and the numerous elevators in the tower. Trocadero, Machinery Hall, atc. It may be assumed that Class 5 ? alone required one-seventh of all the space devoted to the eighteen classes which composed the sixth gróup.
(2) In the United States section the display in this class was not axtensive; the quality, however, was good-a fact attested by the number and value of the awarls the jury felt justified in siving to cur exhibitors. Out of 677 catalogued exhibitors from all countries. only 34, or about one-twentieth of the whole number, were from the United States. These exhihitors received 1 grand prize out of a total of 16 awarded, 7 gold medals out of $7: 3$, and in all 26 awards of different kinds.
The grand prize was given to the Worthington Pumping Engine

Company, New York; the gold medals to the American Elevator Company, New York; Armington \& Sims, Providence, Rhod. Island ; C. H. Brown \& Co., Fitchburg. Massachusetts; Crosly Steam Gauge and Valve Company, Boston, Massachusetts; OtiBros. \& Co., New York; Straight Line Engine Company, Syracuse. New York; and Jerome Wheelock, Worcester, Massachusetts.

Another of the grand prizes was awarded to the English reprosentatives of the firm of Babcock \& Wilcos, of New York, and you another to a French firm for steam engines manufactured under licenses from Corliss \& Wheelock; while four other manufacturer: of engines originally patented by citizens of the United States were represented on the juries, and thus held posts of honor which prevented them from competing for awards.
(3) The jury for Class 52 consisted of twenty members, thirteen of whom were from France, two cach from Belgium, Great Britain. and the United States, and one from Switzerland. In examining the exhibits for the purpose of making the awards the jury estimated their comparative values and rated them according to a numerical scale ranging from 0 to 20 . A definite numerical value was also, given to each of the tive varieties of awards, which were distributed in accordance with the valuation of the exhibits; the ratings which entitled the exhibits to the particular awards being as follows:

> 20 to 19 a grand prize.
> 18 to 17 , a gold medal.
> 16 to 15 , a silver medal.
> 14 to 13 , a bronze medal.
> 12 to 11 . honorable mention.

Exhibits rated below 11 failed to receive an award.
In this class, twenty-eight of the most prominent French exhibitors. and one from Switzerland, were placed out of competition because of their positions as members of juries. A careful comparison of the exhibits thus deprived of awards with those of a similar character which received them, shows that it is fair to assume that ten of these noncompeting exhibitors would have been entitled to grand prizes. and the others to gold medals.
(4) The following table shows the distribution of awards to exhib)itors of various nationalities:

Io these should be added the estimated awards for noncompeting exhibitors: For France, ten grand prizes and eighteen arold medals, and for Switzerland one gold medal.

If we give to the different awards for each country the values assigned them by the class jury, and divide the sum of the values thus obtained by the number of exhibitors in each section, the relative standing of the several countries, as determined by this estinate of the mean value of the exhibits, is:

```
Switzerland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. .5
```

France . 1.5
United States. 4
Belgium. 43
Great Britain. $1.0 n$

If the values adopted by Mr. Hering for the awards in Class 62 were used, the standing would be:
Switzerland 2. 44
France 1.55
United States 1.5.5
Belgium. 1.47
Great Britain 1.101

If. finally, we estimate the relative importance of the collective exhibits by comparing the whole number of the awats. without reference to their value, with the number of exhibitors, the standing is:

```
France
1.4%
United States............ . . . . . . ............................. . . . . . 46
Switzerland
1.45
Belgium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Great Britain. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n)
```

(5) The descriptive title riven to Class 52. "General mechanics." hardly indicates the ground it covers, which. indeed, is rlifficult to define. The other rlasses related to spodite manufactures. industries. or trates, while to Class is were assigned machines. apmatus, and objects which are adapted for the use of the mechanical engineer in general work, in distinction from special.

The subjects to which such machines and objects relate are given in some detail in the prospectus of the French official classification, a translation of which will he found in the first volume of these reports. Nearly all may, however, be adrantageously grouped under the following more general heads:
I. Prime movers, their accessories and appiances.
II. Stean generators and condensers, their parts, and accessories.
III. Apparatus for moving, forcing, and obtaining force from water and air.
IV. Machines for lifting and shifting heavy loads.
V. Apparatusand parts of mechamism for transmitting, modifying. and regulating motion and power.
Vl. Apparatus and instruments for mea-uring weight, speed, pressure, and power, and meters for measuring tluids.
VII. Printed publications relating to general mechanical engineering, and to technology.
VIII. Apparatus and material for navigating the air.

The last heading relates to a subject, which, like marine engineering, is more special than general, but was included in this class for lack of another place for it. As technical literaturo did not find a place elsewhere, it was put, with engineering literature, in this class.

Class 52 , however, was not intended to reccive all the exhibits which might come under these general divisions; those only were assigned to it which had no special adaptability for a single industry, art, or special branch of engineering; and, further, motors and other machinery of a general kind in which electricity played an important part did not find place in this class, but were assigned to Class fi?.

A few examples will illustrate the principles applied in admitting some exhibits of a certain class of objects and rejecting others of the same type which differed from the former only in certain modifications, which, while they did not prevent or even lessen the utility of the object for general use, were yet intended to fit it for a more special application.

Steam engines in general belonged in Class 52 , but marine engines were assigned to Class 65 (Navigation and Life Saving), and steam fire engines, to the same class. Only a fow of the many portable engines were admitted to Class 52 , for the greater number had special features which rendered them particularly useful for agricultural work, and were properly included in Class 49.

Pumps for general use came into Class 5 , while fire pumps were placed in Class 85 , and pumps for agricultural use, in Class 49.

Apparatus for utilizing compressed air for general motive power was in Class 52 , but many air compressors were transferred to Class 48 , as they were fitted for use chiefly in mining and metallurgy ; and some to Class 50, which contained ice machines.

Balloons in general were shown in Class 52 , hut some large balloons designed for military reconmaissance were exhibited in Class 65.

Windmills which were combined with pumps for irrigation were in Class 49, while other kinds appeared in Class 52.

The French authorities were exceedingly judicious in their classification of the exhibits, and showed rare judgment in their distribution to the various classes.
(6) A point worthy of notice in connection with the jury work in Class 52 is the character of the written or printed circulars of information furnished by the French exhibitors to the members of the jury of awards. They were in most cases very complete and satisfactory, and in some instances no pains were spared by the exhibitors to grive the fullest possible explanation of their exhibits, by means of drawings and clearly printed descriptions, accompanied by statements setting forth the special features of the objects and their
claims to attention. These presentations were noticeable for their clearness and grood form.

Usually twenty copies of these documents, one for each member of the jury, were furnished by the exhibitor, and thus each juror was enabled to understand quickly what he was shown at the time of the jury's visit to the exhibit. and to act intelligently in determining its merits.

This desirable feature was the result of the efforts of the French authorities to remedy difficulties which had been experienced in all previous expositions. They endeavored to have the exhibitor understand that the manner in which his case was presented to the jury of awards could not fail to have its effect upon the decision reached, which must, to a great extent, be based upon knowledge obtained before the visit of inspection, rather than upon information gathered during the necessarily limited time that could be devoted to the examination of the exhibit.
The Belgian exhibitors followed the course of the French in this particular, but those of other countries were less genemally and fully prepared with such descriptions; a deficiency for which the French members of the jury generously made allowance, and which they counterbalanced by more prolonged and pationt personal examinations of the exhibits themselves, and by listening to such advocacy of them as the jurors representing those countries could gree.

In future expositions important advantages may be gained by the adoption and development of the system suggested by this example. The formal statement usually filed by an exhibitor, often consisting of obscurely expressed answers written indistinctly in the blank spaces of a list of printed questions-alike for all the exhibitors of a class-should be supplemented by a more precise explanation of the distinctive features of the exhibit, and its chams to importance. as shown by the extent to which the articles exhibited have bean introduced into public use, or by records of the results of such tests of their excellence as may have been made. This should be concisely but clearly presented, with suitable illustrations when the subject admits of them, so that the exhibitor's case may bo sot in a proper light before those whose duty it is to pass judgment upon it. The decisions respecting awards can then be marle intelligently and satisfactorily, and much valuable information be collected which might otherwise be withheld. Each exhibitor should be made to understand that, as a competitor for recognition or award, it is for his interest to furnish a proper presentation of his case.
The remarks made in the general review of the sixth group, respecting the scarcity of new inventions which piomise to be of any considerable importance, and the absence of those that are likely to revolutionize present practice or methorls, apply with force to the display in Class 52. Many of the exhibits were remarkable for their
extent, and the excellent design and workmanship of the objects shown, but, with few exceptions, there was little to be found which was new or instructive.

In the report on this class no attempt is made to mention any large proportion of the exhibits displayed. Only a few which presentel features of special interest are described, and the distinctive characteristics of some others mentioned, in cases where the reputation of the exhibitor, or the relation of the object exhibited to similar machines known in the United States, makes it desirable to refer to it.

The immense number and variety of the objects displayed madrit impossible to avoid leaving unnoticed many which were undoubtedly quite as interesting and important as some that are described. It was necessary to make a selection of such subjects as could be best dealt with under the circumstances which limited the time and resources of the reporter.

II.-Steam boilers.

(i) Sectional steam boilers.-In the display of steam generators which the Exposition presented, boilers of the tubulous sectional type were far more numerous than all other forms together.* A large proportion of the steam employed for difterent purposes in Machinery Hall was supplied by boilers of this kind, those in active operation representing 3,000 horse-power in steam actually supplied. and a total steaming capacity of more than 5,000 horse-power.

The number and variety of the exhibits of this type of boiler, the extent to which capital is investerl in their manufacture, and the enactment of laws which enforce their use in certain cases, indicate a tendency toward their very general adoption in Europe.

The growing demand for steam pressures much higher than those hitherto generally employed, and the peculiar adaptation of the tubulous steam generator for use under this condition, is one of the chief reasons for its approval, but the increased use of elevators, and the introduction of isolated plants for electric lighting, which have brought about the more general employment of steam power in large and valuable buildings and its wider introduction in cities, in districts devoted to dwellings, have also tended to extend the adoption of a form of boiler in which safety from destructive explosion is the quality most valued.

The influence which the introduction of sectional boilers in the United States has had upon their adoption in Europe may also very properly be referred to here: The immediate causes for the present

[^9]demand for a type of boiler possessing the qualities specified have been suggested, but the extensive and rapidly increasing use of the sectional boiler in England and on the Continent has undoubtedly been greatly hastened by the fact that Harrison, Root, and notably Babcock \& Wilcox, long since made a practical and commercial success of this general type of steam generator in the United States, thus demonstrating its value. The enterprise of the last-mentioned firm has so extended the use of water-tube boilers as to popularize them to a degree which has made the type favorably known all over the world.

Fortunately, in tubulous boilers of the best type, an immunity from the danger of widespread destruction of property or life, in case of accident to the boiler, is secured without the sacrifice, to a serious extent, of other necessary or desirable qualities.

It is well known that the frightfully disastrous effects which some-: times result from the explosion of a boiler which contains a large quantity of water, are produced by the breaking open of the boiler in such a way as to instantly set free the entire contents, and thus permit the sudden destructive action of the energy which, before, was pent up in the large mass of highly heated water the boiler contained. The amount of this energy is in almost direct proportion to the quantity of the water and to its temperature, but the suddenness of the application of the power developed is the most important factor in the result of an explosion of the character referred to. The volume of steam which is suddenly generated from a large mass of highly heated water instantaneously relieved from confinement is enormous, and yet this steam possesses for a short time sufficient pressure to wreck the structure it penetrates, while the energy suddenly developed by the explosion is sufficient to project large fragments of the ruins to a distance. On the other hand, when the fracture of a boiler is of such a character as to permit a gradual relief of pressure, the pent-up energy developed in this mamer is dissipated gradually, and often harmlessly.

In the tubulous sectional boilers shown in the Exposition, the features which are to be noticed in considering the question of safety are:
I. Comparatively small water capacity-not exceeding from onethird to one-tenth that of many other types of boilers in general use.
II. The division of a great proportion of this water into small portions, contained in numerous small receptacles the walls of which may be made sufficiently strong without requiring such thickness as to involve their injury from overheating.
III. Small communications between the different receptacles, and between the receptacles and the steam reservoir of the boiler, by which the instantaneous escape of any great quantity of hot water is prevented in the event of a local breakage.
IV. Numerous joints where the parts are united, affording places at which yielding under excessive pressure may occur and allow a gradual escape of the contents instead of its sudden release.

Theory, confirmed by experience, shows that thr outflow of highly heated water, even when the water is subjected to the great pressure which is due to its high temperature, is comparatively slow if the escapo takes place through orifices of moderate size; and, if such openings are the only kind which are presented when the rupture of a boiler occurs, the escaping contents fail to produce the widespread ruin so much dreaded as the result of a boiler explosion.*

* When an outlet is opened below the water level of a boiler under steam, the water which issues into the atmosphere is at the high temperature due to the boiling point which corresponds to the pressure in the boiler.

In consequence of this, a portion of the water, varying from 4 to 16 per cent. of the whole, depending upon the pressure, is converted into steam when it reaches the orifice, where the pressure necessarily becomes reduced from that of steam in the boiler to that of the atmosphere outside. The volume of the steam thus generated is great compared with that of the water, and the steam in escaping fills the orifice to such an extent that the outflow of the water is greatly retarded. This fact, which corresponds with conclusions deduced from theoretical considerations, must have been observed by every one who has had to do with the management of a boiler, as he can not have failed to notice the surprising length of time required to empty a boiler under stean when the blow-off cock is opened; for, although, from the high pressure which the steam exerts on the water, and the force with which it tends to drive it out, the rapid expulsion of the water might be expected, yet its level in the boiler is lowered lut slowly, and its escape is gradual, no matter how great the steam pressure may be.

Professor Zeumer, in his Warme Theorie, has griven formula and tables for the computation of the outfow which will take place from a boiler under steam at various pressures, and the following short table, giving roughly approximate results, has been computed from his formula:

Rate of discharge of the hot water of a steam boiler through an orifice below the water line.
Steam pressure above the
atmosphere20 $50 \quad 100 \quad 100$ pounds per square inch.
Rate of outflow per square inch of the orifice....... $1.04 \quad 1.05 \quad 1.06 \quad 1.07$ cubic feet per minute.

This shows that the contents of the boiler escape only very little faster when the pressure is high than when low. The higher temperature of the water under the greater steam pressure causes a greater volume of steam to be generated in the orifice than is produced at the lower pressure, and the outflow of the water is more obstructed in consequence.
Cold water subjected to the same pressure would be discharged many times more rapidly, as the following table shows.

Discharge of cold water under pressure.

It is true that by the failure of one or more of the sections of a tubulous boiler small fragments may be hurled to a distance and cause damage or destroy life or the escape of steam may do injury by sealding persons in the immediate neighborhood of the boiler, but the destruction of a building and the great loss of life which may thus be entailed are not to be feared as a consequence of such all acreident.
'The steam reservoirs or drums of sectional boilers often contain a comsiderable proportion of the heated water. The remarks made above do not apply to this part of the apparatus; but, as the reservoir is not necessarily subjected to intense heat, the thickness and strength of its walls may be made as great as is necessary to secure strength, and the effect of heat upon them need not be considered. The reservoirs are generally made far stronger to rosist hursting than the joints at the connections of the tubes are to resist yielding. Disastrons explosions of such reservoins of sectional boilers have, however: occurred.

The evaporative efficiency of the different types of boilers in general use--that is, their economy with respect to the cquatity of yater evaporated in proportion to fucl consumed-depends chiefly upon the quantity of water evaporated in a given time by a given extent of heating surface. Under the conditions usually foum, the economical efficiency diminishes with an increase in the rapidity of this evaporation. Unless, then, the genoral arrangement be very faulty, a boiler of one type may be so proportioned as to be as economically efficient as a boiler of another type. There is, however, an atvantage in this respect in favor of boilers having furnaces entirely surromoled by heating surface, that is, in favor of internally fired boilers as they are called, of which the locomotive, marine, and Galloway boilers are examples which were represented in the Exposition. In this kind the economical efficiency is somewhat greater, with a given rate of evaporation, than in boilers of other types, because a larger proportion of the heating surface is favorably situated for the reception of madiant heat from the incandescont fuel and flaming gases, and ako because the loss of heat by radiation from the exterior surfaces can be made less than in the others.

The table on page 21 gives certain general information respecting the boilers used to supply steam for the Machinery Hall. The interesting features of a few of these and other boilers exhibited, and some facts relating to their use, will be noticed, but no attempt will be made to name all the exhibitors of boilers, and many of the exhibits which may merit attention will have to remain unnoticed, the number displayed was so great.

With a single exception the sectional boilers shown in use at the Exposition were aither of the Root, or Babcock \& Wilcox tubulous type, pure and simple, or else more or less close imitations of these.
(8) The Babcock \& Wilcox boilers.-These were exhibited in the British section by the Babcock \& Wilcox Company, of New York and Glasgow, to whom a grand prize was awarded.

The general arrangement and features of construction of these boilers, as they are made in the United States, have hecome so well - known through their extensivo introduction that it is umecessary to describe them here.

Two of the boilers exhibited by this firm were used at nearly their full capacity for supplying steam to the hall; they differed from the form usually seen in the United States in a few details only, but chiefly in having all the connections made of wrought iron instead of cast iron, a change which was made because the employment of cast metal for any important component part of a boiler is disapproved of, and in some cases prohibited by law, in European countries.

The nearly vertical connecting pipes or headers, of rectangular cross section, by which the adjacent ends of the inclined water tubes are united with each other and with the steam and water reservoir, were forged in a single piece having the usual undulating or sinuous form, so that the tubes they hold are staggered, that is, so that tubes in one layer lie over the spaces between the tubes of the layer next below.

These headers at each end of the tubes communicate directly with the bottom of the reservoir by means of nearly vertical tubes expanded into the tops of the headers and fastened, also by expanding. into the flat bottom of a wrought iron inverted saddle piece, or cross box as it is called, which extends across the bottom of the reservoir, near each end. The direct communication thus afforded between ends of the inclined water tubes and the interior of the reservoir avoids impediments to the water circulation.

Fig. 1 is a longitudinal sectional view of the front end of the upper part of the boiler, and shows the cross box for that end and the way the headers communicate with the reservoir bymeans of it: and Fig. 2 exhibits a front view of the boiler with part of the front casting removed so that the sinuous form of the wrought-iron headers can be seen.

The headers and cross boxes are forgings of remarkable excellence, and afford grood examples of the progress which has been made in England in the art of working wrought iron and steel; they illustrated the fact that the production in these materials of forms which have hitherto been made only of cast metal is now practically carried on as a manufacture, so that the products are supplied at prices which make it profitable to employ them. These and other examples of admirably executed work in wrought metal, particularly in metal plates, show that the processes and apparatus employed by the English manufacturers of these specialties are superior to those in use in the United States.

The usual hand holes in the fronts of the headers, opposite the end of each tube, are closed by hambloble pates on the inside and disk-like covers on the outside, which are seated on the faces of the haders and clamped in place hy means of wrought-irom belts. The faces of the cover and plate are dressed amb the seats on the headers also faced, so that the parts are in eontact, metal on metal, and no destructible packing is employed for making the joints tight.

Fig. 1.-Babcock \& Wilcox boiler. Section of upper part of front end,

Fig. 2.-Front view of the Babcock \& Wilcox boiler.

A test of the steaming capacity, made by the administration, demonstrated that the boilers of the set exhibited were capable of y ielding 24,260 pounds of steam hourly, with fuel of the quality obtainable at the time, and under the working conditions. This gave a rate of evaporation of about 4.4 pounds of water per hour per square foot of heating surface of the boilers proper. An economizer with 1,425 square feet of heating surface, placed in a chamber in the smoke flue, was used in connection with the two boilers.

The Babcock \& Wilcox Company, in the printed catalogres which formed part of the evidence presented to the jury of Class 52 , gave a H. Ex. 410 - vol ini-6
list of about 4,000 of their boilers, representing nearly half a million horse-power, sold in the last fifteen years; also a list of over 100 boilers, representing more than 15,000 horse-power, sold by them in the first three months of 1889 in countries other than the United States.
(9) The Root boiler.-Conrad Knap \& Co., of London, England, exhibited in operation Knap's improved Root boiler.* To indicate the differences between the various modifications of the Root type of hoilers shown in the Exposition, a brief description of Knipes boiler is given first; a longitudinal section is shown by Fig. 3.

Fia. 3.-Knap's modification of Root's boiler. Longitudinal section.
A number of pipe elements, all inclined in one direction, as in the Babcock \& Wilcox boilers, are piled one above another in vertical zigzag rows, a single vertical row of elements constituting what is called a section, or a series. A number of these sections standing side by side compose the entire heating surface of the boiler, and contain the greater part of the water from which steam is generated. Each element of a section communicates with those next above and

[^10]below it in a manner that will be described later, and the upper front ends of all the sections are put in communication with each other by a cross pipe, forming a steam collector, from which a riser leads to a large cross drum or steam reservoir located above the boiler, the place of entrance of the risor being at the level of the surface of the hot water which partly fills the reservoir. The lower rear ends of the bottom elements of the sections are also united by a cross pipe forming a hot-water collector, the two ends of which turn upward and enter the bottom of the reservoir. An element of the boiler consists of a single o-inch tubo 11 feet long, haviug at each end a cast metal mouth piece, or junction box, with two cireular apertures in its face. The end of the tube is fastened in the box by expanding. The outer faces of the boxes are rectangular and lie one upon another. The elements of a section thus piled are united by return bends which slant right and left alternately and connect the apertures of each box with those of the boxes lying next above and below it ; as shown in Figs. 4 and 5 , which represent, respectively, an end view of three elements, and a sectional view of their ends.

Fig. 4.-End view of three elements.

Fig. 5.-Section of the ends of three elements.

The joints between the mouths of the return bends and boxes are formed by short pipe nipples. A, which are turned tapering at each mid and fit accurately into the mouths, which are smoothly bored. Four bolts in the corners of the return bends afford means for foreing the nipples into the mouths and clamping them in place.

The front end of the uppermost element of each section is united to the steam collector above it by one of the return bends, and the back end of the lowest element is connected with the hot-water collector beno th it by an elbow, all these joints being made by means of the tapering nipples.
The tapering nipples are bulged in the middle so that a single corrugation is formed around them. This corrugation of the nipple is the novel feature of the joints of the Knap boiler; it makes the joint somewhat elastic and serves t. secure permanent tightness.

Access may be had to the interior of a tube by removing a return bend. and, if repairs are needed, any single element or section can br removed and replaced quickly by loosening a few bolts.

The feed water is delivered into the reservoir at the place where the hot water and steam from the tubes enter it; its water is thus instantly heated to a high temperature, which occasions the deposition in the reservoir of certain salts of lime and magnesia liable to be contained in the water, their action in fomming scale in the tubes being thus prevented.

One of the boilers exhibited was set in brickwork : another smaller boiler of portable form was cased with brick-lined plates. They were good specimens of workmanship.
(10) The De Nater boilers.-Messis. De Nayer \& Co., of Willebroeck, Belgimm, had in operation a battery of six boilers of excellent appearance and careful construction.

The performance of these boilers in supplying a large quantity of steam for the Belgian, Swiss, and French sections in Machinery Hall was exceedingly satisfactory.

The capacity of the boilers was tested by the administration of the Exposition, and the six boilers were found capable of evaporating 36,500 pounds of water per hour under the usual working conditions.

The form and structural features of this boiler are essentially like those of the Root boiler shown in Fig. 3 and just described.

It consists of inclined tube elements united by return bends and communicating with a steam reservoir above the boiler by means of risers leading from cross pipes which form collectors for steam and hot water. The steam reservoir, however, lies lengthwise of the boiler instead of crosswise.

An element of this boiler, instead of being a single tube, consists of two parallel t-inch tubes coupled at each end by rectangular headers, or junction boxes, in which the slightly tapering ends of the tubes are made fast by having been forced into the tube holes and expanded in them. Each junction box has two apertures or mouths in its outer face, in line with the tubes. The elements are piled flatwise one upon another, and coupled to the elements next above and below by return bends, in the manner shown by Figs. if and 7 .

Pipe nipples, A, with tapering ends are used in this boiler, as in the Root boiler, to form the joints between the boxes and return bends; but the nipples are without the corrugation used in the Knap joint.

The return bends are clamped to the junction boxes by a single bolt and a brace which bears on the backs of the bends.

The steam reservoir contains but little hot water, for steam is set free in the tubes, and discharged into the reservoir above the surface of the water. The hot water descends from near the bottom of the
rescrvoir to the cross collector beneath the hack ends of the lowest water tubes. The steam is dried by being forced to pursue a circuitous course, with sudden changes of direction, in its discharge

Figs 6 and 7 .-Horizontal section of a single element, and end view of four elements of the De Nayer boiler.
from the reservoir, the deposit of the moisture taking prace on the surfaces which deflect the flow of the steam.

Figs. S and 9.-The Roser boiler.

The De Nayer boilers are used extensively in Belgium and France, and their use is increasing. A grand prize was awarded for the exhibit.
(11) The Roser boiler.-Five boilers exhibited by N. Roser, of St. Denis, Franco, were employed to furnish steam for sections in Machinery Hall, and seven others were in use in different parts of

Fig. 10.-View of two elements of a Belleville boiler, with their connections. Stationary type.
the Exposition ; over 2,000 horse-power in all. Two kinds were exhibited. Figs. 8 and 9 show one form, in which the hot gases after passing around the water tubes return through smaller fire tubes, which pass through the axes of the water tubes. In another kind the return fire tubes are omitted and the water tubes made long enough to furnish the required surface.

It will be seen that this boiler is a combination of the Babcock \& Wilcox, and Root types, with the return fire tubes added in one of the forms. The tubes are in vertical rows and not staggered; an arrangement which is not favorable for efficiency.

Fig. 11.-Belleville boiler, stationary type, with parts of the setting removed.
(12) The Belleville boilers.-These were exhibited by J. Belleville \& Co., St. Denis, Seine, France, and, in extent, formed the most important of the boiler exhibits. There were four distinct displays:
I. A group of boilers of 1,000 horse-power, furnishing steam for Machinery Hall.
II. A group of 700 horse-power, in use for the central electrical station.
III. One of eight groups of marine boilers, for a naval cruiser of 8,000 horse-power.
IV. A large number of marine, stationary, and portable boilers, set up in Machinery Hall and in the building for maritime exhibits, but not in operation.

Fig. 1:.-End view of a single element of the Belleville boiler.

The Belleville boiler has attracted much attention in France, and in detail is essentially different from the other boiler's exhibited.

Figs. 10 and 11 show a stationary boiler in which the characteristic features may be seen.

An element consists of a double vertical row of nearly horizontal pipes, G, united by return bends, called "junction boxes," which connect the end of one tube with the adjacent end of the tube next to it in such a manner that the element takes the form of a continuous pipe doubled upon itself so as to constitute a narrow flat-sided coil. See Fig. 12.

A number of these elements stand, side by side, directly over the fire grate, K. They contain nearly all the water there is in the boiler, together with a portion of the steam, and afford the entire heating surface.

The front upper end of each elemental coil leads directly into the bottom of a small cross drum, C, above them, which forms a steam receiver supplementary to the space for steam afforded by the upper folds of the elements. Beneath the front lower ends of the elements is a cross pipe. F, of rectangular cross section, forming a feed-water distributer by means of which the hot water is distributed to the coils. A pipe. D, descends from near the bottom of the steam receiver, C, to a sediment collector, E. which stands in front of the boiler at one side, just below the elements, and a short pipe leads fiom the top of this collector into the feed-water distributer, F .

The feed water is injected into the lower part of the steam recoiver C, just over the inlets from the coils, so that it is immediately brought into contact with the hottest products of the boiler. This canses a precipitation of salts contained in the water, and they are carried by the downward circulation through the pipe D into the lower part of the sediment collector E , from which the sediment can be blown out, while the purified water is delivered to the distributer F from the top of the collector.

The steam which enters the receiver C from the elements is in the condition of foam, and contains a large proportion of water. It impinges against a shell of peeuliar form inside the receiver C, and, being driven aromid this shell, and again deflected by a shelf projecting into the shell, the steam eventually finds its way into a collecting pipe through which it is drawn off in a dry condition even when the boiler is forced. If superheated steam is desired it is
obtained by passing the steam through a coil, H, which is exposed to the hot gases.

The water passes to each eoil through a nipple screwed into the top of the distributer. The upper end of the nipple is tapering and enters a bored hole in the bottom of the lowest junction box, the joint being made tight by a short thin steel ferrule around the nipple, which makes a kind of packing between the tapering nipple and the edge of the bored hole. A single bolt, passing through an ear projecting from the face of the junction box, and also through a projecting fange on the distributer, clamps the joint tightly enough to maintain it steam tight under the greatest pressures, even when the bolt is tightened by the fingers alone, and yet permits sufficient yiekling to accommodate movemonts produced by unequal expansion of the elements. By removing this bolt, and two others at the flange joint where the upper end of the coil is united to the steam collectorall at the front of the boiler and easily accessible-the element can be drawn out forward and a new one be put in to replace it, the elements being made interchangeable in evers respect.
The joints between the tubes and junction boxes are serew joints. Parallel threads are eut on the pipes, and the joints made tight by means of lock-nuts. A coupling with lock-nuts, at one end of each tube, permits the removal of any tube from an element without disturbing the other tubes.

The Belleville boiler contains very little water in proportion to its steaming capacity, and is, therefore, essentially a safety boiler; but this feature involves the inconvenience of a certain want of steadiness in maintaining the water level constant and keeping a uniform steam pressure when the boiler is left to the control oif an attendant. The boiler is, however, intended to be worked under very high steam pressure-at a pressure, in fact, which greatly exceeds that at which the steam is delivered or used ; the small mass of water in the boiler is. therefore, at a comparatively high temperature, and a certain store of heat is thus afforded, whichois drawn upon, replenished, or increased when irregularities of steam production or delivery take place. This compensates to a certain extent for the lack of water and steam capacity.

To remove the difficulty which would be involved by a necessity for the constant attention of the fireman, the following automatic regulating devices have been provided as integral parts of the Belleville boiler: An automatic damper regulator, shown at J in Fig. 11; a feed-water regulator, B^{\prime}, operated by a counterpoised solid float in the water column B; and an automatic pressure reducer, not shown.

It is natural that critics of the boilers should denounce these automatic devices, as innumerable instances of failures of other contrivances for the same purposes form a part of the experience of every engineer.

These boilers, however, have passed beyond the experimental stage, for they have been in use in France during many years and are highly praised in some quarters, particularly in some branches of the marine service of the government.

From information obtained from reliable sources it is ascertained that over 200 stationary Belleville boilers, representing 30,000 horsepower, and 330 marine boilers, corresponding to 35,000 horse-power, are in use. The greater number of the latter are used in the French navy, the regulations of which recuire that a boiler for that service shall be capable of operating continuously for six weeks while fed with sea water only.
The jury awarded a grand prize to the Belleville Company.
(13) Shell boilers.-Except in comnection with portable or semiportable engines, but few varieties of boilers were shown that had shells of considerable diameter in which the water was evaporated, a form so universally known and generally employed.
Messrs. Davy, Paxman \& Co. exhibited a battery of nine locomotive boilers in the building of the electrical syndicate, of which four were employed for delivering steam to the United States section in Machinery Hall. They were provided with the Godillot grate and an automatic stoking device, but otherwise had no novel features that need to be noticed. A few other important exhibits of shell boilers are worthy of attention.
(14) The Galloway brilers.-W. \& J. Galloway \& Sons, Manchester, England, exhibited in the British section of Machinery Hall a partly finished boiler of their well-known type. with two cylindrical furnaces united and continued by a broad elliptical flue, braced by Galloways cross tubes, which afford a great extent of exceedingly effective heating surface.
The boiler that was exhibited was left in an unfinished condition to show its internal arrangement and the features of its construction; an opportunity was thus afforded to admire the excellent workmanship, and the perfection with which the difficult flanging at the ends of the cross tubes is accomplished by the system of machinery and tools employed in their manufacture.
Experiments in England and the United States have demonstrated a very high coonomical efficiency for these boilers, even when the rate of evaporation is great. Their general excellence is attested by the fact that the works of the Messrs. Galloway doubtless form the largest boiler-making establishment in the world. Over 7,500 boilers of the Galloway type have been constructed in England, and 338 boilers, weighing, on an average, 11 tons each, have been turned out from the Galloway shops in a single year. The firm keeps in stock from 30 to 50 boilers ready for delivery.
The award of a grand prize by the jury proved their appreciation of the importance of the firm and the value of its prodactions.

The boiler is manufactured in the United States by the Edgemoor Iron Company.
(15) Dulac's boiler with Field tubes.-L. L. Dulac exhibited a novel boiler set in brickwork, from which steam was taken for Machinery Hall. Other boilers of the same type were shown without the setting, to exhibit their construction.

A view of this boiler is given in Fig. 13.

Fig. 13.-Dulac's boiler.
It consists of two vertical cylindrical shells, of unequal height, united by a horizontal barel. The shorter vertical shell stands in the furnace, over the grate, and is provided with "Field" tubes hanging from its bottom; the higher shell, at the back of the boiler, stands behind the furnace bridge wall and forms a mud drum into the bottom of which the feed water is pumped. The water becomes heated gradually as it rises in this shell, and travels forward toward the tubes in a direction opposed to the current of the hot gases.

Each of the Field tubes is provided with a device for preventing a deposit of sediment in the tube, constructed in the following way: The inner pipe of the tube extends to a considerable height above the mouth of the outer pipe, and the upper part of the inner tube is surrounded by a can-like receiver of considerably larger diamrter than the pipe, which serves as a receptacle and collector for the sediment which the circulation of the water would carry down into the tube, unless prevented in some manner.

Fia. 14.-Field tube with sediment collector; Dulac's boiler.

Fig. 14 is a section of one of the tubes, showing the arrangement of the sediment collector.

The grate of this boiler was inclined at an angle of about to degrees, and formed in steps, the fuel being supplied at the top through a sort of look consisting of a box of segmental shape hinged by its lower elge to the boiler front casting. and taking the place of a fire door. The box was tipped forward or outward to be filled with coal, and then tipped inward to discharge its contents on the grate, the inclination of which secured a farorable distribution of the coal. The jury's award was a gold medal.
(16) Boiler with removable fiurnace. - A type of boiler much used in parts of France where the water is hard, was set up and used in the boiler court by Messrs. Weyher \& Richemond (Société Centrale Pantin), for supplying steam to the hall.

It is an internally fired, return tube boiler, constructed in such a way that the fumace, back comection, and tubes can be easily discomnected from and drawn out of the shell, in order to give free access to all these parts, and to the interior, for cleaning or repairing.

Fru. 15.-Stationary boiler with removable furnace. Weyher \& Richemond, France.
Fig. 15 shows the arrangement of the particular boiler referred to, with the furnace drawn out, and without the smoke breeching, while

Figs. 16 and 17 show, respectively: a front view and a section of another boiler having similar features, in which all the parts are shown in place.
The furnace, the return tubes which surround it, and the back connection are all attached to a short section of the shell, which forms the extreme front end of the boiler proper, and is united to the rest of the shell by mems of flates which form a girth joint, made tight he means of a rubler gasket and bolts.
The smoke breching contaning the furnace doors is bolted to the frome of the boiler, and the gases from the tubes pass through it to a smoke pipe, as in Fig. 1\%, or else are delivered by the breeching to aflue beneath the boiler, as would be the case in the boiler set in brickwork, which is shown by Fig. 15.

This kind of boiler was shown by several different exhibitors in the French section, and is very often used with semi-portable engines; a brief statement of the performance of one of them is given in this report in comnection with the description of Weyher \& Richmond's semi-portable compound engine.
(17) Serpolet's instantaneous steam generator.-This is a novel kind of boiler which was exhibited in several forms and applications by the Society for Serpolet's System of Instantaneous Steam Generators, 27 Rue des Cloys, Paris.
The boiler, as now constructed, is intended for engines of small power, although the inventors claim that their experiments indicate a promise of the successful application of the principle to larger sizes.
An element of the boiler consists of a capillary tube formed of a thick pipe of large bore, which is flattened so that the sides of the bore nearly touch each other, a cross section of the tube showing the capillary opening as a slit, which in some of the tubes was scarcely visible, and in others about three one-hundredths of an inch wide. See Fig. 18.

The tube is variously made. In some examples it was formed wholly of steel, and bent into a flat coil (Figs. 18, 19, and 20 show this form); in others the coiled tube was of thick copper, and

Fig. 18.-Cross section of a tubular element of serpolet's stemm gemerator.
in one form consister of a thin, flattened sted tube inclosed in a mass of cast iron which was formed around the coiled tube by casting.

Fig. 19.-Vertical section of Serpolet's steam generator.
The length of the tube of a single element was $6 \frac{1}{2}$ to $7 \frac{1}{2}$ fect, the width of the capillary slit $1 \frac{1}{2}$ to $2 \frac{1}{4}$ inches, and the evaporating surface 1.6 to 2^{3} square feet.

One or more of these elements are placed in a stovo, where they are highly heated. Figs. 19 and 20 show a boiler consisting of a single element, and Fig. 21 one in which three elements are placed one above another and coupled together.

When water is forced into one end of the capillary tube, steam instantly issues from the other end, the appearance of steam occurring almost simultaneously with the injection of water, and ceasing as soon as the supply of water stops; facts which, it is claimed by the
inventors, indicate that the water does not assume the "spheroidal" condition when in contact with the highly heated surfaces of the tube.

Fia. 20.--Cross section at A B in Fig. 19.

Fig. 21.-Serpolet steam generator with three elements.
The boiler has no steam receiver, contains almost no water, has no safety valve nor steam gauge, and there is no stop valve nor throttle valve between the boiler and engine, the supply of steam
to the engine being regulated entirely by the quantity of water pumped into the boiler. A few strokes of a small hand pump serve to start the production of steam necessary for getting the engine in motion, after which water, in quantity sufficient to maintain steam of the required pressure, is injected continuously by a feed pump driven by the engine. The action of this feed pump was, in most of the exhibits, regulated by a centrifugal governor, comected with the pump in such a manner as to regulate the length of the stroke of the pump plunger in accordance with the demand for steam.

A single tubular element of the smallest size is used for an engine of 1 horse-power, one of the larger elements for $1 \frac{1}{2}$ horse-power, and several elements are united for engines of greater power. The woight of a small element of thick sted pipo is about \boldsymbol{c}° poumds, and that of one of the cast-iron elements, deseribed above, nearly 16.5 pumds. The heat stored in this mass of metal seoures a certain regularity in the protuction of stem under varying conditions.

The Serpolet Company had a special building for the display of their boiler, containing a number of examples, and they also exhib. ited a steam launch on the Seine, in which was a boiler of thee steed elements, whose evaporating surface was 4.8 square feet, external tube surface 11 square feet, and weight 015 pounds. The boat was 33 feet long hy $4 \frac{1}{2}$ feet beam, and a speed of ! miles per hour could be maintamed.

A steam tricycle for two persons was also shown in operation.
(18) A testof one of the boilers was made at my request, and in accordance with my directions, by Mr. Carl Hering. The data, conditions, and results of this test were as follows:

The boiler was of a size which is built and sold for 1 horse-power;, and embodied a single element made of a thin steel capillary pipe, coiled and inclosed in a perforated cast-iron disk having corrugated edges.

The dimensions of the boiler, and areas of the surfaces were:

The steam was used in a small and uneconomical engine which was employed to run a dynamo, and the power delivered at the belt
was ascertained by electrical measurements, very carefully and skillfully made by Mr. Hering; but it is not necessary to give the results of this part of the trial in dealing with questions relating to the boiler ; it is enough to say that the power was in excess of the nominal horse-power.
A pressure gauge was applied to the feed pipe as well as to the steam pipe, so that the pressure required to force the water into the capillary pipe could be observed.
A fresh fire was started about an hour after a previous fire had been drawn from the furnace and the tubulous element was so fiar cooled by pumping water into it, that stem ceased to issue from the outlet and water appeared instead. The test was commenced about half an hour (28 minutes) after the new fire was started, and was continued during $4 \frac{1}{2}$ hours, with oceasional interruptions.
Total rumning time, 3 hours 57 minutes.
Date colul results.
Mean of the observations.|

Temperatures:

Feed water. .leg. F . 43.7
Exhanst steam . do. . . 275. 0
Chimney gases . do. . . . 700.0
Pressures :
In steam pipe . pounds per square inch . . $112 . \mathscr{2}$
In feed pipe . 10. . . . 130. 0 Fuel:

Coal fed to furnace . pounds . . 5is. 8
Wood for kindling. .do. . . . 6.6
Coal equivalent to this wool, say. do. . . . 2.2
Ashes remaining after test. do. . . . 11.6
Combustible consumed, total. do. . . . 43. ${ }^{5}$
Per hour of runningr time:
Total. l 11.0
Per square feet of grate. .lo . . . 7.8
Per square feet of evaporating surface.do. . . . 3.9
Water evaporated:
Total . do. . . . 236.0
Per hour :
Total. do. . . . 50. 7
Per square feet of evaporating surface. do. . . . 21.3
Per pound of fuel. .do. . . . 4. 49
Per pound of combustible. do. . . . 5.42
Equivalent evaporation from and at $212^{\circ} \mathrm{F}$. per pound of combustible,
neglecting the superheat of the steam. pounds. . 6.69
The steam was superheated to such a degree that paper touched to the steam pipe became charred in a few seconds.
It is not known whether the capillary elements can be made durable, or whether in continued use they will remain unobstructed by sediment.
A bronze medal was awarded by the jury.
H. Ex. $410-\mathrm{VOL} \mathrm{III}-7$

III.-Steam engines.

(19) A collection of engines, representing a capacity of more than 10.(100 horse-power, were grouped in the space devoted exclusively to Class 52. These were in the French section alone; other steam engines were shown in the Belgian, British, Swiss, and United States sections, and, besides all these, the thirty-two large isolated engines employed in driving the lines of shafting were included in the exhibits assigned to Class 52. Outside of this class were also a number of portable engines adapted for agricultural work, and a very few marine engines of small size, the absence of marine engines being a rather remarkable feature of the display in steam engineering.

The agricultural engines were in Class 49, and the marine engines found their place in Class 65.
(?0) A large proportion of the stationary engines were of the compound type, of which the greater number were coupled engines with cylinders of unequal diameters. Compound semi-portable and portable engines were also shown; in fact a number of these were of considerable size and adapted for working with a high degree of economy.

The following table shows the number and collective power of the engines and the number that were compound. This table includes the thinty-two isolated engines, the capacities of which are given separately in the table of engines which will be found in the general notice of the sixth group.
(き1) TABLE:-Compound (and noncompound stedmengines; not includingatgriaultural emoines.

Nearly all the engines, except the portable engines, were fitted with condensers and air pumps; condensation being more generally employed in Europe than in the United States, and used for engines of even very moderate power, for preventing the discharge of steam into the air, if not for obtaining an effective vacuum.
Steam jackets are almost universally applied to all cylinders, of either compound or noncompound engines.
(22) The influence that the practice in steam engineering in the United States has had upon European practice has already been referred to in the quotation from Professor Dwelshavers, in the general review of this group; it was certainly marked. The very general introduction of the Corliss cut-off and of the Corliss type of engine in various forms, was a noticeable feature of the display; the Porter governor was almost universally adopted, and was applied in one form or another to nearly every engine having a governor detached from the main shaft; and many of the high speed engines with shaft governors embodied features originally introduced in the Porter-Allen engines.
(2:3) The design and workmanship of the great number of engines exhibited were with very few exceptions excellent. But few novelties were, however, noticed ; even in details, familiar forms, perhaps as good as any we may expect to reach, are perpetuated.
A few monstrosities were seen, but on the whole fewer than have hitherto appeared in similar great collections.

A very few rotary piston engines show that a charm still attaches to this form, and a remarkable steam turbine, Parsons's, gives promise of a possible simple solution of the problem of a direct application of steam to the production of rotary motion with satisfactorily economical results.
In the following pages a few only of the engines that were exhibited are described.
(:2t) Weyher \& Richemond's engines.-Messrs. Weyher \& Richemond (Société Centrale), of Pantin, near Paris, made an extensive exhibition of excellent and interesting compound engines, many of which were in operation.
The first to be noticed are their vertical triple-expansion engines, one of which was employed to give motion to the machinery of Class 50. Fig. 22 shows a general view of an engine of this kind ; Fig. 23, a vertical section through all the cylinders, in a plane, X X, passing through the axis of the shaft; Fig. 94 , a section, in a horizontal plane, Z Z, through the high-pressure and medium-pressure cylinders; Fig. 25, a vertical section through the medium-pressure cylinder and one of the low-pressure cylinders, in a plane, Y Y , transverse to the shaft.
The frame is of the form usually employed for marine engines, and the machine is composed of two tandem engines standing side by side, with cranks set 90° apart. The lower cylinders are both low pressure. The high-pressure cylinder is placed directly over one of these, and the medium-pressure cylinder over the other; an arrangement not unusual in marine engines.
Steam from the boiler enters the jacket of the high-pressure cylinder, and from there passes through a butterfly throttle valve a, stop valve l, and piston valve c, to the high pressure cylinder I. The
exhaust steam from I is distributed by the piston valve d to the intermediate cylinder II, and, after further expansion in that cylinder

Fia. 22.-Triple-expansion vertical engine by Weyher \& Richemond, France.
is exhausted through pipes into the steam chests of the two low pressure cylinders III, in both of which cylinders the steam acts by
yet further expansion, and then escapes to the condenser. All the cylinders are jacketed, and each jacket first receives the steam with

Fig. 23.- Vertical section at X X, Fig 24.

Fig. 24.-Horizontal section at Z Z, Fig. 23. Weyher \& Richemond's triple-expansion vertical engine.
which the cylinder to which that jacket belongs is supplied; that
is, the jacket of I contains steam taken from the boiler direct, while the jackets of II and III are filled with exhaust steam from I and II, respectively. The stroke of the pistons is 18 inches, and the diameters of cylinders I, II, and III are 15.3, 22.8, and 28.3-inches, respectively. The steam is cut off invariably at about half stroke in

FtG. 25.-Weyher \& Richemond's triple-expansion engine. Vertical section at Y Y, Fig. 24.
the high-pressure cylinder, and the total ratio of its expansion is therefore nearly 12. The engine is intended to use steam at 150 pounds pressure, and to run at a speed of 130 revolutions per minute, under which conditions the steam consumption is said to be about $15 \frac{1}{2}$ pounds per effective horse-power per hour.

Piston valves are employed for the upper cylinders, and a doubleported slide valve for each of the lower cylinders. All four valves
are driven by two eccentrics. thromgh two rock shafts, one for cath component engine, armaged so that the weight of the piston valre balances that of the slide valve.

The governor is attached to the shaft, amb regulates the sperd by means of the throttle valve (Fig. : 4). It does not commminate motion directly to the valve, but acts through an intermediate device, of old design, consisting of a serew which mat recoive either right-hand or left-hand rotation, from a pair of chutches perolved in opposite directions by bevel gears which are driven from the angine Whaft. The governor causes the engagement of the serew with one (1) the other of the clutches when the speed of the engine becomes less or greater than the nominal speed, and thus occasions the movements of the screw by which the throttle is opened or closed as required. It is clamed that the variation of speed does not excered one-half of 1 per cent.

An independent jet condenser and a doublo acting vertical air pump, worked hy a small beam engine attached to the condenser. are used to obtain the vacumm.

Four engines of this type, of 100 horse-powneach, were employed, in the central electrical station for driving the large Edison dymamos. They were in constant operation during the whole term of the Exposition, and were very remarkable for smonthess and regularity of rumning.
(25) This company also showed several horizontal angines, compound, and single cylinder ; also a number of portable engines and sereral double cylinder semi-portable engines. The last mentioned are worthy of notice becanse of the careful trials to which in 1 sata an engine of this type was subjected in deciding the award of a prize offered by the Societe Industrielle de Mulhouse, for the first engine of new type which should be put at work in Upper Alsace and realize a steam consumption not exceeding 20 pounds per horse-power per hour: the power being measured by a friction brake on the fly-wher shaft, after the engine had been regularly at work during at least one year.
The trial was made by Messis. Meunier, Keller. Grosseteste, and other eminent engineers and scientists, with the care and precision for which experiments conducted under the auspices of the Mulhouse Society are noted. The trial forms the subject of an exhaustive published report, and demonstrates the following results :

Weight of stedm, coal. and combustible somsumed per hour.

These figures represent the average results of three trials of about $3 \frac{1}{2}$ hours' duration. The steam consumed could be accurately ascertained, by the methods employed, from trials of even shorter duration than these, but confirmatory trials lasting 12 hours were afterward made. The consumption of fuel was also ascertained with sufficient accuracy to determine what the economical efficiency of the engine and boiler together was. The conditions of ruming were the same as in the everyday working of the apparatus.
The following data are selected from the report:
Boiler pressure, 95 pounds ; vacuum, 26 inches; diameters of highpressure and low-pressure cylinders, 11.2 inches and 18 inches, respectively ; stroke, 19 inches; speed, 88 revolutions per minute ; indicated horse-power, 79 ; brake horse-power $68 \frac{1}{2}$; ratio of expansion, about $8 \underset{\downarrow}{2}$.
The steam from the boiler passed around the jacket of the highpressure cylinder before entering its steam chest. The exhaust stean from this cylinder passed over the high-pressure jacket and then over the upper part of the low-pressure cylinder into the steam chest of that cylinder. The lower part of the low-pressure cylinder was jacketed by steam from the boiler direct. The waste room in the high-pressure and low-pressure cylinders was 6.4 per cent. and 5 per cent. of the piston displacement, respectively.
Fig. 26 shows a side elevation of this engine mounted on its boiler. The condenser, and the air pump and feed pump stand at the side of the boiler, the pumps being worked from the crosshead of the engine by means of a three-armed lever. They are shown in the foreground of the engraving.
The boiler has a furnace with return tubes surrounding it, all removable from the shell. The smoke breeching, shown at the righthand end of the boiler, surrounds the mouth of the furnace and leads the hot gases from the tubes to an underground flue, but can be arranged for use with an upright smoke pipe. This type of boiler has been described elsewhere in this report.
The arrangement of the whole apparatus is a good one for places where the water for condensation can be obtained, and is a type of semi-portable engine which is extensively used in France. Its economical performance is excellent for an engine of comparatively small power, and the first cost to the users is moderate, because expensive foundations and settings are unnecessary.
Messrs. Weyher \& Richemond exhibited also Parsons's steam turbines, which are described on page 126 .
As the administrator of the company was a juror, their exhibit could not be put in competition for an award.
(26) Farcot's engines.-One of the largest exhibits of steam engines was by Joseph Farcot, of Rouen.

His single cylinder horizontal Corliss engine, of 1,200 horse-power, was the largest engine in the Exposition. It covered an extensive
floor space and presented a comanding appearance, but did not compare favorably with the large beam engine exhibited by Corliss in the Centemnial Exposition of 18%

The pulley of the Farcot engine was 32 feet 10 inches in diameter, with a face about 5 feet broad, and a rim weighing 21 tons. The rim was cast in a single piece and afterward separated into four parts. The wheel had two sets of riveted plate-iron arms of elliptical cross section.

The noticeable feature of this engine is the location of the valves, all four of which are placed in the cylinder heads in such a manner that the waste room filled ly steam is very small. The arrangement of valves in the vertical cylinder of the beam engine shown by Corliss in 1876 was the same as this.

Fig. 27.-Farcot's Corliss engine. Vertical section of cylinder.
Fig. 27 shows a longitudinal vertical section of the cylinder of the Farcot horizontal engine.
It will be seen that the large steam pipe located over the cylinder is branched so as to lead to each cylinder head, and also suiphlies steam to the steam jacket by a direct comection in line with the main vertical pipe, so that the jacket, which is of liberal dimensions, receives the steam in such a way as to maintain a good circulation.
A smaller Corliss engine, of 200 horse-power, stoorl by the side of the large engine.
The valve gear of the Farcot engines is a modified type of the Corliss gear, and is so arranged that the admission of steam is regulated by the governor up to about three-fourths of the piston's stroke, instead of only to about three-eighths of the stroke, as in the older forms of the Corliss gear. Farcot's arrangement is, however, more complicated than other devices that were shown for effecting the same result, and will not be described here.
(27) Farcot also exhibited three vertical engines:
I. A high speed compound engine of 100 horse-power.
II. A compound engine of 200 horse- μ ower, with a radial valve gear, in which the force of the governor to regulate the point of cutoff is not applied directly, but through an intermediate apparatus consisting of a steam actuated piston the movements of which are
controlled by a hydraulic cylinder forming a kind of cataract. This regulating apparatus is so constructed as to give a definite position to the valve gear for every different position of the grovernor sleeve. It was in vented many yoars since by Joseph Farcot, and is called the "servo-moteur." A similar arrangement, adjusted by hand, has long been in use in comection with nearly all large marine engines as a means of moving the link to vary the cut-off and reverse the engine, and it is umecessary to describe it here.
III. The third engine shown by Farcot in his space in Machinery Hall was a triple expansion vertical marine engine of 400 horse-power, and was the only marine engine of any considerable size shown in the Exposition. This engine had three cranks set 120 degrees apart. The three cylinders were side by side in the usual way.
A radial valve gear was used, and this was adjusted, or the engine reversed, by a hydraulic servo-moteur so arranged that the engine could be controlled from a distance, as, for example, from the bridge or pilot house of a steamer.
J. Furcot was a member of the jury, and therefore not a competitor for an award.
(2s) Brasseurs compound engines.-Victor Brasseur, of Lille, France, to whom a grand prize was awarded, is a licensee of Corliss, and also of Jerome Wheelock.
He builds engines of the Corliss type of 188t. also the Wheelock engine with turning valves. (He has not adopted Wheelock's new application of flat sliding valves.)
The valve spindles are self-packing and separate from the valves, to the ends of which they are coupled or clutched.
A large compound engine and a noncompound single cylinder engine of each of the above types were exhibited in operation.
The compound engines were composed of two horizontal engines acting on a common shaft. A reheating receiver was used between the high and low pressure cylinders. The steam jackets of all the cylinders were independent of the steam chests, and heated by steam at hoiler pressure. The ratio of the capacity of low-pressure cylinder to high-pressure was $2 \frac{1}{2}$ to 1 in each case.
The firm has built about four hundred engines of the two types since 1880, and eighteen orders were taken within the first six weeks of the Exposition.
(29) Lecouteux \& Garnier's Corliss cut-off gear.-This is the Corliss gear of 1868 , to which an improvement is applied which permits the governor to vary the point of cut-off from the beginning of the stroke up to within three-tenths of the end: a much greater range of automatic action than it is possible to have with the older forms of the Corliss gear.
In the original and usual forms of the Corliss motion the eccentric requires to be set more than 90 degrees in advance of the crank, an
arrangement which compels the eccentric rod and the parts which receive motion from it to complete their movements in the direction of opening the valve, and begin their movements in the contrary direction, before the crank reaches a vertical position, and before the piston performs half its stroke. Ordinarily, it is the movement of the valve rods in the direction of opening only which occasions the release and closure of the admission valve, by bringing the trip gear into contact with the stop which the governor controls: if, therefore, in any stroke of the engine the governor falls so low that the release does not occur before the return movement of the valve rod begins, the valve does not become detached at all in that stroke of the piston, and the admission of steam continues to the end; the range of variation of the point of cut-off which is within the control of the governor does not therefore extend quite up to half the stroke, and usually falls considerably short of that extent.

Fig. 28.-Lecouteux \& Garnier's Corliss valve gear, with device for prolonging the admission beyond half s'roke.

Fig. 28, A and B, show the device employed on the Lecouteux \& Garnier engine.
a is one of the two rods which are comected with the steam valves; b is one of the opening and releasing latches, the fulcrum of which is carried at the end of the vertical spring lever l, whose spring is not shown, and d is the tappet lever actuated by the governor.

All these parts are substantially the same as the corresponding parts of the Corliss gear of 1868, modified only as follows:
The tappet plate, g, of the governor lever d, is provided near its lower end with a narrow inclined prong whose point is at e, and heel at f. The tail of the latch b is forked, and in the fork a tongue, c, is
hung, which tends to stand erect, being held upright against the bottom of the slot in the fork by the action of the spiral spring s; but the tongue may be folded forward and downward into the slot, as shown in the figure, by dotted lines, for several positions of the latch. The direction of the movement of the latch in the act of opening the valve is from left to right in the figure.
If the tappet plate g is depressed so far by the governor that the latch is dotached in its forward movement, as in A, then the disengagement is caused in the usual way, by the plate g acting on the tail of the latch b, as shown, the tongue c being folded down into the slot by the heel f of the tappet, which strikes it from behind. But if the tappet is raised so high that the plate g fails to trip the latech in its forward movement, it then stands so high that the tongue e: can spring up beneath the tappet into its erect position, sometime in the forward movement of the latch, or else just when this movement is completed, and the parts are then in such relation that, when the return movement of the latch occurs, the latch is tripped by the ac-

Fig. : $99 .-$ Steam jacketed cylinder of the Lecouteux \& Garnier engine.
tion of the inclined prong $e f$ on the point of the tongue c, which, as it is now acted on from in front, will not be folded downward by the contact of the prong, as shown in B. The higher the tappet stands, the later will the tripping take place. In \mathbf{A} it occurs at the middle of the forward, or opening movement; in B at the beginning of the return movement, and may occur even later than this, when the tappet is raised higher.
A safety device is provided for stopping the engine when the governor falls too low, as from the breaking of the governor belt or other cause. It consists simply in forming a lug, h, on the tail of the lever d, in such a position that, when this lug is depressed below the
point corresponding to the longest period of steam admission, the lugr strikes the end of the tail of the latch just before the termination of its return movement, and, by thus holding the point of the latch up. prevents its engagement with the rod a, and consequently prevents the opening of the steam valve.
(30) Fig. 29 shows the construction of the cylinder of Lecouteux $\&$ Garnier's engine. The outer shell, containing the valve chests, is made in two parts, bolted together in the middle of the length of the cylinder, where a girth joint is thus formed. The space between this outer shell and the liner forms the steam jacket.

Messrs. Lecouteux \& Garnier received a gold medal.
(31) Bonjour's engine.-The "Compagnie des Fonderies et Forges, de l'Horme" displayed a number of single cylinder and compound engines to which Bonjour's valve systems were applied. There are two types of valve motions called Bonjour's, both of which are automatic and applied to driving two valves: a main slide valve, and a pistonshaped cut-off valve on the back of this slide.

It is not necessary to give a description in detail of the valve mo-

Fra. 30.-Side view of cylinder of Bonjour's engine, showing interior of steam chest.
tions themselves, but an unusual arrangement of the main valve and its seats in the steam chest was exhibited, which deserves notice.

A side view of the cylinder, with the steam chest cover removed, is given in Fig. 30, and a cross section of cylinder, steam chest, and valves, in Fig. 31.

There are two seats in the steam chest, at each end; one on the bottom of the chest, having in it a port leading to the exhaust chest beneath; another on the cylinder wall, perforated by the cylinder port and inclined at an acute angle with the chest bottom. The valve also has two working faces at each end, one of which rests on the bottom of the chest, while the other finds its bearing on the inclined seat. The valve is therefore wedged into the angle between the
seats by the action of whaterer mbalanced pressure the steam in the chest exerts on its back.
There is a steam port in cach emb of the main slide which is closed bya piston valve, the cut-off valse, which works in a small cylinder contained in the slide: there are also ports, and a cavity, in the slide. at each end of the celinder, by which communication is opened at the: proper times between the evinder port and the port in the chest bottom through which the exhaust escapes.
This arrangement of a supplementary seat for the exhanst outhet, permits the main valve face to lie close to the bere and reduces the waste room in the ports.
In the engine illustrated by the Figs. :3n and :31 the main ralveand cut-off valve are both operated with positive movements, derived from a peculiar kind of radial valve gear having a single eccentric

Firi. 31....cross section.
whose strap has two ponts of attachment at which the separate rols from the two valves are jointed to it. At another print the strap is pivoted to a pendulum batr, the point of suspension of which is mosable by the governor.

In the other type of cut-off motion with which some of the Bonjour. engines are furnished, the main valve is worked by a single eccentric: made fast on the engine shaft, and the cut-off valve is thrown periodically by steam, by means of a small steam piston working in a cylinder whose valve is operated by simple mechanism controlled by the governor; an arrangement which is by no means new.*
(3:) Fricart's releasing volve gear.-The "Societe Alsacienne de constructions mécaniques," of Belfort, France, and Mulhouse, Alsace, received a grand prize for their exhibit, which included an excellent

[^11]
112

compound engine to which the Fricart releasing valve gear, shown by Figs. 32 to 36, was applied. This is a modification of the Corliss gears of 1851 and 1879 ; the wrist plate, which is in the form of a rocking five-armed frame, being placed at the side of the cylinder, centrally between the four valves, which are of the Corliss type with Wheeluck's self-packing stems.

The motion of the wrist plate is derived from a single eccentric, l, which is keyed on the main shaft of the engine nearly at right angles with the crank; an interme-
 diate lever, c, being interposed between the eccentric and the wrist plate near tho place where the governor stands. (See Fig. 32.)

The exhaust valves, at d, are opened and closed with positive movements derived from the wrist plate in the usual manner, while the wrist plate also gives positive rocking movements to two levers, e, one at each steam valve, which turn on the sleeves which support the valve spindles.

The description which immediately follows refers to the mechanism commected with the forward admission valve. A pawl or latch, f, is pivoted to a branch of the rocking lever e, and the end of this pawl pushes the steam valve open by abutting against a toe, y, keyed fast on the valve spindle. (See also Figs. 33 to 36.)

To effect the discontinu. ance of steam admission before the end of the stroke, the pawl is caused to swing outward from the spindle so far as to clear the end of the toe g, and the valve thus released is pulled shut by the action of a weight, vacuum
spring, and dash pot, in the usual way. The weight and dash pot are suspended from a lever, h, forming one piece with the tre $9 /$.
The peculiar and distinctive feature of Fricarts gear is an ingenious arrangement by which positive movements are given to the pawl f, in such a way that its engugement with the toe for opening the valve will oceur at the proper instant, and yet so that the ation of the governor will vary the point of cut-off through the desired range; namely, from no stem admission whatever. up to an almission which continues during three-fourthe of the piston's stroke.
The arrangement is as follows: An arm, i, which is in one piece with the pawl f, is comected, through a rod, l, to the lower one of two short vertical arms of a three-armed lever, I, the extremity of whose horizontal arm is comected by a rool, m. with the sleeve of the governor n. The fulcrum of the three-armat lever is carried by the vertical arm of a bell-crank, o, the horizontal arm of which is coupled by a link, p, to the eccentric rod r, at a place where the rod has a certain extent of vertical vibration. This vibration communicates horizontal reciprocaling movements to the three-armed lever and the rod k, by means of which the pawl is made to swing to and fro about the pivot by which it is hinged to the lever e.
This swinging motion of the pawl carries its point inward and outward, toward and away from the valve spindle, while at the same time the oscillation communicated by the wrist plate to the lever e carries the whole pawl back and forth around the spindle, and the combination of these movements causes the point of the pawl to traverse peculiarly shaped curved paths, shown in Figs. 33 to 36.
The paths that the pawl point traverses and the shape of the toe are such that the valve always begins to open a little before the commencement of the piston's stroke, and the path of the pawl point may be such that the point of the pawl will remain in contact with the too until after its return motion in the direction of closing the valve has commenced; but whenever the path carries the pawl point so far outward from the valve spindle that the point clears the end of the toe, the valve, which is thus liberated, is suddenly closed by the action of the weight and dash pot. The time of continuance of the steam admission is determined by the continuance of the contact of the pawl with the toe after the valve begins to open, and this is regulated by the governor in the following way: As has been explained, the rod is connected with the governor sleeve by means of the three-armed lever o. When the governor rises or falls, from changes of the engine's speed, the lever is tipped, and this has the same effect that shortening or lengthening the rod k would have. When the governor rises the effect is as if the rod were shortened, so that the whole path which the pawl point follows is displaced outward from the spindle, and may be carried so far outward that the pawl fails to continue in contact with the toe long enough
H. Ex. $410-$ vOL III- -8
to open the valve at all, or else ceases contact soon after it begins to open. When, on the other hand, the governor falls, the path of the pawl point is brought nearer to the spindle, and in consequence of this the continuance of the contact of the pawl with the toe is prolonged, so that the release is delayed more or less, or indeed may he postponed until after the pawl has begun its return movement, or

Fes. 33. - Valve heing released at 0.1 of the stroke.

Fra. 35.-Valve being released at 0.7 of the stroke.

Eig. 34.-Valve being released at 0.4 of the stroke.

Fre. 36, -Talue beginning to open when cut-off occurs at $0 . \hat{i}$ of the stroke.
even until it has returned to any desired point. When the governor is at its lowest point the valve will not be released at all, but will follow the retrograde movement of the pawl in closing.
Figs. 33, 34, and 35 show the relations of the parts connected with the valve spindle, and the paths which the pawl point follows, when
the cut-off of steam occurs at $0.1,0.4$, and $0 . \pi$ of the stroke, respectively, the pawl point being shown in the position where it is about to release the toe 9 ; and Fig. 36 shows the parts in the position where the valve begins to open when the cut-off takes place at $0 .{ }^{\circ}$ of the stroke. 'The several paths of the point of the pawl shown in the other figures are also all shown in this one.

As the action of the rear admission valve is the same as that of the front valve, no further explamation is needed.

FHICAHT'S RELEASING VALVE-GEAR.
Fig. 37 is a diagram showing the position of the rear steam valve relatively to its port, for different positions of the piston in the forward and return stroke, when the comditions are such that the valve is mot relased by the pawl; and lig. 38 is a similar diagram for the rear exhanst valve. The numbers from of 0 to indicate consecutive equidistant positions of the piston in the forward stroke, and those from 10 to ${ }^{2} 0$ consecutive positions in the return stroke. The edges of the ports are shown by the horizontal straight lines, while the

Fig. 37....Steam valve diagram.

Fin. 36.-- Fixhamst valve dagram.
curves show the positions of the opening edges of the valves. The opening movement is upwatd in these diagrams. It will be seen that the full opening of the valve is momptly ohtained.
 tire movement waler !ear and balanced raloes.-.-II. DeVille-Chatel de Co., of Brussels, exhibited a small high-spered tandem eondensing engine, of so horse-power, fitted with a positive movement valve gear and balanced turning valves; also Fricarts invention.

The cylinder diameters were 8.8 and 15.75 inches, with 15 -inch stroke, and the speed 175 revolutions per minute.

Four turning valves are used for cach cylinder, worked by a Corliss wrist frame on the side of the cylinder, and all the valves receive positive movements from the wist frame in the same way that the exhaust valves derive their movements in the Corliss gear. The wrist plates for both cylinders are vibrated by a single movable eccentric on the main shaft of the engine, in the fly wheel of which
is the governor, which regulates the engine by shifting the eccentric so that its eccentricity and angular advance are changed to vary the steam distribution; an arrangement of eccentric and governor now seen on nearly every form of small high-speed engines.

The valves of the high-pressure engine are balanced and give four openings simultaneously for the admission or escape of steam, as the case may be. In this last respect these cylindrical valves resemble the flat balanced valves of the Porter-Allen engine.

A section of one of the valves and its seat is given in Fig. 39.
The valve shown is one of the exhaust valves, which are placed at the top of the high-pressure cylinder. The valve has a port, B, extending from end to end and passing directly through it. The two cups or cavities, S, are also connected by a port, shown in dotted lines. D is the cylinder port, and E a port leading into the exhaust chest. Two cavities, d and e, corresponding in width to the ports D) and E, respectively, are made in the seat, diametrically opposite

Fig. 30.-Fricart's balanced valve, by DeVille-Chatel \& Co., Belgium.
those ports. The valve is shown as if moving in the direction indicated by the arrows and in the act of opening. It will be seen that communication will be opened between the ports D and E, through the ports in the valve and cavities in the seat, at the four edges of the valve marked a. The form of the valves and their relation to the seat are such that the valves are placed in perfect equilibrium.

The quadruple opening admits of the use of short valves, and secures liberal opening even when the valve moves only a short distance, as, when the throw of the eccentric is shortened by the governor action to diminish the power of the engine.

Ordinary Corliss valves with self-packing stems, Wheelock's, are applied to the low-pressure cylinder.
(34) The Sulzer engines.-The establishment of the Messrs. Sulzer Brothers, of Winterthur, Switzerland, whose exhibit was one of the most striking in Class 52, affords a notable example of the growth in prosperity which the fostering of the mechanic arts by the Government has made possible in Switzerland.

Founded in 1834, this firm commenced with a small machine shop, employing 12 workmen. In 1850 the number was increased to 136, and in 1860 the reputation established by the Sulzer Brothers for well-designed and well-built machinery had increased the business to an extent which warranted the employment of 450 mon . The manufacture of the type of automatic engine which is now one of the chief specialties produced by this firm, was taken up in 1807, and this, with the collateral branches of industry it brought, furnished employment in 1870 to 1,000 men, increased to $1,2: 50$ in 1880. A branch establishment has been opened at Ludwig Shafen, on the Rhine, and to-day over 9.000 operatives are employed, 1,300 in the machine shops, and 750 in the foundries.
The ground covered by the establishments amounts to about 25 acres, of which over 8 acres are under roof. The product for 1888 included 213 steam fengines, representing 18,500 horse-power, and weighing 2,800 tons; 237 boilers, representing 66,000 square feet of heating surface, and weighing 1,100 tons; and steam-heating apparatus weighing 700 tons.

In 187\% the Messrs. Sulzer were among pioneers in the introduction of compound stationary engines, and of late have been forward in introducing triple expansion engines for use in shops and manufactories.

The award of the jury was a grand prize; well deserved.
(30) The engines exhibited by Sulzer Brothers were:

First. A compound horizontal condensing engine, of 400 effective horse-power, consisting of two engines of equal stroke standing side by side, and having a common shaft with the cranks set 90 degrees apart.

The diameters of the high-pressure and low-pressure cylinders are 19.7 and 31.5 inches, respectively, and the stroke is 55 inches; the speed 75 revolutions per minute. The steam pressure with which the engine is intended to work is 100 pounds.

The diameter of the fly-wheel pulley is $14 \frac{1}{2}$ feet, and its face, which is 37 inches wide, is grooved for 14 ropes of $2 \frac{1}{4}$ inches diameter.

Both cylinders of this engine are steam jacketed. The steam from the boiler flows through the high-pressure jacket on its way to the admission valves, and the exhaust steam of the high-pressure cylinder heats the low-pressure cylinder before entering the valve chambers. The Messrs. Sulzer claim that their experiments indicate this to be the best system of jacketing. They have also dispensed with a "receiver," the exhaust pipe from the high-pressure cylinder and the low-pressure jacket forming the only intermediate reservoir. The governor is of the Porter type.

As the balanced puppet valves and the peculiar valve gear of the Sulzer engine have been described in United States reports of former expositions (Vienna, 1873, and Paris, 1878) a description will be
omitted here. They have been applied to more than 1,000 engines built by Sulzer Brothers. Valves and seats were exhibited which. had been in use 14 years without refitting and were tight.
(36) A certificate was furnished to the jury, showing that the results of a trial of one of these engines in Milan demonstrated a steam consumption of 14.06 pounds per hour and per indicated horsepower, when the engine was working with stem at 90 pounds boiler pressure and developing 2 fir horse-power. The statement was also made that one of their triple expansion engines ruming in Hungary developed on trial results as follows:

Boiler pressure...................153	151	153	pounds per square inch.
Power developed..................383	387	316	
indicated horse-power.			

Consumption of steam per indicated horse-power per hour, condensa- $\{11.66 \quad 11.8611 .95$ jrunds. tion in jackets included.

A certified official report of this test could not bo obtained; and no particulars of the engine or trial were given. The results stated are extraordinary, though possible.

F'ua. 40.-Sectional view of the cylinders of Sulzer Brothers' tandem triple-expansion horizontal engine.
(37) Second. The Messrs. Sulzer also exhibited a new type of tandem triple-expansion compound engine having only one piston rod, one comecting rod, and one crank. It is composed of a singleacting high-pressure cylinder 13.8 inches in diameter, a single-acting medium-pressure cylinder of 20.7 inches, and a double-acting lowpressure cylinder of $2 \% .6$-inch bore, all having a piston stroke of $29 \frac{1}{2}$ inches. The speed of the engine was 85 revolutions per minute.
Fig. 40 is a longitudinal section through the common axis of the cylinders and shows their arrangement.
Steam from the boiler is admitted to cylinder I after having traversed the jacket of this cylinder; after doing its work in I the steam is exhausted into the jacket of cylinder II, around which it first passes and then enters the cylinder through the admission valve; after act-
ing on the piston in cylinder II the steam is discharged into the jacket of cylinder III, which serves as a reservoir from which the steam passes alternately into the amular spaces in the back and front ends of cylinder III, as the admission valves for that cylinder are opened. From cylinder III the steam passes to the condenser.
It will be seen that there are eight valves for the three cylinders; they are double-beat puppet valves of the Sulzer type. The engine is intended to work with stem at 150 pounds pressure, and when cutting of at 0.3 of the stroke in the first cylinder gives a power of 118 indicated horse-power. Porter's governor is used.
Fig. 41 shows the indicator diagrams obtained from the three cylinders of this engine, and Fig. te the tangential pressures on the crank pin for the forward and return strokes, under the conditions stated above.

Fig. 41.-Indicator diagrams from all three cylinders of sulzers tandem engine.

Fig.42.-Diagram of tangential pressures on the crank pin of Sulzer's tandem engine.
The rotative effect is not so uniform as with triple-expansion engines of the usual type, and the effect in the forward stroke is different from that in the return stroke, but this irregularity is compensated for by a heavy fly wheel. The engine is comparatively cheap to build.
(38) Third. Another engine in this exhibit was a large vertical triple-expansion engine with three cranks set 120 degrees apart. The cylinders were 16, 24 , and 36 inches diameter, the stroke was 2 feet, and the speed 100 to 125 revolutions per minute, giving 300 to 350 effective liorse-power.

The frame was of the marine type, the valves of the Sulzel double-beat type, and the governor, Porters. The valve gear and appliances were complicated, but the appearance of the engine was fine and the workmanship could hardly be excelled.

Two well finished high-speed vertical compound engines of 10 on horse-power and 40 horse-power, respectively, which it is umecessary to describe, completed the exhibit of stem engines made by this firm.
(39) Escher, Wyss \& Co.'s engines.-Escher, Wyss \& Co., ol Zurich, Switzerland, showed a compound engine of 150 horsepower, consisting of a pair of single-cylinder horizontal engines, having eylinders of unequal diameters but equal stroke, with a shaft in common, and cranks set 90 degrees apart.

The diameters of the high-pressure and low-pressure cylinders are 14.6 and 21.7 inches, respectively, the stroke $31!$ inches, and the normal speed so revolutions per minute.

The jacket for the high-pressure cylinder forms part of the steam chest of that cylinder, and consequently is filled with steam coming from the boilei. The low-pressure cylinder has two jackets, one entirely encircling the cylinder and containing steam at boiler pres. sure, the other partly surrounding the inner jacket, forming part of the low-pressure steam chest, and receiving steam exhausted from the high-pressure cylinder.

The exhaust steam from the first cylinder passes through a steamjacketed horizontal tubular reheater, located between the engines and beneath the floor. The steam is partly dried in circulating through this reheater, the tubes of which are filled with steam at boiler pressure, and it is still further dried on its way to the second cylinder, by passing through the outer jacket of that cylinder, where it is warmed by contact with the outside of the heated inner jacket. The capacity of the reheater is about three-quarters that of the low-pressure cylinder, and this space, added to that which is in the pipes forming the connections with the two cylinders, and in the low-pressure steam chest, gives a total receiver capacity about five times the piston displacement of the high-pressure piston per stroke. The area of the heated surface thus provided for drying the steam amounts to about 60 square feet.

The four valves are of the Corliss type, with Jerome Wheelock's self-tightening stems. The valve gear for both cylinders is of the Fricart-Corliss type, which is described elsewhere.

A Porter governor, with a spring inside the sleeve to increase its preponderance, is used to regulate the point of cut-off for the highpressure engine, the low-pressure valve gear being adjustable by hand.

The low-pressure steain chest is furnished with a safety valve, by which the pressure of the steam admitted to the cylinder is limited.

The diameter of the fly-wheel pulley is 1 ? feet, and its face, which is sroned for the reception of eight ropes of about 2 inches diameter, is 21 inches wide.
The general form of the engine frame resembles the Corliss somewhat, but is cylindrical from the steam cylimele to the end of the guides, and the back hrace is tubular. of rectangular cross section. Beneath the guides there is a stand resting on the foundations.

This engine presented a fine appearance, and as there are some peculiarities in the design and outside finish of the cylinders and frime, a perspective view is given in Fig. 43.
(40) A 25 horse-power single-cylinder self-contained engine, with the Ryder cut-off gear. regulated by a governor the axis of which was horizontal, was exhibited by this firm. It had a 10 -inch cylinder, a stroke of 16 inches, and a speed of 150 revolutions per minute.

A yet smaller phain slide-valve horizontal engine, ruming at a high speed for driving dynamos, was also seen in their space; the speed was regulated by a throttle valve actuated by a governor in the fly wheel of the engine, through very direct mechanism. It had a eylinder $t \mathfrak{b}$ by 6 inches, and ran at 500 revolutions per minute. The estimated effective capacity was 6 horse-power.

Messrs. Escher, Wyss \& Co. made numerous exhibits in other classes than Class 52 , and all the machines they displayed were interesting and admirable; a fact attested by the award of a grand prize by the jury.
(41) Carels Brothers' compound engine.-The large compound engine (350 horse-power) exhibited by the Messers. Carels Brothers. of Gand, Belgium. presented the most elegant appearance of any engine in the Exposition, and is particularly interesting because of the exceptionally good economical results which have been obtained from a similar engine of their construction.

This firm is a licensee of the Sulzer Brothers, and the engrine is a pair of horizontal single-cylinder engines arranged like the Sulzo compound engine in nearly all particulars.

The low-pressure eylinder had the usual Sulzer gear, set to cut off at half the stroke. The valve motion of the high-pressure cylindm was a simplified modification of the Sulzer gear, producing an musually rapid opening of the valves, which were of the Sulzer doublebeat type. The liameters of the cylinders were 20.7 and 32.5 inches, and the stroke tit inches : speed 65 revolutions per minute.

The stean was cut off at one-fifth of the stroke in the high-pressure Ylinder and at two-fifths in the low-pressure, making the number of expansions $12 \frac{1}{2}$.

The finish of the engine was plain, and entirely in black and white. The lagging of the cylinders was covered with planished ironi without bands: all fittings were nickel-plated, and where the connecting rod brasses showed, they also were plated. Nothing could be more elegant than the appearance of simplicity this finish gave.
(4:) As the following certified report of a careful test of one of the Messrs. Carels' engines by Mr. R. Vincotte, engrineer of a Belgian Assuciation for the Inspection and Care of Steam Apparatus, shows a remarkable result, it is given nearly in full with Mr. Vincotte's remarks:

Brussels, Jume 9, 1888.
Monsieur Vertongen-Goens, ì Tirmonde:
I have the honor to send you the results of tests made of your Sulzer engine December 19. 1887, and January 10. 1888.

The test of the 19 th of December is the only official one, and that only ought to
serve as a basis for the parment for the engine. The trial of January 10 was only made as a check upon the preceding one.
As I have explained to yon, this is the first time that a steam engine has given me so favoratie a result, and although the experiments of December 19 left nothing to bedesired it seomed to me useful to repeat it and to rerify it anew in all respects. The second experiment gave the same results as the first. I however, thought it hest to undertake lengthy theoretical verifications before admitting such novel results.
Having reviewed the question from all sides, I believe the following results to be very accurate, and, if they do necessitate the payment of a large bonus to the constructors, they afford a guaranty that you have the most economical engine in Belgilum.

Size of engine.

.	Size of engine.
	Inches.
Siamber of large cylinder	
Diameter of small colinder.	22.7
Stroke of pistons.	59.1

Chief results of the trials.

From a scientific standpoint the consumption is 13.3 and 13.4 pounds.
From the standpoint of the contract the consumption is 13 and 13.1 pounds.

The Carels Brothers received a grand prize as their award.
(43) Engines in the United States section. -The steam engines in our own section were all noncompound. Messrs. C. H. Brown \& Co. of Fitchburg, Massachusetts, exhibited an engine of 100 horse-
power of the well-known type manufactured by this firm. It was employed nearly up to its full capacity in driving one of the main lines for the section, and did its duty well without signs of laboring.

A gold medal was awarded for this engine.
The Straight Line Engine Company, of Syracuse, New York, to whom a gold medal was also awarded, showed a 100 horse-power Sweet straight line engine of new pattern, in which a separate slidn valve worked by an independent eccentric was used for the exhaust, the two valves, steam and exhaust, being placed on opposite sides of the eylinder; otherwise the engine was essentially like the smallir engines hitherto built by the company. Another of their engines, of 35 horse-power, was employed to drive the J. A. Fay \& Co.'s woolworking machinery; and Messrs. Steinlen \& Co. of Mulhouse, Alsace, who have taken a license to build the straight line engine, exhibitm? four, of 100 horse-power cach, which were employed in driving large dynamos for lighting a portion of the Exposition.

An Arnington \& Sims engine of 75 horse-power, for which a golil medal was awarded, was used to drive the dynamos of the Thomson Electric Welding Company, and a do horse-power Westinghouse. engine for driving another dynamo. French and Belgian firms are manufacturing both these last-named engines under licenses.

The Colt's Patent Firearms Manufacturing Company, of Hart. ford, Connecticut, displayed a Baxter engine of 5 horse-power.

As all the engines just named are well known in the United States. and have been extensively published in the technical papers and business circulars, they will not be described.
(44) Jerome Wheelock of Worcester, Massachusetts, who received a gold medal, did not exhibit an engine, becanse there are several prominent French manufacturers working under his licenses who displayed the engines.

He did, however, show in the United States section a new system of valves, adapted for substitution in the place of the Corliss turning valve, particularly in engines of the Wheelock type. This system is comparatively recent, and will therefore be illustrated.

Fig. 44^{*} shows a section of the lower part of one end of a steam cylinder with the valve seats and valves in place, and Fig. 45 a perspective view of one of the plug-shaped seats, having the valve, its stem, and their comections applied to it, the whole apparatus being in condition for insertion into the bored hole which is provided in the cylinder end for its reception.

The seat plug is long and tapering, and is cut away at one side so as to form a flat face which is perforated with several ports. A flat slide valve, also having several ports, rests on this face and receives motion from the valve stem, which has a bearing in each end of the plug. Short cranks, with links coupling them to lugs on the back
of the valve, give sliding movements to the latter when the stems are turned back and forth. The plugs occupy the places filled by the turning valves in the Corliss engine, and are driven into holes in the eylinder which correspond to the holes made for the seats of the turning valves, but are bored with a slight taper corresponding to that of the plugs. The plug fits tightly in the hole and is fastened so as to be made steam tight by driving. There are no bolts to hod the seats in, and no bonnets to cover them.
The valve stems are turned back and forth by the valve gear in essentially the same manner as that hitherto employed in the Wheelock engine, and the steam valves are tripped and closed in the usual manner.

Fig. 44.-Section of end of cylinder, showing Wheelock's new system of valves.

Fig. 45.--Wheeinck's valve seat and valve.
This new valve arrangement is manufactured under license by De Quillacq, of Anzin. France, who manufactures largely the older type of Wheelock engines.
(45) Steam engines in the British section.- Several quite small engines for steam launches, air compressors, etc., were shown by British exhibitors, but Messrs. Davey, Paxman \& Co. of Colchester, England, exhibited the only engines of large size; two of about 140 horse-power each, one of which was compound, gave motion to sections of the shafting in Machinery Hall. Three compound engines, of 360,200 , and 120 horse-power. respectively, were employed for driving dynamos in the "Central Electrical Station of the Syndicate." All these engines were furnished with the Paxman auto-
matic expansion gear, in which acut-off valve works on a plate, perforated with ports, which lies upon the back of the main slide valve and is prevented from endwise movement. Tho main valve is operated by a single eecentric, and the cut-off valve hy two other ecomtrics and a shifting (Stevenson) link, the position of which is ad. justed by the governor, which thus regulates the point of eut-off.
(46) Parsons's compoumd sta tem turbine. - One of the most interest. ing novelties in tite Exposition was Parsons's steam turbine, an English invention exhibited in the French section by Messrs. Weyher \& Richemond.

It is shown in Figs. 46 to 48 , which, with the greater part of the following deseription, are taken from a paper presented by the inventor to the Institution of Mechanical Engineers. Lomdon, Oetobre $25,1838$.

The steam turbine is combined with a dynamo of small diametre. and the whole apparatus is calloda "Turbo-Electric Generator." Ins high speed adapts it peeuliarly well for driving dynamos diredly: and, while the turbine is useful for other purposes, its applications hitherto have been made chicfly in this way.

The machine shown in the Exposition rata at about 10,000 revolntions per minute with perfect silence and steadiness. In lact, except for the slight sparking shown at the commutators of the dynamo, it would have been difficult to tell whether the machine was ruming on not.

In 1888 the inventor made the following statement:
The first turbo-electric generator, completed in 1889, ran at 18,000 revolutions per minute, and gave 6 electrical horse-power; it has been in almost constant use since that time, and has done a large amount of work. The second, made shortly afterwards, rins at 10.000 revolutions per minute; it was placed on the Tyne Steam Shipping Company's steamer Earl Percy, and has worked her 60 lamps ever since to their entire satisfaction ; the cost of fuel and maintenance is very small, and the light remarkably steady.

Theory based on the authenticated performances of water turbines and the lawsof the flow of steam and gases showed that the turbo-electric generator fossessed the elements of the highest economy, not merely comparable with the best-known performances, but even superior to them. How far practice has come up to theory may be judged by the results given at the end of this estract, and it will be seen that they approach nearly the best results of ordinary engines working with the same steam pressures.
The compound steam turbine T, Figs. 47 and 48 consists of two series of parallelflow or Jonval turbines, set one after the other on the same spindle S, so that each turbine takes steam from the preceding one and passes it on to the next. In this way the steam entering all round the spindle from the central inlet I, Fig. 47, passes right and left through the whole of each series of turbines to the exhaust E at each end. The steam expands as it loses pressure at each turbine, and by successive steps the turbines are increased in size or area of passage-way, so as to accommodate the increase of volume, and to maintain a suitable distribution of pressure and velocity throughout the whole series of turbines. The areas of the successive turbines are so arranged that the velocity of the flow of steam shall have throughout

Fig. 47.-Lnngitudinal seation of Parsons's compound steam turbine.

Fia. 48.--Section of one end of the turbine, and of the bearing, of Parsons's compound steam turbine.
the series a nearly constant ratio to the speed of the blades: and as far as possible this ratio of velocities is so fixed as to give each turbine of the series its maximum efficiency. The two equal series of turbines on each side of the central steam inlet I balance each other as regards any end pressure on the spindle of the motor, and thus remove any tendency to undue wear on the collars of the bearings B.

The turbines are constructed of alternate revolving and stationary rings of blades. The revolving blades r, Fig. 48, are cut with right or left hand obliquity on the outside of a sories of brass rings, which are threaded upon the horizontal steel driving spindle S, and secured upon it by feathers; the end rings form muts, which are screwed upon the spindle and hold the rest of the rings upon it. The stationary or guide blades g are cut with opposite obliquity on the inside of another series of larger brass rings, which are cut in halves, and are held in the top and bottom halves of the cylindrical casing by feathers. The set of blades on each revolving ring runs between a pair of sets of the stationary or guide blades. The passages between the blades in the alternating rings form a longitudinal series of zigzact channels when the machine is standing still, as seen at Z in Fig. 48.
Bearings.-As it is impossible to secure absolute aceuracy of balance, the bearings are of special construction so as to allow of a certain very small amount of lateral fredom. For this purpose the bearing is surrounded by two sets of steel washers one-sixteenth of an inch thick and of different diameters, the larger fitting close in the casing C and about one thirty-second of an inch clear of the bearing, and the smaller fitting close on the bearing and about one thirty-second of an inch clear of the casing C. These are arranged alternately, and are pressed together by the spiral spring N. Consequently any lateral movement of the bearing causes them to slide mutually against one another, and by their friction to check or damp any vibrations that may be set up in the spindle. The tendency of the spindle is, then, to rotate about its axis of mass, or principal axis as it is called; and the bearings are therely relieved from excessive pressure, and the machine from undue vibration. The automatic oiling of the bearings by the screw J almost entirely prevents friction and wear. The circulation is continuous, the oil being used over and over again; and as it deteriorates very slowly and there is little waste, the consumption may be said to be unusually small. The oil is raised up to the screw J by the suction of the fan F acting upon its free surface in the standpipe P. By the screw J it is fed into the adjoining bearing, and is also forced along a pipe to the two other bearings of the spindle. After passing through the bearings the oil flows back along a pipe to a reservoir, to be again drawn up thence through another pipe by the fan and feal into the bearings by the screw. The throttle valve is worked by the movement of a leather diaphragm L, which the suction of the fan F tends to close against the tension of the spring A.
Duralilty.-After 3 years' working, 10 hours daily, the wear on the bearings has been found to be very small, in some cases almost inappreciable. The blades or vanes of the turbines show no cutting action from the steam. The commutators in the larger sizes have stood this amount of work well, and when carefully looked after have suffered very little wear.
Steam consumption.-As the result of careful tests, made when exhausting into the atmosphere and giving off 32,000 watts, the consumption of steam per electrical horse-power per hour has been found to be 42 pounds with a steam pressure of 61 pounds at the inlet; and 35.1 pounds with a steam pressure of 92 pounds at the inlet. Tests made at Portsmouth Dockyard, and at Messrs. Weyher \& Richemond's, in Paris, have agreed closely with the tests made on the same turbo generators before they left the works at Gateshead. These tests have therefore confirmed the accuracy of the figures above given.
IV.-Gas engines.
(47) It is interesting to note the great development in the use of gas engines which has taken place within the list few years, as shown by the large number displayed in the Exposition of 1889, in contrast to the satecity of such engines in the French exhibition of 1875. The character of the engines shown at the Exposition of 1 ns: is also remarkable. For a long time after Otto by his practical inventive genius and his researches had developed a useful and economical motor, gas engines were used only for small powers, their application being limited to from 1 to 10 horse-power for many years: and the engineer would have been bold inded, in 1878. who had advocated building, or predicted the use of, gas engines of such great power as some of those exhibited on the Champs de Mars ten years later. Single gas engines of 25 horse-power followed a long trial of the smaller sizes ; those of 50 horse-power were ventured upon later, and in the Exposition of 1859 we find two different engines capable of exerting 100 horse-power. One of these was of the greatest simplicity, having a single cylinder only and yet being in every way a thoroughly practical operative machine: the other consisted of a group of four engines of 25 horse-power each, combined on one bed and actuating a single crank shaft: an arrangement adopted in order to secure great uniformity of motion.
(48) Although there are several classes of gas engines and hot air engines--for both these belong to the same general group of motorsand although each class has from a theoretical standpoint its distinctive advantages, yet only two kinds have proved successful for general application and for the production of power on a considerable scale. They are:
I. Gas engines in which a mixture of gas and air, previously compressed, is heated by the ignition of the mixture, and produces power by its expansive action;
II. Gas engines in which the mixture of gas and air is exploded without previous compression.
Motors of the last class are not economical, but are simple and strong, and serviceable for moderate powers.
The first class is, then, the one which, because of its practicalility as a motor of considerable power, has been introduced into a field which, until very recently, was occupied by the steam engine only.
Of the second class there were four types exhibited; of the first class, more than twenty.
It is the first class only which will be considered here. Of these there were three distinct systems represented.
First. That in which a cycle, constituting one complete operation, consists of four distinct processes performed in a single cylinder.
Second. A kind in which two processes complete the cycle.

Third. One in which two cycles are completed by three processes.
(49) The first of these systems includes the well-known Otto engine, which takes its name from its inventor, who discovered and applied the system it embodies. It has, however, been found that the four-process cycle employed by Otto was previonsly, though independently, invented and fully discussed by another scientist,* and this system, formerly attributed only to otto, is therefore known as the cycle of Bean de Rochas, the earlier discoverer.

The four processes may be deseribed as follows:
First. The drawing of the explosive mixture into the eylinder during the whole of the first forward stroke of the pistom.

Second. The compression of the mixture by the piston's first return stroke.

Third. The ignition of the mixture and its expansive action in producing the power in the second forward stroke.

Fourth. The expulsion of the products of combustion and other contents of the cylinder during the second return stroke of the piston.

As the cylinder in this kind of engine is only single acting, the ignition of the mixture and exertion of power in the cylinder can occur only once in every two revolutions of the crank shaft, and consequently a heavy fly-wheel must be used to olstain regularity of motion.

Beau de Ruchas specified certain conditions as essential for obtaining the best results from the use of the gas; these are, substantially :

1. That the admission of the explosive mixture must be cut of after the least practicable proportion of the filling stroke has been performed, so that after the ignition in the acting stroke the expansion may be as great as possible.
2. That the pressure of the mixture at the moment of ignition, and consequently at the begiming of the acting stroke, must be as great as practicable, by which a high initial pressure resulting from the ignition is obtained; a condition implied by the first if considerable power is required.
3. That the speed must be as high as possible.
4. That, for a given power and speed, the cylinder diameter should be as great as possible.

The last two conditions bear upon the loss of heat by conduction through the cylinder walls, which must necessarily be kept cool enough to permit of lubricants being used effectively, this cooling being usually effected by a circulation of water around the cylinder.

Beau de Rochas concludes that all these conditions aro more nearly realized in a single-acting single-cylinder engine than in any other form of motor. The grand success which resulted from the embodiment of these ideas in a useful form by Otto, and the experi-
mental investigations which have followed, show this form to be quite as economical as any that hat thus far been prombeen, and the conclusions Beau do Rochas reached to be well founded.
No greater proof of the suceess of this. system can be presented than the fact that within 10 or 10 yars 30,001 engines of this trepe, representing an agyregate of ower 100 , owo horse-power, have hem sold. Seventeen different rarioties of engines emborlying this system were exhibiten.
(50) The second system raferred to was represented by three varieties of engines only. The systom is carrom out by drawing in and partly compressing the air by means of a pistom working in a celinder separate from and anxiliary to the working crlimeler, on olse by employing one omb of the working cylinder for these processes. while the compression of the mixture is completed and the power developed, in the opposite end of the same celinder. This last phan is the one which is adopted for the three varieties of engines just referred to.
Air, and usually gas also, is dawn into the fromt and of the working cylinder by the backward or inward motion of the piston, the contents of the opposite end of the crlinder excaping at the begiming of this stroke, or being expelled during the stroke. At the begiming of the forward stroke a charge of compressed air and gas is admitted behind the piston and ignited, hy which the pistom is propelled forward and the contents of the front end of the eylinder compressed into a receptacle from which the charge is delivered into the back end of the working cylimarer as needed. One ignition, therefore, takes place at each revolution of the engine, and for this reason more power can be oltained from an engine of this kind than from one of the same size and weight of the first system.
The third system was represented by a single example only.* In this the engrine is double acting, and the ignition and motive effect ocrur twice in six strokes. that is, twice in three revolutions of the crank shaft. Let us consider one end of the eylinder only-for the processes are the same in both ends: The mixture is drawn in by the first direct stroke of the piston, compressed by the first return stroke, ignied in the second direct, and expelled in the second return stroke; a charge of fresh cool air, to clear out the products of combustion and cool the cylinder, is drawn in by the third direct stroke, and expelled in the third return stroke. which completes the cycle of processes.
A number of the gas engines exhibited were adapted for working with the vapor of petroleum, a few of them being fitted specially with vaporizers for producing the inflammable vapor in the quantity repuired, as regulated by the action of the engine.
*The Griffin engine, exhibited in the British section.
(51) In a number of the Otto engines the ignition of the charge was effected by the transfer of a small portion of the flaming gas from an igniting burner to the interior of the cylinder containing the charge, a plan which has long been in use; in other cases a tube heated to incandescence fired the charge, a portion of which found entrance to the tube; but in the greater number of engines exhibited, other than the Otto, the ignition was produced by an electric spark. The various devices for producing and regulating the spark are described in the report on Class the.
(50) The improvement which has been mate in the economical efficiency of the gas engine since its introluction is noteworthy.

In 1881 a test of the Lenoir gras engine, of one-half horse-power, one of the first brought into practical service, gave a consumption of lot cubic feet of gas per effective (brake) horse-power per hour. In another trial of the same kind of engine, of 1 home-power, the consumption was reduced to 95 cubic feet. In 1 s\% the consumption in the Otto engine had been reduced to 3 b eubice fer per hour per effective horse-power. The practical working results of the Otto engine may now be estimaterl at son cubic feet, although recent experiments, in which rich gas was used, have shown that the consmmption may be reduced to 24.5 cubic feet or less. A 10 horse-pown "simplex" gas engrine, when tested in 1ssis by M. Wirtz, gave each horse-power with a consumption per hour of 20 cubic feet of gas having a heating power of bo5 heat units per cubic foot. A small Charron engrine, according to the same engineer, consumed 19.5 cubic feet of gas per hour per brake horse-power, with gas having a heating power of gio heat units per cubic foot. This last test was mado in 1889.

Results are published giving a working performance of a 50 horsepower "Simplex" engine, using Dowson gras which was made and used for the supply of gas to the engine only. Less than 1.3 pounds of anthracite coal were consumed per hour, per effective horse-power; a better performance than this is, however, claimed in England for the Crossley Otto engines of large power.

The engines employed during the Exposition do not seem to have given good economical results, if the performance of all is considered, and if the statements of the gas consumption are correct. About 300 horse-power is said to have been supplied by gas engines, and the hourly supply of gas for these to have been 14,000 cubic feet. The price charged for the gas was $\$ 1.10$ per thousand cubic feet.
(53) Compagnie Francaise des Moteurs à Gaz.-This company, which controls the Otto patents, showed a new small vertical engine of admirably simple design, in which the distribution is effected through puppet valves instead of by a sliding bar, and in which the ignition is produced by means of a red-hot tube instead of by the transfer of a portion of flaming gas. The whole apparatus is sup-
ported by a large hollow frame which envelopes the cylinder and allows the circulation of water for cooling. See Figs. 49 and 50 .
One of the novel features is a regulator which operates by the inertia of a weight in the following manner: For opening the exhaust valve and the gas supply valve there is a cam rexh, a, which is sup)ported by the spring s, which alse bears up the exhaust val ve m; this rod is driven down at every altemate rerolution of the engine by a cam and lifted to phace abain ly the prong. At the lower cand of the rod a is ain arm, b, which carries the regulator proper. This latter is composed of a right-anglod hover pivoted to the arm at c. The horizontal branch of the lever caries a wright, d, counterbalanced by the spring p, and the vertical hranch ends in a hook.

Fia. 40.-Sectional view of a vertical Otto gas engine.

Fig. 50.---Vertical gas emgine, Otto type.

This whole system moves up and down with the rod a, and, when tho enfrine runs at the normal speed, the admission valve o is opened during every sucking stroke of the piston by means of the hook h on the arm e of the regulator lever, which engages with a hook on the top of the valve stem f when the rod a rises, the valve being closed when the rod descends.
If the speed of the engine increases, the weight d is, by virtue of its inertia, retarded in the upward motion of the cam rod, and the fulcrum c rises in advance of the weight, thus cansing the vertical arme to swing away from the rod f of the admission valve, which it therefore fails to lift. As som as the speed is reduced, the lever roturns to its place and raises the valve on the up stroke of the rod.

Tho gas valve o is therefore closed only during the period of exhaust, or whenover the cam rod in ascenting fails to lift it. The mixture from tho cylinder can not, however, escape through the valve " during the period of compression, because the antomatic valve i is then closed and covers the holes with which theseat is perforatedfor these are uncovered only while the valve i is lifted automatically. that is, during the period when air (or air and gas) is being sucked through it into the eylinder by every alternate upward stroke of the piston. The ignition is effected by means of a heated tube, placed in front of the cylinder, into which the compressed explosive mixture penetrates at the proper time and is ignited.

One form of this ignition tube is shown in the views of the engine, Figs. 49 and bo, but an improved arrangement has been adopted which is very satisfactory in its operation, and has beon applied to the larger engines manufactured loy this eompany. It consists of: vortical iron tube heated nearly to incandescence, so applied to the cylinder that it receives a portion of the explosive gats and ignites it, whenever the tube is brought into comection with the interior of the eylinder by means of a valve or slide which opens the communication when the monent for ignition arrives.

The iron tube is heated by a Bunsen burner, in the flame of which it is entirely immersed. The burner is not, however, sufficiently supplied with air to produce its full oxidizing effect, being surrounded with a concentric chimney perforated in such a manner that the air supply is directed to the outside of the flame, producing perfect combustion and intense heat at the surface, but leaving the interior of the flame lacking in oxygen. The tube is in some cases protected with a fire-clay coating. It lasts about 6 weeks and then costs but little for renewal, being a piece of half-inch-pipe 5 inches long, capped at the end.

The action of this igniter is very sure and regular. The tube is screwed into the chanmel which forms the commonication with the cylinder, but not at the end of this channel; the part of the channel beyond the tube forms a small reservoir, which first receives the products of combustion of the previous ignition, after which the pure mixture follows and enters the tube, where it is ignited; the explosion producing a reaction in the reservoir formed by the chamnel, which throws the flame into the cylinder and insures ignition of the main charge.

The length and armangement of the tube have such an effect upon the time required for the reception of the gas, its ignition, and the travel of the flame to the cylinder, that, in the small engines, the igniting tube can be so adjusted that neither valve nor slide is needed between it and the cylinder to regulate the instant of ignition.

An illustration of a similar igniter, used in the Crossley engine, is given on page 150 .
(54) The Compagnie Francaise exhibited also the well-known horizontal Otto motors of moderate size, and a fow 40 and ou horse-power engines specially built for electric light purposes and used for driving dynamos; these last consist of a pair of coupled engines, an arrangement which is prefered because regularity of speed is olbtained without running the engines rapidly.
The same company also shows a loo horso-power engine. It is really four 25 horse-power engines united on the same frame; there are four cylinders just alike, each with its special distributers and regulators, all working under the sume conditions. The cylinters are placed in pairs on either side of the man shaft. There are but two cranks on the shaft, to each of which is attached two of the engines, and these cranks are set opposite each other. Slide valves of the necessary size being too large, they were replaced by puppet valves, the slide being retained only for the ignition, which is produced as in the common engines, by a transfer of the flame. A small engrine is used to start the large one by means of a pulley on the flywheel shaft, a loose pulley being provided to receive the belt as soon as the large engrine is running. A transverse section through the breech of the cylinder of one of the horizontal engines having an arrangement of puppet valves is shown in Fig . 51 .

The company had twentyseven motors, representing 3if0 horse-power, working in different parts of the Exposition. Sinco 1878 it has built 3.018 Otto engrines of 8.202 total horse-power. It received agold medal, as high an aword äs was given for this class of exhibits.

Fif. 51.-. Vertical transverse section of breech of a horizontal Otto gas engine with puppet valves.
(5j) Delamare-Deboutterille \& Malandin's "simplex" engine.This engine was exhibited by Mr. Thomas Powell, of Rouen, France. Itsoperation is on the Bean de Rochas system of four processes in one cycle, and the engine is provided with a slide through which the gas and air are admitted to the cylinler. In these respects it resembles the Otto engine of the usual form, but it differs from the latter considerably in several features of arrangement and detail, and is particularly interesting because the largest single cylinder gas engine ever exhibited is of this kind and was shown in operation in the Exposition.
This was a motor of 100 horse-power with a cylinder 29.6 inches in diameter and a stroke of $37 \frac{1}{2}$ inches.

Fig. 52 shows a side view, and Fig. 53 an end view of the large engine.*
*These figures were taken from Industries, London, Aug. 2, 1889.

Fra. 52-The "Simplex" gas engine of 100 horse-power, exbibited by Thomas Powell, France.

The mixture of air and gas occurs in a receptacle fixed on the cover of the slide, instead of in the interior of the slide where mixture is made in the Otto engine. The air enters at one side of this re. ceptacle, which is globular, and meets the gas as it enters through a valve on the opposite side. At the proper time a port in the slide opens communication hetween the mixing receptacle and the breech of the cylinder, and the mixture is then drawn rapidly through a passage way of varying cross section into the cylinder by the ad-

Fia. 53.-End view of 100 horse-power "Simplex" gas engiue.
vancing movement of the piston, a complete mingling of the air and gas being thus produced.
The quantity of mixture admitted is constant, and its quality always the same whenever gas is admitted at all; the power of the engine being regulated, as in the Otto engine, by entirely suppressing the admission of gas, and admitting air only, during one or more revolutions, at times when an increased speed inlicates that less effort upon the piston is required. The construction and action of the pendulum governor which determines the periods of opening the gas valve are novel and will be described further on. The exhaust takes place through a puppet valve lifted by a lever which has a
areeping fulcrom, so that the valve is mised slowly and forcibly at first, but is lifted rapidly and widely after the pressure which holds it shat is relieved, and thas occasions but little resistance to the outflowing gases.

The ignition is by an electric spark pronluced in the interior of the admission slide, in a chamber which comes in communication with the cylinder port at the proper moment for ignition. The ignition does not take place at the instant the acting stroke of the piston begins, but at a point somewhat later, as shown by the indicator diagram in Fig . 54.

The first inch or two of the stroke is made under the pressure of the mixture in expanding from a eondition of overeompression produced by the previous return stroke, and the mixture is then ignited; by this means a less violont shock is given to the joints of the connecting rod and shaft journals, while but little if any diminution of power is occasioned by the retarded ignition.

Fig. 54.-Indicator card from the "simplex" gas engine.

Fig. 55.--Pendulum governor of the "Simplex" gas engine.

Fig. 55 shows the arrangement of the governor and the parts connected with it by which the gas valve is opened.
The pendulum is a rod, a, with a heavy bob, b, near its lower end, and having at its upper end a counterweight the distance of which from the point of suspension is adjustable, so that the period of oscillation of the compound pendulum thus formed can be made to coincide with that of the reciprocating movement of the admission slide. The fulcrum of the pendulum is between the two weights, and is upheld by a fixed arm attached to the cover of the slide. The gas valve, whose stem is shown at d, is on the side of the cover nearest the pendulum, and is kept closed by a spring, but is opened at times by a dog, e, which is pivoted near the middle of its length to the slide f, and travels back and forth with the slide. The dog e is so acted upon by a spring that it is held nearly horizontal with its point
falling somewhat below the valve stem a so that, unless its point is tipped upward when it is carried forward by the inward movement of the slide, the point will clear the end of the valve stem and fail to engage with it; but if when the slide moves inward the tail of the doge is slightly depressed, the point comes in range with the end of the stem, and, engugring with a notch which is in the end, pushes the gas valve open.

When the engine is rumning at its normal speed-that is at the speed for which the oscillations of the penclulum are adjusted-or at a slower speed than that, the tail of the doge by which the pendulum is pushed backward in the outward movement of the slide f. remains in contact with the lower end of the rod of the pendulum during all the time that the slide is moving inward and the pendulum swinging forward, or at least during the greater part of that time. In this condition of affairs a small shoulder, g, on the pendulum rod comes in contact with the tail of the dog some time before the pendulum has reached a vertical position. and depresses the tail so that the point of the dog engares the valre stem and pushes the valve open. If, however, the speed of the engine is so great that the strokes of the almission slide are more rapid than the oscillations of the pendulum would be if unchecked, the inward movement of the slide will carry the dog forward so rapidly that the pendulum will lag behind and the projection g of the pendulum fail to strike the tail, so that the point of the dog will not be lifted but will pass beneath the gas-valve stem, and the valve will consequently remain closed for that stroke of the engine.
(56) The great difficulty usually experienced in starting large gas engines has been overcome in this engine by very simple means. made possible by the peculiar method of ionition employed. The inventor's own description of the arrangement is given:

[^12]the spark produced, the charge ignited, and the fly wheel receives an impetus sufficient to start it. For motors of 20 horse-power and under, it is necessary to comipress the charge slightly (as just described), because the passive resistances are proportionately great; but with larger engines this is not necessary, and the operation is as follows: A small pet cock is fixed on the cylinder above the compression chamber, forming a communication between its interior and the outer air. The engine must be stopped, not at the point of ignition, but somewhat in advance, with the crank at an angle of 90 degrees, which, as before described, is easily done by means of the three-way cock. The piston has then made about half its stroke; the gras cock is opened to the marked position as before, as is also the three-way cock. As the gas is under slight pressure, it enters the cylinder through the seating, and draws in air with it by the small oblique hole. The explosive mixture thus formed gradually fills the space behind the piston. expelling the burnt gas by the cock at the top of the cylinder, which must be opened previously to that f or the admission of the gas. In about a minute (for a 50 horse-power engine) the cylinder is full of explosive gas, and the cock above the cylinder, the gas cock, and the three-way cock are then closed. As before, the large gas cock is opened to the starting position, the electric current switched on, the charge ignited, and sufticient impetus thus given to the Hy wheel to start the engine.
(57) In using petroleum vapor instead of gas, a peculiar carburetter is used, which is described by M. Delamare-Deboutteville as follows:
A receiver containing products of low density is placed immediately above a spiral horsehair brush, fixed in a jacketed chamber heated by the hot water from the motor, which neutralizes the refrigeration due to evaporation. Below this receiver is fixed a cock, with a graduated disk, by which the supply of the liquid is regulated according to the consumption of the engine. Close to this is another cock, admitting the hot water coming from the cooling jacket of the engine, and this water, at a temperature of about 122 degrees F., mixes intimately with the petroleum vapor, which it carries along with it in its fall on to the brush, and by the time that it reaches the lower receiver the complete evaporation of the light essence has been effected. A safety valve, through which the gas is admitted to the motor, obviates any backward ignition. It might be thought that the water would absorb a part of the light essence, and so cause a considerable loss; but this is not the case, and experience shows that the whole of the carburetted vapor is volatilized. The only constituents absorbed by the water are the mineral and vegetable substances before named, and all incrustation from this cause is completely prevented. After several months' worling the engine is in as good condition as on the first day. Moreover, there is no fear of the gradual impoverishment of the liquid, as the whole of the volatile constituents are evaporated from each part as it flows through; so that the working is always regular from beginning to end, and the power given"off is always the same.
(58) Tests of gas consumption.-Trials have been made by Dr. Aime Witz, of Lille, the data and results of which, certified to by him, were as follows:
Leading dimensions of the engine: Diameter of cylinder, 枝 inches; stroke, $15 \frac{3}{3}$ inches; speed, 160 revolutions per minute. The effective work given off by the motor was measured by a Prony brake. The ordinary lighting gas used contained about 600 heat units per culic foot at constant volume; the Dowson gas, comparatively rich in carbonic oxide, about one-fourth of that quantity. Mean pressure of the
town gas, three-fourths of an inch of water; of the Dowson gas, 2! inches. Trials of November 7, 1885: Duration of trial, 1 hour; effective horse-power, 6. $\%$); consumption of town gas per effective horse-power per hour, $2: .09$ cubic feet; reduced to $32^{\circ} \mathrm{F}$. and 30 inches barometer, consumption 21.55 cubic feet; water per effective horse-power per hour, \quad. 4 it gallons; temperatures, entering $51^{\circ} \mathrm{F}$., effluent $135^{\circ} \mathrm{F}$. Duration of trial, 2 hours; effective honse-power, s.67; consumption, 20.66 and 20.12 cubic feet; water per effective horse-power per hour, 4.44 gallons; temperatures, $51^{\circ} \mathrm{F}$. and $144^{\circ} \mathrm{F}$. Duration of trial, 1 hour; horse-power, 9.28; consumption, 21.23 and 20.73 cubic feet; water, 4.38 gallons; temperatures, $500^{\circ} \mathrm{F}$. and $1 \div 2^{\circ} \mathrm{F}$. Trials of November 8, 1885: Dowson gas; duration of trial, 2 hours; horse-power, 7.12 ; consumption, 89.97 and 85.03 cubic feet; water, $\overline{0} .83$ gallons; temperatures, $48^{\circ} \mathrm{F}$. and $14 t^{\circ} \mathrm{F}$. Duration of trial, 30 minutes; horse-power, 3.61 ; consumption, 188.14 and 14.85 cubic feet. Duration of trial, 30 minutes; horse-power 5.26 ; consumption, 100.71 and $9 \% .88$ cubic feet; consumption of oil (Muehring), 5.68 ounces per hour. The inventor states that other trials of the Simplex motor have given the following results: A 00 horse-power engine, working with a load of 35 to 40 effective horse-power, consumes daily, with a Dowson generator rather underpowered, 51 pounds of English anthracite coal per hour, equivalent to a consumption of from 1.148 to 1.30 pounds per effective horse-power per hour, inclusive of everything. A 16 horse-power engine, supplied with coal gas and working with a load of $1: 2$ effective horse-power, uses 2,327 cubic feet per day of ten hours, or 19.4 cubic feet per effective horse-power per hour. These two engines are in constant work, and their consump)tion is calculated from the daily records kept for several months, and not from experiments.
(59) Louis Charon's engine.-Messrs. L. Charon \& Co., of Solre-le-Chateau, France, exhibited a small motor which has interesting features, although the engine has as yet attracted but little notice.
It is a horizontal engine with a four-process cycle, but differs from others of that kind in that the compression of the explosive mixture, and, consequently, the expansion of the ignited gases, are varied by the action of the regulator; an advantage which has been attained without complicated mechanism.
The admission of the mixture and its ignition are never omitted, and its quality remains nearly the same, but the quantity is graduated according to the power required. Two puppet valves, regulated by the governor, control this admission; the first is the valve for admitting the gas, and the second a valve through which the air mixed with the gas passes. This second valve, which serves also for retaining the mixture in the cylinder, remains open during the entire forward or suction stroke of the piston, and also during a certain part of the time when the piston is returning to compress the mixture,
so that a portion of the mixture is then allowed to escape. The quantity which thas escapes is regulated by the grovernor, which controls the time of closure of the valve, this closure taking place early when the engine runs too slowly, and late when the speed is greater than necessary. The compression is therefore feeble, and the explosive force consequently comparatively small, when hut little power is required, but becomes increased when there is a greater demand for power, because the earlier closure of the retaining valve causes a greater quantity of the mixture to be retained in the cylinder and subjected to greater compression, which determines a much higher acting pressure and greater development of power when the ignition takes place. The portion of the explosive contents of the cylinder which is thus ejected loy reason of the delay of the retaining valve in closing is not wasted, for this portion of the mixture is forced into a coil of pipe through which the airsupply for the cylinder is drawn, and the rejected gaseous mixture which the coil receives is again taken into the cylinder, unchanged in quality, when a supply is needed for subsequent strokes of the piston. The coil thus serves as a temporary reservoir for the supply of explosive mixture whenever it contains any, and also acts as a pipe for conveying air to mix with the gas whenever there is no mixture remaining in the coil. The gaseous mixture received by the coil does not escape at the lower end, which is open to the air; the stratification of the gas and air seems to remain undisturbed, and diffusion does not take place to a degree sufficient to permit the odor of gas to be perceived at the open end of the coil.

The governor regulates the extent or time or opening of the gas valve in such a manner that the gas supply is proportioned to the quantity of air drawn through the coil, so as to maintain the quality of the mixture practically constant.

The arrangement of the exhaust valve is essentially the same as in the Otto engrine. The ignition is produced in_a small chamber in the breech of the eylinder by means of an electric spark, by an ingenious arrangement described elsewhere.*

A 4 horse-power engine tested by M. Witz gave the exceedingly good economical results stated in the introduction to this chapter; namely, a consumption of $10 \frac{1}{2}$ cubic feet of gas per hour per effective horse-power.
(60) The Lenoir engine.-The Parisian Company for lighting and heating by gas, and Messrs. Rouart Bros. \& Co. made a very extensive exhibit of Lenoir engines of an improved type.

Lenoir was one of the early inventors of the gas engine. The engine which now bears his name is of the four-process cycle type with a few peculiarities. The rear part of the cylinder in which the compression is effected is surrounded with broad thin circular wings

[^13]which form extended cooling surface in contact with the outside air, while the front part of the cylinder has a water jacket or reservoir in which, in some cases, no provision is made for the circulation of water, a quantity of the water contained in the jacket being boiled

away by the heat generated in the cylinder; and, although the water: remains at 212° enough heat is absorbed by the vaporization to keep. the cylinder sufficiently cool.

Puppet valves are used for the distribution. The ignition is by means of a spark from an induction coil.

In some of the engines a device is provided for calling attention to a neglect to regulate the gas admission cock properly. It is an eloctric alarm placed over the gas bag and so adjusted for a gas pressure of about five-eighths of an inch of water as to continue riaging a bell whenever the pressure is of the desired degree or greater than that. If, then, the bell rings continuously the gas cock must be closed slightly, but if the ringing ceases entirely the cock must be opened by degrees until the ringing is intermittent, in which condition the adjustment is correct.

Fig. 5it.-Racel's gas engine.

Fig. $58 .--$ Horizontal section of the eylinder of Ravel's gas engine.
(61) The Messis. Rouart employ carburizers and apparatus for petroleum vapor in comection with these engines, and arlapt them for agricultural use. They showed an engine and apparatus of this kind mounted on wheels for use in the field (Fig. 5 (i), and also exhibited a petroleum lameh, in the Seine river.

The economy of these engines is good, a 2 horse-power engine having consumed about do cubic feet of gas per effective horse-power per hour during a test made by M. Tresca in 1885.
(62) The Ravel gas engine.-This is exhibited by the Sociéte des Moteurs a Gaz Français, Paris.

Fig. 57 shows a side view of the engine, and Fig. 58, a horizontal section of the cylinder.

It works upon essentially the same principle as the Baldwin engrine, of which a full description is given, receiving an impulse at every revolution of the shaft. There are some differences which will be noticed. Air is drawn into the front end of the cyliader through a puppet valve, the chamber of which is at C , and is forced at a pressure of 4 or \boldsymbol{a}^{2} pounds per square inch into a reservoir, E , in the sub-base of the engine. Gas is taken through the governor valve V into a small pump, F, worked from the crosshead G, and is forced into the reservoir, I, in the frame of the engine, where it is kept separate from the compressed air and maintaned at about the same pressure as the air. Puppet valves in the valve box M admit the air and gas to the rear end of cylinder whenever they are opened by the eceentrie rod N . The exhaust takes place through ports, R , in the cylinder walls, which are uncovered by the piston at the end of the forward stroke, but, as tho piston is made quite short, a puppet valve, the chamber of which is at r, is used to prevent the escape of the compressed air from the front end of the cylinder, and this valve has to be raised by a lever worked from the shaft just before the ports R are uncovered, in order that the exhaust from the back end may take place. The products of combustion are expelled from the cylinder by the entrance of the mixture, which takes place at the end of the forward stroke through a passageway leading from the box M and entering the cylinder breech tangentially, so that the mixture shall not be projected toward the exhaust ports and wasted by escaping from them. The mixture is compressed by the returning stroke of the piston and then ignited by an electric spark. The gas pump. and separate reservoirs for gas and air, are the features which attract attention. The consumption of gas in this kind of engine is somewhat large.
(6:3) The Ragot petroleum engine.-This engine was exhibited in the Belgian section by the Société Anonyme des Moteurs Inexplosihess, of Brussels. It is shown in Fig. 59.
The engine is of 5 horse-power, is on the same general principle as the Otto gas engine, has puppet valves by mems of which the distribution is effected, and the ignition is by an electric spark.

It is fed with liquid petroleum of ordinary density, which is vaporized in a generator, shown at A in the figure, consisting of a conical casing of cast iron which incloses a smaller concentric cone of copper provided with wings to increase the heating surface. The interior of the copper cone receives the hot gases exhausted from the engine cylinder, and is thus heated, while the space between the cones communicates by a pipe with the governor valve, through which the air and inflammable vapor are drawn into the cylinder of the engine. A small pipe at the apex of the outer cone admits petroleum from a reservoir to an atomizer, through which drops of petroleum and a small current of air are drawn by the vacuum produced in the space
between the cones by each suction stroke of the piston. The petroleum, which is thus converted into a fine spray, is vaporized by contact with the copper cono, and permeates the air which has entered with it and become highly heated. The necessary quantity of this mixture of air and vapor, which is inflammable but not explosive. passes to the governor valve, through which it is drawn into the eylinder together with additional air in quantity sufficient to make an explosive mixture. The mixture thus introduced into the cylinder is compressed by the return stroke of the piston and ignited in the next outward stroke.

Fig. 59.-Ragot's petroleum rapor engine.
To start the engrine the vapor is produced by heating the copper cone by the flame of an oil lamp placed beneath the vaporizer.

From 300 to 500 grams, say about a pint, of petroleum per hour is required for the production of each horse-power.
(64) The Taylor engine.-Messrs. John Taylor \& Son, of Nottingham, England, exhibited horizontal and vertical gas engines with two cylinders side by side, one of which acts as a pump to transfer the gas and air to the other cylinder, in which the ignition occurs once in every revolution of the shaft.

The engines are compact and exceedingly well built. They run at a high speed.
(05) The Griffin engine.-This was exhibited by G. C. Bingham, of London, England.
The peculiar cycle of processes employed in this engine has been described in the introduction to this chapter, and a further notice is unnecessary.

Fia. 60.-General view of the Grimh gas engitue.

Fig. 61.-Crossley's gas engine, Otto type, with puppet valves and tube igniter.
The general appearance of the engine and the arrangement of the valve gear can be seen in Fig. 60.
(6i6) The Crossley Brothers' Otto engines,-In the British section

Messrs. Crossley Brothers, of Manchester, England, mado a very striking display of gas engines of the Otto type, for which they received a gold medal. They exhibited eight engines, some horizontal, others vertical, varying from one-half horse-power to 㕫effertive horse-power.

These engines do not differ, in any of the essential principles of operation, from the Otto engines manufactured on the continent. Their design, however, is much more elegant, and some of the arrangements are more convenient. The general appearance of the 2 2i horse-power engine is shown by Fig. 61.
Puppet valves were employed for the distribution and the slide was dispensed with in one or two of the engines exhibited.

Fig. 62.-Igniting apparatus used in the Crossley Otto engines.
Fig. 62 shows the arrangement of the tube hy which the ignition is produced. A similar method of ignition has been described in comection with the Otto engines manufactured by the Compagnie Francaise.
C is the port from the cylinder, Chthe chamber for the reception of the burned gas from C; E a small puppot valve which is worked by a lever and determines the instant of ignition by opening and closing the passage D and outlet A alternately; T the igniting tube kept hot by a Bunsen burner; and F a pocket to receive a portion of the inflammable gas which, when ignited, blows the flame into the cylinder. An asbestus chimney surrounds the burner flame.
It was stated that the Messrs. Crossley had built a vertical gas engine of 120 horse-power which was working with the remarkably small consumption of 15 cubic feet of gas per hour per horse-power.

This ongine was not exhibited and no official certificate of its performance was presented.
(67) The Baldu'in gus onyine.-Two of these engines were exhibited in the United States section by Messrs. Otis Brothers \& Co., - of New York, who received a gold medal.

The engines are of very neat form, are simple in construction, and run with great regularity and steadiness.
This motor belongs to the second of the classes into which the gas engines have been divided; namely, to that class in which an ignition occurs once in every revolution of the shaft. In the Baldwin engine, as in most engines of this kind, the gas and air are takein int, the front end of the working cylinder by the backward movement

Fig. 64.--General view of the Baldwingas engine.
of the piston, and are transferred to a reservoir from which a supply is taken into the rear end, which is the working end of the cylinder, as needed; but it differs from most. in that the inflammable mixture enters the working end of the cylinder at the end of the piston's forward stroke, and is compressed by the piston on its return.
A longitudinal section of this motor is shown in Fig. 63, and the general appeatance of one of the earlier forms of the engine by Fig. 64.

The gas and air are drawn into the front end of the cylinder, through a valve hox, A, in the engine bed, by the backward movement of the piston, the forward movement of which compresses the
mixture in the reservoir B which lies bencath the cylinder. The mixture passes from the reservoir through the valve C into the rear of the cylinder, where it is ignited. The exhanst takes place through a port, D , which is located nearly midway between the ends of the cylinder, and is uncovered by the piston just before the forward stroke is completed. At the instant the pressure in the cylinder is relieved by the opening of the exhatust ports, the valve C is lifted antomatically by the excess of pressure which then exists in the reservoir B, and the inflammable mixture enters the back end of the cylinder and displaces the burned gases, without, however, having time to escape through the cxhaust ports, which are covered by the piston as soon as the return stroke begins. The backward stroke of the piston compresses the mixture in the back end of the cylinder to prepare it for ignition, and at the same time draws fresh mixture into the front end for transfer to the reservoir in the next revolution of the shaft.
The ignition is produced hy sparks from a small dyamo, E, driven by the contact of its pulley with the peripheryof the engine fly whed.
The speed of the engine is controlled when (oo) rapid, not by omitting the admission of gas, nore generally, by reducing the quality of the inflammable mixture, but by limiting the quantity admitted. Tr, acomplish this the lift of the valve (C is regulated by the action of the governor in the following way: The valve (1 is held down to its sat by a spring which is not too stiff to prevent the pressure of the mixtute in the reservir B from lifting it: the height to which the valve can rise is, however, limited by a curved wedge against, which a head on the lower end of the valve stem strikes when the: valve lifts. When the engine rums more slowly than its normal speed the thin alge of the wedge permits the valveto rise to its greatest extent, but if the speed increases, the thiceser part of the wedge is drawir forward so that the valve rises less and less, and the mixture chters the cylinder at a lower tension, and consequently in less quantity than before. This method of regulation is applied alone for moderate changes of speed, but when erreater increase takes place an attachment to the governor, which then comes into play, closes bey degreesa throttle valvo in the gas pipe, and reduces the inflammability of the mixture as well as its quantity. To prevent the mixture from entering the acting end of the crlinder in such a way that it will flow directly to the exhaust port and escape with the products of combustion, the port into the cylinder breech is located in the axis of the crlinder, and a deflector, or "retarder," as it is callen, consisting of a plate perforated with circular rows of holes near its outer edge, is whed in front of the entrance port to produce a uniform distributinn of the mixture in the cross section of the eylinder.

The regulator is an ingenious application of a shaft governor, which moves an oscillating lever haterally in such a way that one
or the other of two pawls at the end of the lever engrages with a ratch on either side of the rod by which the curved wedge is moved, so that the rod is worked one way or the other, or left stamling still, aceording to the change or uniformity of the speed of the. engine, the teeth of the ratches on the opposite sides of the rod beiner inclined in opposite directions.

The engines worked exceedingly well and quietly during the Exposition. One of them was used for driving a dyamom, and produced light from incandescent limps remarkable for its stearliness; the other was a self-contained pumping engine. As the engrines have an ignition every revolution, they exert large power in proportion to their dimensions.

V.-Hydramlic: machinery.

(68) Although no inventions of marked importance relating to hydraulic apparatus were presented, yet there were many exhibits in this class of machinery that were interesting either for boldness or skill in conception, or as examples of the application of hydraulic power on a very large scale. Others were noticeable for neat design and grood execution.
More than 50 years ago France was the birthplace of the modern turbine, - that type of hydraulic motor which has practically disphaceal all that preceded it. It was interesting on this account to look for the evidence the Exposition afforded of improvement in the form of this remarkahly efficient and convenient machine for utilizing the jower of water, and to learn which of its numerous forms is standing highest in popular favor, or whether any one form is asserting a marked superiority over others. This class of machinery, then, deserves the first consideration.

TURBINES.

France and Switzerland were the two mations which vied with cach other in the display of turbines, and it is just to say that the Swiss section contained the most extensive and most interesting exhibits of this kind.
(f9) Notably there were only two general types of turbines extensively shown; the Jomval or Fontaine parallel flow pressure turbine. and the Girard turbine. Both varieties are of French origin, and are held in nearly equal favor, the former kind for low falls where the wheel is submerged and the head variable, the latter for higher falls or great heads, and where the variation of head is slight, but. where the resistance, and consequently the quantity of water used. is variable. The pressure turbine is extensively used in the United States, in a great variety of forms. The Girard turbine is less known here. It is essentially an impulse turbine, and differs from the pressure turbine in that the water, which is melivered to the
wheel through a series of guidesor souts, as in all other turbines, does not fill the buckets of the whed after entering them, ats it does in the pressure turbine, and is not eonfined by the backs and sides of the buckets, which, in the (imad turbine, are expanded so as to permit the streams from the spouts to spread laterally in the buckets with perfect freedom. The water imparts its energy to the wheel by the continuous deviation in the direction of its motion which it suffers in gliding over the front curved surface of the bucket against which it is impelled through the guide curves or sponts. The surfaces of the buckets which receive the impulse are so curved. and so directed in relation to the spouts and to the circular path in which the buckets travel, that the water leaves the wheel with a velocity only sufficient for its removal, as is the case with the water in all well-designed turbines. - This kind of turbine, becatwe of the freedom from confinement under which the water acts in the wheel bucket, is called a turbine of "free deviation" to distinguish it from the pressure turbine, in which the water is forced through the buckets, the cross sections of which are contracted so as to eompletely regulate the shape of the streams which pass through them, and slightly restrain the outflow of the water when the wheel is fully suppied with water. The Girard turbine is nearly, if not quite, as efficient when exerting its full power under a constant head, as the best presssure turbines are when they also are phaced under the conditions of water supply and resistance for which they are designed, and is far more efficient than these when a varying resistance demands a dimimution of the quantity of water supplied to the wheel; that is to say, the regulation of the (iirard turbine is effected with little or no loss of economical efficiency, while the regulation of the pressure turbine, the buckets of which must be full in order to act efficiently. is attended with diminished economy. While the power of a Girard turbine may be reduced one-half, by a reduction of its water supply. without a diminution of its economical efficiency, a similar reduction of power in the best pressure turbines lessens the economy in the application of the water by 10 or 15 per cent., and in the case of a still greater reduction of power a greater proportional loss occurs.

It has been said that the Girard turbine is better adapted for high hoads than for low. This is true, because in order to secure a good performance of this wheel it is necessary to place it so that the water shall issue freely from the burekets into the air, and the wheel ought therefore to stand above the level of the highest back water in the tailrace. This condition involves a small loss of head, which is not suffered in the use of a submerged, or drowned wheel, and it is only when the head becomes considerable that this loss is insignificant. The same condition makes it impracticable to place the wheel at the upper level of the fall or at an intermediate level, and prevents the use of a draft tube.

It is a distinctive feature of the Girard turbine that the efficiency of the wheel is not diminished materially by limiting the admission of the water to a few of the buckets insteal of applying it to the entire circumference. The series of guide spouts for delivering the water to the buckets may advantageously be limited to a short segment of the circle which a complete series of guide blades would form, and some of the spouts may be closed while others are left open, without a material reduction in the economy with which the water is applied. There were numerous examples of these "partial delivery" or "partial injection" turbines, in which a single set of inlets consisting of a few guide spouts are used on one side of the wheel, or two sets, one on either side of the axis; in fact, this is the favorite form of turbine for very high heads, or for motors of small power, for it admits of the use of a wheel of lare diameter with a proportionally slow speed of rotation, and yet the stream of water required for its economical supply is not large.
(\%) A few tangential wheels were shown, in which a single stream from a spout outside the wheel is directed against spoon-shaped, or inward-curved buckets. This form has been extensively used in Burope for small powers where the had of water is great, but it is uneconomical as usually constructed, and is being abandoned in faror of the Girard whed. In the western regions of the United States, however, the Polton wheel, which is a peculiar form of tangrontial wheol. is successfully used for obtaining power under very Ereat heals, with satisfactory eonomy of water. This wheel, which is of large diameter, is driven by a jot of water from a round nozze. and the shape of the buckets is such that the impulse of the water is utilized with hut little loss.

The varioty in the forms of the Girard turbines exhibited was considmable. They were represented by horizontal wheels with parallel or axial fow of the watere and hy horizontal wheels with an outwatd flow: also by vertical wheels with an ontward flow.

The pressure turbines were all, or nearly all, horizontal, with parallel flow, or as has beensaid before, they were of the Jonval or Fontaine type. They differed from each other chiefly in the arrangements for regulating the admission of the water ; that is, in the apparatus for opening and closing the inlets.
(i1) Soreral interesting applications of turbine wheels to pumps for city waterwonks were exhibiterl. 'T'wo of these, with the systems of water supply of which they form a part, will be described here.

Messrs. Escher, Wyss \& Co., of Zurich. Switzerland, exhibited a large Girard turbine coupled to a pair of pumps, all complete and in working condition. This exhibit was one of a set of seven pumping turbines, three of which arealready in operation for supplying water to the town of Chaux-de-Fonds for domestic use and, to a limited extont, for motive power. The arrangement of this whole system of water supply is so interesting that it deserves special attention.

Chaux-de-Fonds is a town with a population of about 25,000 inhabitants, in the Jura Mountains, near Neufchatel, at a level of nearly 3,000 feet above tide,, , (000 foet above the part of the river Reuse from which the water power for driving the pumping machinery is derived, and about 1,200 feet above the pumping station. The receiving and distributing reservoir into which the pumps deliver is at a height of 400 feet above the lowest parts of the town. The supply obtained from the three pumps which are now working is at the rate of something over $1,000,000$ grallons in et hours, and, with the four additional turbines which will complete the works. the supply will be increased to more than denon,(00). The water that is pumped is collected from springs which formerly empied into the river, but are now intercepted and diverted into the pump pit hes means of four horizontal galleries or tumels driven through the clayey soil through which the water percolates.
For driving the turbines water is taken from the Reuse at a place above the falls of that river, and about a mile unstream from the pumping station, where a head of 10 feet aboer the tailmee of the turbines is obtained.
The rising main, leading from the pumps to a receiving camal which is at an elevation of 1,600 feet above the pumping station, is a galvanized welded pipe about 10 inches in diameter and $t, 000$ feed long. Tha (anal into which this pipe discharges, and the conduits with which the canal is comected, cary the water about 10 miles to the reservoir. which is still distant three-fifths of a mile from the town. It will be seen that the work was an important enginering undertaking.

The whole cost was about $1,800,000$ frances. or say, ssan,ome.
(\%2) The turbines are of the Girarl type, with horizontal ases, partial injection, and outward flow. At cath end of the turbine shatt is a disk crank which actuates a double-acting phanger pump with a plunger t.t inches in diameter and a stioke of 19.3 inchers. The plungers are pointed; they work in oppesite ends of pump barrels which are phaced back to back, and are coupled with cach other by crossheads and side rods. Metallie packing is used in the stuffing boxes to reduce the friction toa minimum. The frames on which the: pumps lie, and at the ends of which the turbine shaft is supported in bearing boxes, resemble the bedplates of the Pormer-illom amines.
The diameter of the turbine is 15 feet 8 inches, its wem fifterax revolutions per minute, and the power demanded of it 140 horsipower.
The water is delivered to the wheel at its lowest part. aml on the inside of its rim of buckets.
The guide curves, or properly the guide spouts, are only aight in number.

The dimensions of the parts of such a turbine wheel under these particular conditions are computed in the following way:
The total quantity of water the wheel receives is about 10 cubic
feet per second. and the head $1 \hat{0} 0$ feet. Assuming a coefficient of discharge of sis per cent., the velocity of discharge will be $0.8: 3 \sqrt{64.4} \times 1 \hat{0} 0=86.3$ feet per second, and with this velocity the cross section of the orifies required to deliver the 10 eubic feet will be. eollectively, ${ }_{80}^{10}=\mathbf{S} 0.115$ of a square foot, or 16.6 square inches nearly. There are eight guide spouts, the mouths of which are actually each 2.36 inches across the face, and $0.9+4$ of an inch wide in the direction of the circumference of the wheel; their collective area is therefore $8 \times 2.36 \times 0.94 t=1 \% .8$ square inches, which is but little larger than the computed size of opening. The most advantagenus speed of the inside edge of the wheel bucket which receives the water is one-half that of the water which strikes it, and should therefore be $\frac{89.3}{3}=43.15$ feet per secom. The wheel makes in turne per minute, or 0.93:3 of a turn per second; the circumference of the inside of the crown of buckets should therefore be $\frac{43.15}{0.933}=$ f(i.25) frot, and its dimmeter $1+3$ feet. The inside of the crown is made 15 feet, and the outside diameter of the whee very nearly is feet 8 inchess.
There are eso buckets. Their width across the inside of the crown of the wheel is $3!$ inches, somewhat greater than the width of the guide spouts. so that the water will not come in contact with the shrouding of the buckets in entering them, and the shrouding is made flaring, so that the winth of the bucket at the outside face of the whed is increased to nearly 8 inches, in order to permit the lateral spreading of the water to take place without restraint, on the curver surface on which it acts.

Fig. (6) is a vertical section of the lower part of the wheel, showing also the gruide spouts and penstork.

The pumps are well designed for working under the great pressure they are subjected to from the lift of 1,600 feet which they have to overcome. A section of one pair of the pump barrels, showing the valve chest also, is given in Fig. 66.

The valves are direct-lifting, like puppet valves, and consist of two concentric flat amular plates connected with oach other and with a central hub by radial wings. The hub is guided on a post projecting upward from the center of the valve seat, which is flat and perforated with two concentric annular ports that are covered by the concentric plates of the valve. The mean diameter of the outer port, is 6 inches, that of the inner, $3 \frac{1}{2}$ inches, and the width of each port, 0.4 of an inch. The lift of the delivery valve is less than 0.1 of an inch, that of tho suction valves about one-eighth of an inch. The valves and seats are of bronze, and springs are provided to press the valves to their seats. The mean velocity of the water in escaping
between the delivery valve and its seat is somewhat over 10 foet prer second.

As a safeguard against serious damage, which, on aceount of the length of the rising main and the great head, would be liable to

Fig. bin.- Sectional view of the penstork and lower part of one of the vertical Girard turbines of tho (hamx-lle-Fonds waterworks.
orcur if there were a rupture of this pipe through which the pumps doliver the water to the camal 1.600 feet above them, the main is divided into four sections of equal length by means of three swinging check valves, which aro pressed toward their seats by springs of

Fig. i6. - Sectional view of the plunger mamps of the thaux-de-Fonds waterworks.
small tension, and are kept continually in slight motion by the passage of the water, so as always to be in grood working condition.
The high economical efficiency obtained from this pumping machinery is by no means the last interesting feature.
The test made by the engineers for the town showed that 67 per cent. of the power due to the quantity of water delivered to the wheels under the head obtainable from the fall was returned in water delivered by the pumps into the reservoir. As it is improbable that the efficiency of the crank pumps is higher than so per cent., the economical effect of the turbine itself must be very nearly, if not quite, 80 per cent.; an excellent working efficiency, which demonstrates the truth of what has been clamed for the Girard turbine; namely, that its economy is excellent even when the water is distributed to only a small segment of the wheel.

All the machinery for this important work was designed and executed by Messis. Escher, Wyss \& Co.
(73) The same firm also exhibited a model, on a small scale, of one turbine and a set of pumps of the kind that are in use at Geneva for utilizing power derived from the river Rhone, and for distributing it to the manufactories and the small shops in the city where power is required, as well as for supplying water for ordinary uses.
These waterworks are interesting and instructive as an example of an extensive and successful system for the distribution of power.
(74) Before deciding upon the method of distributing the power various plans were considered ; particularly, wire-rope transmission, transmission by electricity, by compressed air, and by water under pressure. In the report on this subject by Col. Turettini, the consulting engineer for the city, three tabular analyses of the cost of transmitting power by these various means were presented. They are given here with the costs in francs, as the figures are only comparative.*
Table I.-Efficiency of different systems of transmission of power for different distances.

Distance of transmis. sion in yards.	Elec. trical.				
100	0.69	0.50 to 0.65	0.55 to 0.60	0.06	
500	0.68	0.50 to 0.65	0.55 to 0.60	0.93	
1,000	0.60	0.50 to 0.65	0.55 to 0.60	0.90	
5,000	0.60	0.40 to 0.55	0.50 to 0.65	0.60	
10,000	0.51	0.35 to 0.45	0.50 to 0.55	0.36	
20,000	0.32	0.20 to 0.25	0.40 to 0.55	0.13	

[^14]Table II.-Price to the consumer for each horse-power per hour for different systems of transmission and different quantities of power.

Table III.-Cost per horse-power of a plant for transmitting power to different distances.

Horse power.	System of transmission.	Distance of transmission in yards.					
		100.	500.	1,000.	5, OKO.	10,000.	20, OKO.
5	Electric.	Fronces. 1,91\%	Francs. 1,98\%	Francs. 2.075	Frones. 2, 7 Ti)	Francs. 3, 645	francs. 5. 045
	Hydraulic	1,053	1, 6973	2,492	8,893	16,893	32, 8:13
	Pneumatic.	1,8\%6	2.482	5,380	12, 83: ${ }^{\text {c }}$	27,85i	52, 880
	Wire rope	165	\%92	1,5it	\%, 835	19. 410	31,310
10	Flectric.	1, 265	1,37\%	1,443	1.190	2,60	3, 133%
	Hydraulic	767	1, 16i	1, 664	5,66if	10.1612	(0), 1667
	Pneumatic	1,5337	1,850	2, 2507	$5,45 \%$	9. 1.8	17, 15%
	Wire rope	126	$6: 37$	1,195	5, 925	11, $8: 37$	93, 186
50	Electric.	1,015	1,039	1,076	1,382	1, 20 T	2, 207
	Hydrautic	302	552	765	2,334	1,352	8,350
	Pneumatic	805	95	1,075	2,200	3,7\%	6, 3 \% 5
100	Wire rope	40	185	360	1,7\%	3,500	6,966
	Electric.	818	845	852	1,145	1,512	2,212
	Hydraulic	361	516	710	2.960	4,197	7,047
	Pnemmatic.	6π	762	868	1,718	2, 781	4,906
	Wire rope	$2 i$	111	215	1,043	2,080	4,152

(75) Although the cost of the hydraulic transmission is shown by these tables to be greater than by other methods, yet, under the circumstances, this system was recommended by Col. Turettini on the following grounds; namely, that the dependence which can be placed on the continuous working of the hydraulic system, the convenience of the service it affords, and its perfect safety in use, place it in the foremost rank when the transmission and distribution of power in a city are in question. The fact that a portion of the machinery and of the new works would in any event be required for the proper supply of water for domestic and public uses, afforded another reason for the adoption of this system in Geneva.
(76) The work was begun more than 10 years ago, and the pumps that are now in operation, together with the additions that are provided for, contemplate the utilization of the full power that can be obtained from the river at its low-water stage; namely, nearly 6,000 horse-power. Twenty turbines of 300 horse-power each will then be used. Of these, 8 are already in full operation.

The turbines are pressure wheels of the Jonval type with vertical axes. Each turbine, the diameter of which is 14 feet, and the speed 26 turns per minute, drives two double-acting pumps, through a single crank keyed fast to the upper end of the turbine shaft; the two pumps being set at an angle of 90° with each other in a horizontal plane.

Fig. 67 is a view of a sectional model exhibited by Escher, Wyss \& Co., showing the general arrangement of a single turbine and set of pumps.

The dam used at Geneva for holding back the water of the Rhone is adjustable, so that, when the water is at any particular stage, the dam may be so adjusted that as great a fall as possible may be obtained, and yot the flooding of the low banks of the country about Lake Geneva be avoided.
The dam is in sections consisting of curtains formed of beams hinged together and resting against abutments, arranged in such a manner that the curtains may be unrolled downward to close the dam, or rolled up to open it. The dam may be wholly closed so as to direct all the water into the flume leading to the turbines, when the

Fig. 67.--Sectional view of one of the Jonval turbines and a pair of the pumps used for the Geneva. waterworks, Switzerland ; showing the general arrangement.
water is low and the flow small ; but when the flow of the river is great, as many sections of the dam may be opened as are necessary in order to let the surplus water flow away, and thus keep the level of the water in the lake from rising higher than before. At the time when the dam is thus opened the backwater below it is necessarily very much higher than at other times, because of the great quantity of water to be carried off by the river channel. The head available for the turbines is therefore much greater in low water than in high, and the quantity of water taken is inversely propor, tional to this head.

At low water the head is somewhat greater than 12 feet, but at high water is $5 \frac{1}{2}$ feet only; while the quantity of water which flows is 4,300 cubic feet per second under the former condition, and 9,500 cubic feet under the latter.

The turbines are so constructed that the number of buckets to which the water is admitted may be varied in a way that will permit the water to be employed economically under these very different conditions of supply.

Fra. 68.-Plan of the guide-blade crown and annular gates of one of the turbines of the waterworks at Geneva, Switzerland.

Figs. 68 and 69 show a plan and section of the guide-blade crown and wheel crown of this turbine.

The crown of the wheel, containing the buckets, is divided into three concentric rings of buckets, the inner and intermediate rings each being 173 inches wide, measured radially, and the outer ring 11 inches, while the outside diameter of the wheel is 13 feet 11 inches. Three concentric rings of guide-blade channels, D, E, and F, form the guide-blade crown, and correspond to the rings of buckets.

Fra. 69.-Section of the guide-blade crown and wheel-bucket crown of the turbine shown in Fig. 68.
The outer ring F of guide blades is not provided with means for excluding the water from the buckets, but the intermediate and inner rings can be entirely and independently closed by an arrangement which will be understood by the aid of Figs. 68 and 69 . Half the channels between the guide blades, namely, those occupying a semicircle of the ring, are extended directly upward to the flat top of the guide
blade crown, where the water enters their mouths, dand e. The other channels, contained in the opposite semicircle, are extended in the form of a quarter bend, so that their mouths, d^{\prime} and e^{\prime}, are at the side or periphery of the crown; the mouths d ' of the channels for the inner ring being found in the inner periphery of the crown, while the mouths e^{\prime} of the corresponding chamnels for the intermediate ring are in the outer wall or periphery of that ring. One-half of the flat top surface of each ring is therefore continuous and without openings, and the other half perforated with mouths, while the opposite halves of the peripheries of those rings are also perforated and continuous, respectively. The gate for closing the intermediate ring of guide channels consists of a flat plate, b, in the form of a half ring, which lies on the top of the crown, and a semicircular curtain, b^{\prime}, which hangs from the ends of the plate and completes the closure by encircling that half of the outer periphery of the guide-blade ring which is opposite the part of the ring covered by the plate. When the gate is turned so that the plate b lies over the inlets d in the upper surface of the ring, and the curtain hangs in front of the inlets d^{\prime} in the periphery, the water is excluded from the corresponding ring of chamels. A half revolution of the gate uncovers all the inlets of this ring.

The gate for the inner ring is the same as for the intermediate, except that the curtain a^{\prime} hangs inside the ring.

The advantage of this arrangement is that one, two, or all three of the concentric rings of the guide-blade channels can be opened to receive water, as the condition of the supply may warrant, so that the power may be kept nearly constant without closing the inlets of any single ring of chamels to an extent which would seriously impair the economical efficiency of the wheel.
(77) In the water supply for Geneva there are two distinct systems of distribution: the low-pressure, with a head of 150 feet, and the high-pressure, with a head of too feet, each supplied by its own turbines and pumps independently.

Water is used from the low-pressure pipes for general purposes and for motors exerting only small power; that from the high-pressure system for power chiefly.

In December, 1888, there were 48 miles of pipe in use for distributing the low-pressure water, and 46 miles for the high-pressure water.

The power is taken by consumers representing seventy-six different industries.

At the beginning of 1889 there were 135 motors, nominally of 320 horse-power in all, driven from the low-pressure service, and 69 motors, nominally of 1,100 horse-power, from the high-pressure pipes. Three of these last are turbines of 200 horse-power each, used in an electric-light station.
(78) The charges for power in tho industrial section of the city are established according to a sliding scale, and depend on the quantity of power and the time during which it is used. Curves representing the system by which these charges are computed are published in the annual report of the water department of Geneva, and the numbers in the following brief table have beon computed approximately from the curves:

Price for each horse-power. per year, for different quantities of power and different hours of daily rumning.

	Horse-power.					
	5.	10.	20.	50.	100.	900.
For 10 hours daily.	\$94.00	\$56. 00	\$43.00	\$34.00	\$ 37.00	843.50
For 12 hours daily..	105.00	66.00	50.00	$3 i .50$	31.50	22.50
For 24 hours daily..	140.00	84.00	65.10	50.00	41.75	37.00

The profits of the water department are considerable. In 1888, after paying all expenses, including interest at 4 per cent., and an annual assessment of 2 per cent. for a sinking fund to cancel all the indebtedness as it becomes due, there remained a net profit of nearly $\$ 30,000$.
The rents received for water used during the year are as follows:

	Franes.
For public use by city.	110,000
For domestic use.	2330,000
For sundry industries.	9it, 000
For water-power.	150, 000

The daily water supply averaged about $11,000,000$ gallons, 60 per cent. of which was low-pressure, and the remainder high-pressure. The city used about 40 per cent. of the low-pressure water for public purposes, about 30 per cent. was employed for motive power, and the remainder for domestic and industrial use. Ninety per cent. of the high-pressure water was used for motive power.

Various kinds of motors are used by the consumers. For quite small powers- 1 horse-power or less-pressure engines are employed, but where considerable power is required preference is given to small high-speed turbines, either tangential wheels, or Girard turbines with partial injection.

Escher, Wyss \& Co., of Zurich, Switzerland, to whom were intrusted the design and construction of the machinery for the Geneva and Chaux-de-Fonds water-works, just described, manufacture all kinds of turbines, from the largest to the smallest. Their catalogue shows a list of over 1,800 turbines, aggregating more than 100,000 horse-power, which have been placed by them.
(79) Fig. $\% 0$ shows a general view of a small and neat form of Girard wheel for moderate power, manufactured by this firm.
(80) J. J. Reiter, of Winterthur, Switzerland, made a fine display of turbines, of sizes varying from 200 horse-power downward. They were of various types. A number of different arrangements for controlling the admission of water to Girard turbines were shown. In one of these, for a parallel flow turbine, a plate, turning like a damper on a spindle pointing to the axis of the turbine, is placed in the mouth of each guide channel, and this is opened or closed by means of a cam groove in a ring, placed inside or outsido the guide crown, as the case may be, which may be turned around the crown by means of gearing. The cam operates a little crank on the

Frg. 70.-Small incased Girard wheel, by lischer, Wyss \& Co., of Zurich, Switzerland.
end of each damper shaft in such a manner that the dampers are turned two at a time, one on either side of the wheel, successively, until the required number are opened or closed. By this arrangement very little strain is brought upon the gate mechanism, even when the water pressure is great.

A small, self-contained motor, containing a tangential turbine and furnished with a regulator, was exhibited. It is manufactured in more than seventy different varieties, adapted for heads from 30 feet to 500 feet, for speeds from 250 to 3,000 turns per minute, and for powers from one half of a horse-power to 25 horse-power.

In general outside appearance they resemble the small turbine shown in Fig. 70. Their efficiency is said to be as great as 75 per cent.; but this kind of wheel is going out of use in Europe.

The opening and closing of the spout through which the water is delivered to the wheel is produced by the action of the water pressure on a piston in a cylinder, the movements of which are controlled by a small valve moved by the governor.
(81) Brault, Tisset \& Gillet, Paris, extensive manufacturers of water wheels, turbines, and mill machinery, are the successors of Fontaine, one of the pioneers in the improvement and introduction of the turbine. This firm has produced more than s. wif wheets.
 stones and 2,500 roller mills. They empley 500 workmen.

Their exhibit included a variety of parallel-flow whends. modifications of the original type of Fontaine's turbine. The opening and closing of the mouths of the guide-blade chamels is by means of moular segments of some fexible material, as leather or vulcanized rubber, which lie on the flat top of the guide-blate crown, covering the mouths of tho channels. One end of a segment is fastened to the crown, the other end is rolled upon id conical roller which travels around the crown and rolls up the segment, so as to uncover the mouths to the extent desired. The bottom of the leather segment is armed with metallic plates which correspond to the mouths of the channels; these serve to strengthen the segment while permit-

Fig. 71.-Guide-blade crown, and pliable roll-up gate, by Brault, Tisset $\&$ Gillet, France.

Fig. io.-Segment and rollers for the pliable gate shown in Fig. 71.
ting a tight closure to be made by the contact of the pliant leather with the metal between the mouths. This arrangement in general is not new. Its application, as it was exhibited, was neatly designed, and is illustrated by Fig. 71, which shows the fixed guide-blade crown of a turbine with the apparatus for closing the openings in place.

Fig. 72 shows the rollers attached to the segment by which they are worked.

A Girard turbine with horizontal axis and partial injection, adapted for high falls and small power, was also shown by this firm.

Fig. 73 shows a view of this wheel, and Figs. it and 75 show sections of the water chest, the guide spouts, and part of the wheel, exhibiting the gate by which the guide spouts are covered and uncovered.
(83) Bergès's installation of wheels under very great heads.-A rather remarkable exhibit was made in Class 63 by Mr. Aristido Bergès, a civil engineer of Lancey, a town in the department of Isère, France, in the immediate neighborhood of the Southern

Fig. 73.-General view of vertical Girard turbine, by Brault, Tisset \& Gillet.

Water chest. guide buckets, gate, and lower part of wheel crown of the (irard turbine shown in Fig. is.

Alps. He showed an impulse whee of f fect diameter, and a model in plaster of the mountainous region in which he has established an extensive water-power derived from a small stream which is the outlet of lakes fed from the melting glaciers.

He called attention to his enterprise by a circular with the fanciful title " White Coal ;" a title which he says he "employs to strike the imagination and to suggest in a vivid manner that the mountain glaciers can, if exploited for the development of motive power, render to the country in the neighborhood of the mountains a service as important as that derived from the coal extracted from its depths."
His model shows what he has done in obtaining a large water-power from a stream of insignificant volume. In 1869, when Mr. Bergès began his works, the flow of the stream was only about 3 cubic feet per second, and barely furnished power for a few small grist mills. Now the same mountain sources from which this stream flows, furnish the water-power for Mr. Bergès's large paper mill, requiring more than 2,000 horse-power.
This gain in power he obtains by taking the water from the mountain sources instead of the lower stream. Since 1883 his power has been obtained from water under a head of 1,600 feet, and the wheels, of various diameters, from 3 feet to $16 \frac{1}{2}$ feet, have been working, some of them regularly, during all these years. One of the wheels yields 1,200 horse-power, and is employed for driving wood-pulp machines; the others, varying from 20 to 500 horse-power, drive rag engines and other machinery.
Mr. Berges describes his wheels as follows:
Not wishing to exceed 230 revolutions for my machines for making wood filer, which are driven directly by the wheel, a diameter of $16 \frac{1}{2}$ feet had to be adopted.* After having witnessed the bursting of wheels which were made of so-called extra strong cast iron, and of wrought-iron wheels made too light, I was led to a type composed of steel plate 0.4 to 0.6 of an inch thick, forming two conical disks riveted torether at the edges, and also riveted to a cast-iron hub. The crown of blades is made in segments about 32 inches long (20 segments), strongly bolted fast by steel or refined iron bolts. Neither the crown nor the disk is turned. The inevitable irregularities of the plate are corrected by packings of dry oak, which swell when wet and increase the pressure of the bolts. Extreme care has been taken to insure perfect balance with respect to the axis, and with care the blades may be made to revolve as truly as if the whole piece had come from the lathe. A turbine of this kind, weighing 10 tons, and capable of furnishing 9,000 horse-power, has been working since 188 i, that is, for 4 years, and has not reguired repairs of any nature.

The 6 -foot wheels require to rum at about 600 revolutions per minute. I persevered for awhile in trying cast iron for these, but was forced to abandon it because of accidents from bursting. I can, however, say that two turbines of this type, of cast iron, did work for 5 years. They were two in which pains had been taken to cast slits through the hub, the hab being afterward secured by bands to insure the absence of initial strain in the arms.

In order, however, to avoid acoidents, plate sted has lwen sulnstituted for cast iron. in the form of a disk with the elge turned over tor retain the crown of blades, which is made of white cast iron and fastened by bolts.

[^15]Fig. 76 is a diametral section of the lower half of one of M. Berges's large wheels.

The spout for delivering the water to the wheel is the same for all sizes of turbine. It is at the end of a delivery pipe in which the velocity of flow is 6 to 10 feet per second, and is a conical nozzle, like a hose nozzle, usually made with a diameter of about $1 \frac{1}{4}$ inches, one of which is large enough to give 200 effective horse-power. The stream plays upon the inside of the crown of the wheel. For a 16-foot wheel six nozzles are used, each controlled by a cock in the pipe. Phosphor bronze or aluminum bronze is the best material for the construction of the nozzle, and as its weight is small, it can be renewed with but little expense when worn out. Cast iron lasts but ashort time. Mr. Bergèssays, "It wastes as butter wastes in the sun, and the water speedily hollows out caverns in it." The blades of the wheel wear rapidly also, unless cast thin and hard, and unless the original scale is left on

Fig. it.-Spout and short section of buckets of Bergès's wheel. the surface of the castings. If proper metal is used they last for years.
Mr. Bergès states that he is now constructing works for a fall of $5,5(0)$ feet.
(84) Very high falls have been utilized in the Rocky Mountains and mining regions of the United States, by means of the "Pelton" wheel, which is exceedingly economical. It is believed, however. that Mr. Berges is employing. on a large scale. a much higher fall than had been used before his undertaking was accomplished, and the project he is now begiming to carry out, for applying a fall of over a mile in height, is certainly remarkable for its boldness.

VI.-Pumps and pumping engines.

(85) Hand and Power pumps.-Innumerable hand pumps of different kinds were shown in the French sections, and several exhibitors from the United States made fine displays of the different kinds of pumps for domestic and agricultural service which are universally employed here. The merits of these latter were recognized by awards to all the exhibitors. The French pumps have no marked allantages over ours, and except in the case of certain imitations of American pumps, they are inferior, particularly in those very essential, and often ingenious minutise of design, by which the manufacture is facilitated and cheapened without diminishing the excellence of the finished product in any particular.

Fig. is.--Horizontal section of Montrichard's valveless pump.

Fig. $\boldsymbol{7} 9 .-$ Vertical section of Montrichard's pump.
Of power pumps and steam pumps there were fow showing novelty, and few kinds that are not well known in the United States, so that little of interest can be said about them.
(sis) A pump without valves, having a piston which worked with combined movements of rotation and translation, by which the disphacement of the water was produced, and the inlet and outlet openings opened and closed, attracted some attention. It is the invontion of M. de Montrichard, of Montmedy, France. A power pump of this kind is shown in Figs. 78 and 79.

The pump is double-acting. Its piston, a, is a disk having the general form of an oblique slice cut from a solid right cylinder of the same diameter as the bore of the pump harrel.
A piston rod is made fast to the center of the disk, parallel to the axis of the barrel, through the heads of which it passes, where there are bearings in which the rool is free to slide lengthwise as well as to rotate. Two rollers, b, secured inside the pump barrel, on one side, at about the middle of its length, touch the edge of the oblique disk, one on either side, and restrain the movement of the edge in such a way that when the disk rotates, the part of the edge opposite the rollers traverses back and forth along the barrel by a distance measured by the product of the diameter of the barrel into twice the cosine of the angle'which the disk forms with the axis of the piston rod; while the effective stroke, that is, the lengthwise movement of the piston rod, is equal to half the distance traversed by the edge. The capacity of this pump is the same as that of an ordinary doubleacting piston pump of the same diameter and stroke.
The inlet port, d, and outlet port, c, are peculiarly shaped openings through the wall of the barrel, placed about midway between the ends, and reaching part way around the barrel on each side of the guide rollers b. The oblique edge of the piston as it rotates forms a movable partition between the ports, and alternately opens communication between them and the opposite ends of the barrel.
The pump is driven by a belt working on a pulley keyed to the piston rod and moving laterally back and forth with it; the pulley on the driving shaft having a straight face, wide enough to permit the lateral traverse of the belt.

It is said that an efficiency of 72 per cent. was obtained as the mean results of eight experiments made at the Conservatory of the Arts and Trades.
A steam pump embodying the same principles was also exhibited.
(87) Direct-acting steam pumps.-The name "direct-acting steam pump" is usually applied to steam-driven pumps in which the power of the steam in the steam cylinder is transferred to the piston or plunger of the pump in a direct line, and through a continuous rod, without the use of revolving parts, such as a crank and fly wheel, to continue, arrest, and reverse the motion of the piston and actuate the valves; and indeed it may be said to be limited now to a class of pumps in which the reversal of the movement of the pump is assured, and dead points avoided, even at the slowest speeds, by the use of an auxiliary steam piston or engine for throwing the steam valve. Engineers will recognize that this description covers all the numerous successful steam pumps well known in the United States. In the earliest forms of steam pumps, however, the auxiliary device for throwing the valve consisted of springs or weights which were set in operation by the movement of the pump, but were otherwise independent
in their action upon the valves. It is probable that in the Bull Cornish engine, an English direct-acting pumping engine of very early date, an auxiliary independent dovice for effecting or completing the movements of the valve was first emboried, but certainly not in a form which suggested the appliances by which the modern steam pump has been made so successful.
So far as the first production and introduction of the direct-acting steam pump in a practicable and successful form warrants the claim to priority of invention, the late Henry R. Worthington, of New York City, was the originator, in 1840, of such pumps, and his invention was followed immediately in the United States by numerons others; notably, first, that of Guild and Garrison, and afterward Wheeler's, under whose patent the greater number of the different manufacturers paid tribute. These inventions, followed by that of the Worthington duplex pump-consisting of two steam pumps of equal size, combined, side by side, and arranged so that the steam valve of either is worked by the movement of the other pumpformed the foundation upon which was built up the great business in the manufacture of steam pumps which is now carried on in the United States, and has spread to Europe, where the types which originated here are introduced, and are becoming universally known and adopted.
Although the number of steam pumps shown in the Exposition was large, there were but few different types. Duplex pumps seem to have been adopted almost to the exclusion of other kinds. These were shown in the sections of all the countries, but no novel or interesting features were noticed which merit a description.
(88) Pumping engines.--Four sets of pumping engines of considerable capacity were exhibited in operation, and employed in furnishing a large proportion of the water supply for the Exposition.
(89) Undeniably the most interesting of these was the new Worthington high duty direct-acting pumping engine of $6,000,000$ gallons capacity, which was erected in a special engine house situated on the bank of the river Seine, within the Exposition grounds; it furnished a good example of a modern American pumping plant for the water supply of a city.
The highest award in the gift of the authorities, a grand prize, was justly given for this exhibit.
The invention which is the characteristic feature of this engine has made it possible to realize in the direct-acting pump nearly if not quite as great an economical efficiency as is obtained with the more complicated and cumbrous crank and fly-wheel engine, and it is a gratifying fact that this radical improvement in the direct-acting pump originated with C. C. Worthington, the son and successor of Henry R. Worthington, and is applied to the duplex pump of his father's invention.

Fig. 80 is a perspective view of this engine, Fig. 81 a sectional elevation, and Fig. 82 a diagram by the sturly of which the action of the "compensating cylinders," referred to in what follows, can be understood. The ordinates of the curved line in the upper part of Fig. 8: show the resisting force exerted by thr compensating (ylinders against the action of the steam pressur, in the first half of the etroke, and the assisting force they yield up in the second half. The greater part of the following remarks upon this engine is derived from a special pamphlet circulated in the Exposition by the firm of Henry R. Worthington. of New York City, in whose publications a full description can be found.

The terms "high duty" and " low duty," as applied to pumping engines. are used mainly to distinguish bet ween two different grades of performance with reference to the consumption of fuel.
"Low duty" is, generally speaking, held to describe engines upon which a guaranty of duty is made of from $50,000,000$ to $90,000,000$ pounds of water raised one foot for each 100 pounds of coal eomsumed. "High duty" describes engines of a guaranteed duty of from $95,000,000$ to $110,000,000$, and above.

The direct-acting pumping engine, although so widely used in waterworks stations for the past 30 years, was, owing to peculiarities which it is not necessary to discuss, comparatively limited in its capabilities of expanding steam ; but even to-day, in view of the fact that higher duty in a pumping engine means higher first cost, and, in the case of thy-wheel engines, increased liability to derangement, it is more largely employed than any other type in existence.

This limilited ability to make use of high grades of steam expansion relegated the direct-acting pumping machine, as formerly constructed, to the class of "low duty" engines, and it is the invention of the devices by means of which the varying pressure in the steam cylinder, which is involved in the employment of steam extensively expanded, is made to produce a uniform effect in the pump, that has transferred the new Worthington pump to the class of "high duty" engines, without the sacrifice of the peculiar advantages which the direct-acting engine possesses over pumping machinery whose motion is controlled by the crank and fly wheel.

The problem presented is this: At the beginning of the stroke the steam, which is then at boiler pressure, exerts upon the pistons a force which is far in excess of that required for overoming the uniform resistance in the pump; at the end of the stroke the force of the expanded steam is much less than that required for moving the load; the mean force during the stroke is sufficient to do the work, but its inequalities must be prevented from being transferred to the pump piston, or else the engine will start from the beginning of the stroke with a violent plunge, and stop short of the end of the stroke
at a point where the driving force of the steam sinks below that required to overcome the resistance of the pump.
In the crank and fly-wheel engine the equalization of the force in the steam cylinder with the resistance in the pump, is effected by the ponderous fy wheel, which absorbs by its inertia the excess of energy developed in the steam cylinder in the first part of the stroke, and gives this energy out in the latter part. In other words, in the early part of the stroke so much of the force on the steam piston as is in excess of that required to overcome the pump resistance, is expended in accelerating the movement of the massive fly wheel, while in the latter part of the stroke the deficiency of force, which oceurs when the steam pressure is diminished by expansion below the point necessary to overcome the resistance, is supplied by the action of the fly wheel, whose momentum is then available for this purpose.

In the Worthington high duty engine the effects of steam expansion are utilized, but the uniform distribution of the pressure is secured by an entirely different method, simple and effective, and embracing none of the objections of the fly wheel, while presenting many positive advantages.

This improvement in the construction of, or rather attachment to. the older form of the Worthington pumping engine, by means of which the cutting off and expansion of the steam is made possible. consists, briefly, of two small oscillating cylinders attached to the plunger rod of the engrine. These cylinders and their connecting pipes are filled with water cr other liquid and comnected, either directly or through the medium of an accumulator, with the water in the force main of the pump. By this means a pressure on the pistons or plangers in these cylinders is maintained exactly equal to. or in proportion to, that in the force main. These pistons or plungers act in such a way, with respect to the motion of the engine, as to resist its advance at the commencement of the stroke, and assist it, at the end; the water in the force main meanwhile exerting upon them a constant pressure at each end of the stroke.

Fig. SZ shows so clearly how this action takes place, that no description is needed; it is only necessary to call attention to the offect produced.

The two cylinders act in concert, and, being placed directly opposite each other, relieve the crosshead, to which they are attachen, of any sliding frictional resistance, and relieve the engine of lateral strain.

By alternately taking up and exerting power through the differenc. in the angles at which their force is applied with respect to the line of motion of the plunger rol, these two cylinders, in effect, porform the functions of a fly wheel, but with the important mechanical difference, that they utilize the pressure in the foree main instanl of the energy of momentum. Whatever pressure is in the force main
H. Ex. 410 -vol III--... $1:$
is directly communicated to the compensating cylinders, and any variation in the force-main pressure is followed instantly by a corresponding variation in the cylinder pressure. Thus a uniform relation is

Fio. 82.-Diagram showing the action of the compensating apparatus of the Worthington high duty pumping engine.
maintained between the load on the pump plungers and the work performed by the compensators.
Their action is readily controlled, and their power is automatically
proportioned to the work to be overcome, and is entirely unaffected by the speed of the engine. The same amount of expansion can be obtained in the same engine whetheir ruming at a piston speed of 10 feet per minute, or at 150 . This latter feature is one of great importance, affecting, as it does so favorably, the economy of the engine when applied on any service where the demand is irregular or intermittent.

The value of the " compensating cylinder" feature in what is known as the direct-service system of waterworks can hardly be overestimated; for it must be plain that, as the momentum of a fly wheel rapidly decreases as its speed decreases, its available controlling power is so diminished that the grade of steam expansion, and hence steam economy, must be very materially reduced; whereas, with the Worthington compensating cylinders, whatever work is putinto, and afterwards derived from them, does not vary with the speed, for the reason that pressure from the water column, and not inertia of mass, is the acting principle.
The economy of this engine is not appreciably affected by wide differences in its speed, as the rate of expansion in the steam cylinders is constant under all changes in the rate of delivery of the pump; the engine adapts itself exactly to the load: as the pressure in the compensating cylinders varies proportionally with the pressure in the force main, the result is a uniform propulsion of the water column and an absolute control of the speed of the engine, without dependence being had upon any automatic governor or other complicated device. Should the force main or distributing pipes burst from any callse, no accident can occur to the engine itself, as the loss of pressure in the main results in a corresponding loss of power in the compensating cylinders, until the pressure is entirely withdrawn from them, when the engine is unable to complete its strokes.

This important feature of the Worthington high duty engine was illustrated at one of the pumping stations of the National Transit Company's oil pipe lines, at Osborn Hollow, New York. The pump was working under a resistance of 900 pounds per square inch, and pumping at the rate of 26,000 barrels of oil per 24 hours, when it was observed to suddenly slow down and come to a full stop. Upon investigation it was discovered that the pipe line had burst a short distance from the station, thus relieving the pressure and robbing the compensating cylinders of their power. It was, therefore, impossible for the engine to make a stroke. This stoppage occurred notwithstanding the fact that the high-pressure steam cylinders were taking steam, up to quarter stroke, at a pressure of about 100 pounds per square inch. The high-pressure cylinders of this engine are 41 inches diameter, and the low-pressure cylinders 82 inches diameter. The engine, at the time the above accident occurred, was working up to $\hat{j} 0$ horse-power.

The work of the compensating cylinders can also, at the will of the attendant, be thrown on or off the engine instantaneously. Should they or the cut-off mechanism become in any way disarranged, or require overhauling or repairs, they can be quickly discomected, so that the pump can then be run as a "low duty" engine. as satisfactorily as though originally constructed as such.

Worthington engines with this attachment have been fully tested under all the conditions to be met with in actual practice, and have achieved as high a duty as has heretofore been secured by an engine of any other type.

A duty of $100,000,000$ foot-pounds, with the consumption of 100 pounds of coal (equivalent to $112,000,000$ calculated on the English basis), can be considerably exceeded with an engine developing more than 100 horse-power.

The Worthington firm also furnished two large compound duplex high-pressure pumping engines, collectively of a capacity of 35,000 grallons per hour, which received water under a head of 650 feet, from the third platform of the Biffel Torer, and delivered it undera head of nearly 1,000 feet at the top of the tower, for the supply of the Edoux hydraulic elevators.
(90) De Quillac and Meunier, of Anzin, the former of whom is the licensee of Jerome Wheelock, of Worcester, Massachusetts, supplied water for the Exposition by a crank and fly-wheel pumping engine. The engine was of the Wheelock type, and the pump a duuble-acting plunger pump situated directly behind the engine cylinder and coupled to the piston rod of the engine which extended rearward through the rear cylinder head. The capacity of this pump was about $5.000,000$ gallons in 24 hours ; the lift about 75 feet. It was placed in a special building located on the quay near the Worthington pumping station, and represented a type used largely in France for water supply.

The same firm also furnished a coupled pair of pumping ongines of the same type to supply nearly 75,000 gallons per hour at a height of about 400 feet, for the Otis and Combaluzier elevators in the Eiffel Tower.
(91) Centrifugal pumps.-A large number of centrifugal pumps were on exhibition, only a few of which, however, possessed features worthy of notice.

Plans were exhibited in the Egyptian section showing a plant of very large centrifugal pumps established at Khatetheh for taking water from the river Nile for the irrigation of the province of Behera. There are five centrifugal pumps at this station, each capable of delivering about 210 cubic feet of water per second, under a head which varies from 18 inches in high water of the river to 10 fect at low water. The machinery has therefore a pumping capacity of nearly $700,000,000$ gollons every $2 t$ hours, which is more than
half the volume of water that flows in the river Seine, at Paris. Messrs. Farcot, of Paris, were the designers and builders of this immense pumping apparatus, and Mr. Joseph Farcot exhibited a model in plaster, of full size, of one of the great pump casings, which measures nearly 26 feet in its greatest diameter, that is, from the outer edge of the flange of the outlet to the opposite side of the case, which is in the shape of a snail shell.
The character of the foundations which were available for the pumps, the requirement that the engine must be placed above the high-water level of the river, and other considerations, made it necessary to place the axes of the pumps vertical; the plane of revolution of the rumer or fan wheel is therefore horizontal.
The net power required to lift the quantity of water delivered by all the pumps when the river is at the low-water stage is 1,200 horsepower, furnished by ffye engines, one for each pump. Each engine is of the Corliss type, horizontal, but lies upon its side, so that the connecting rod swings in a horizontal plane and works upon a crank at the top of a vertical main shaft, which carries a fly wheel and is coupled at its lower end to the top of the axle of the pump rumner.
Fig. 83 gives a general view of one of the pumps as it appears in place. The horizontal fly wheel of the engine is shown at the top of the picture and the delivery pipe of the pump may be seen in the foreground. The pipe slopes downward at first after leaving the pump, but rises afterward so that its outer end is at the level of the canal into which the water is delivered, and is there higher than the pump. A short bell-mouthed suction pipe is applied to the central inlet opening of the casing, and can be seen in the figure dipping beneath the surface of the water in the well.
A few dimensions of the machinery, and the weight of some of the parts are given below:

[^16]At the inlet .. 30
At the periphery 27
Diameter of the delivery outlet of the casing.. 63
Weights:
Pump casing . .. 30
Runner............... ... 12
Engine shaft and rumner axle.. 12
Fly wheel.. 22
Engine bedplate .. 15
Steam cylinder.......... .. 5. 5
The speed of the pump can be varied, or maintained constant at any speed between 16 and 40 revolutions per minate, the governor of the engine being made adjustable to meet the variation of speed
demanded by the differences in the height of the lift which the pumps are required to overcome.

Fia. 83.-One of the great centrifugal pumps at Khatetbeh. Egypt. built by Farcot. France.
The weight of the revolving parts which the pivot of the vertical axle has to support amounts to nearly 110,000 pounds, and to insure the successful lubrication of this pivot it was necessary to place it above the level of the water: a large proportion of the weight the pivot bears is therefore suspended below it.

The intensity of the pressure to which the bearing surface should be subjected was limited tod, so0 pounds per square inch, and, as the sil channels reguired for the distribution of the lubrication take awne from the area of the surfaces in contact, the diameter of the pivot was fixed at 83 inches.

If the coefficient of the friction of the lubricated surfaces is taken at 0.05 , the work required toovercome the friction of the pivot when the speed is 35 turns per minute may be estimated at

$$
110,000 \times .05 \times \frac{8.05}{1 \%} \times 3 \times 3,1+\times 35 \div 33,000=8.9,
$$

or, say, a horse-power.
This friction develops 6.3 heat units per second, and, as the air in which the machinery runs is warm, the cooling surfaces of the parts of the bearing are not extensive enough to enable the air to carry off the heat. This was anticipated, and an arrangement was made for cooling the oil, which fills a reservoir in which the pivot runs, by causing water to circulate around the outside of this reservoir; but.

Fig. 84.-Vigreux's watercooled stephearing for the centrifugal pumps at Khatetheh.
even this arrangement proved insufficient, and failed to prevent the speedy heating of the parts, and the destruction of the bearing surfaces. A different armagement was subsequently designed by Mr. Vigreux, the eminent hydranlic engineer, whose alvice was ohtained, and a step bearing constructed according to his phans is perfectly successful, so that since its adoption no heating has oceurred.

Mr. Vigreux's step bearing, slightly modified hy Messrs. Faroot. is shown in Fig. 84, while the arrangement of the principal parts sur-
rounding the pivot-which were not changed in adopting the im-provements-can be seen just ahove the pump, in Fig. 83.

A is the rumer axle, made hollow and of cast iron, the runner being secured to its lower extremity; it is enlarged near its upper end and is mortised through and through, so that an open chamber is iormed for the reception of the apparatus connected with the bearing. The lower end of the engine shaft is serewed tightly into the top of this hollow axle, so that the two are united as in one piece, while the pivot P is screwed into the axle at the top of the mortised chamber, in which it hangs; all these parts revolving together. C is a post which stands on the foundation and is fastened so that it can not turn; it rises through the hollow axle, and at its top, which is at the level of the bottom of the chamber of the axle, it carries a socket containing a stationary hemispherical bronze cup in which the lower bearing plate is held free to rock but not to revolve. The end of the pivot is also armed with a bronze plate which revolves with the pivot, and between these two plates is a third, of lenticular shape, which is unattached to either of the others and free to revolve or not. These bearing plates receive the whole weight of the engine shaft, fly-wheel runner, axle, and other revolving parts, and the post C sustains the load.
The oil for lubricating the bearing surfaces is contained in a reservoir fixed to the top of the socket. Mr. Vigreux's improvement is a device for keeping this oil cool by causing it to circulate rapidly in contact with surfaces cooled by water, situated apart from the reservoir, the oil being pumped from the reservoir by a small rotary pump which forces it through a tubular cooler made like a surface condenser, shown at E in Fig. 84, from which it returns to the reservoir. The cooler which revolves with the axle is kept supplied with water, and the surplus removed, by means of connections with the annular dishes F and G . As the cooler is outside the axle its dimensions are independent of the chamber in the latter, and the cooling surfaces can therefore be made extensive enough to produce the desired result.
The working of these great centrifugal pumps has been entirely satisfactory. They have exceeded the duty required of them. An official test of their efficiency demonstrated that the net useful work done, in water raised, amounted to 65 per cent. of the work indicated in the engine cylinders. No allowance was made for the resistance experienced by the water in the delivery pipe and tumel. which are about 60 feet long. The pipe is about $5 \frac{1}{2}$ feet in diameter at the pump, and the tumel expands gradually from this size to a rectangular cross section $11 \frac{1}{2}$ feet wide by 7 feet high at the outer end. Allowing a head of 1 foot for overcoming the friction in this channel when the pump delivers 250 cubic feet per second under a statical head of 10 feet, and assuming the power developed at the pump axle to be per cent. of the indicated power of the engine-which the Messrs.

Farcot assume to be true-the efficiency of the pump alone is about it per cent. The pumpefficiency is estimated by the Messrs. Farcot to be 79.6 per cent, but in their estimate too much allowance seems to have been made for the friction of the water in the dolivery conduit. Their estimate of the engine efficiency is, however, high for an engine working under the existing conditions, so that it is perhaps safe to assume that the efficiency of these huge pumps approaches 80 per rent very closely. The consumption of coal is 3.3 pounds per hour, per horse-power of work performed, measured by the water actually pumped, without any allowance whatever for friction, etc.
(9:) Before undertaking this great work. which involved guaranties of a certain economical performance, the Messis. Farcot made a very complete series of experiments to determine the best form of centrifugal pump. These experiments are interesting, and the information derived from them is generally useful. Some of the particulars, derived from a description by Mr. J. Farcot;* are given below.

The power required to drive the experimental pumps was measured by means of a carefully designed transmission dynamometer, while the useful work done was ascertained by measuring the quantity of water pumped into two tanks which were filled and emptied alternately. The axes of the experimental pumps were vertical, in general, but experiments with one of them, with the axis horizontal, showed that, the position does not affect the efficiency, when the lifts are as low even as 6 feet.

The first series of experiments, with lifts of from 3 to 10 feet, was directed principally to the determination of the best form for the passages for the water, through the rumer, and in the casing around the rumner. The run-

Fig. 8),-Different forms of rumners and casings for centrifugal pumps; used in experiments by Joseph Farcot.

[^17]ners were composed, as usual, of blades set bet ween circular disks or side plates. The entrance for water wats on one side only.
The disks and blades experimented upon are shown in Fig. 85 and were as follows:

1. A rumer with plane radial blades and Hat disks;
2. Plane radial blades, and paraboloidal disks but slightly dished;
3. Plane radial blades, and paraboloidal disks more deeply dished;
t. Helicoidal hades, alternated with half blades of the same shape, and paraboloidal disks;
4. Helicoidal blades, all alike, and paraboloidal disks.

Each of these was tried in six different casings, in which the forms of the annular conduits surrounding the rumers were different; as follows:
(a) Circular conduit of rectangular cross section, concentric with the runner ; Fig. 55 (2).
(b) Spiral conduit of rectangular cross section ; Fig. 85 (2).
(c) Concentric ; cross section trapezoidal; Fig. 85 (3).
(d) Spiral ; cross section trapezoidal; Fig. 85 (3).
(e) Circular conduit, with cross section of curvilinear outline; Fig. 85 (4).
(f) Spiral ; cross section curvilinear ; Fig. 85 (5).
The efficiency of the pump improved as the forms stated above were ased in the order given, and the best results were obtained by combining the rumer (5) with the casing (f), with which combinatior an efficiency of 81 per cent. was olbtained.

The same high efficiency was also oltained from experiments with runners shaped on the same principle as (5), for lifts of from 25 to 30 feet, and from 60 to 70 feet.
In the casings with spiral conduits the area of the cross section of the conduit was nearly proportional to the angular distance of the section from its starting place next the outlet.
In studying the form to be given to the passages through the runner, the movements which it was sought to give to each particle of the water passing through them were:
First, a uniform diminution of the velocity ($\left(r_{0}\right)$ which it has in the direction of the axis of the rumer at entering;
Second, a constant angular acceleration of its movement in a circular path ;
Third, a radial movement having a magnitude proportioned to, the centrifugal force of the particle, resulting from its angular movement determined as above.
While the conditions prescribed by these principles can be realized practically only for those particles of water which continue in contact with the blades and disks, yet they formed the basis upon which the study of the problem was conducted.

Shane of the blades.-The form of the blade surface at each end was determined by the conditions:
(A) That the direction of the first element of the blade, at each point, shall be the resultant of the tangential velocity, $v_{\text {, }}$, of that print, and the axial velocity, c_{0}, of the particle of water which it picks up;
(B) That the last element of the blade, whose function is to impart the velocity of the tip of the blade to the issuing particle of water, shall be in the direction of the radius of the rumer, the object of this condition being to obtain a maximum lift with a minimum speced of rotation of the rumer.
Between the two limiting elements just described, the shape of the blades must be such as to make the passageway between them of such form that the extent of their surfaces will not be so great as to cause undue friction, while at the same time the flow of water through them will be free from eddies and not throttled. This is accomplished by determinating the two generating curves of the surface, that is to say, the two curves formed by the intersections of the blade with the disks. in the following mamer: The curve on the lower disk; i.e., the disk through which the water enters, is the intersection of the paraboloidal surface of this disk with a helicoidal surface-cylindrical or not-having an initial angle of inclination determined by the equation, tan, $a_{1}=\frac{v_{0}}{v_{i}}$. The trace upon the surface of the upper disk is the intersection of its paraboloidal surface with a helicoidal surface whoso generatrix, situated on the cylinder circumscribing the rumer, satisfies the following two conditions:
First. That at its origin, the angle of entrance, u_{i}, shall be determined by equation, tan. $\alpha_{2}=r_{v_{i}}^{v_{i}}$
Second. That, through an angular extent equal to that subtended by the lower curve, the change of curvature shall be as smooth and gradual as possible; the whole of the terminal element of the hade leing on a line parallel with the axis of the rumer, and at the periphery.
These two curves, traced in the manner described above, are united by a ruled, warped surface, which will be the surface of the blade.
Nimber of blades.-The experiments indicate that the number of Wades, which should not be less than six, does not affect the efficiency materially. It does, however, produce a slight effect upon the mean velocity of outflow from the rumner, and therefore causes a small difference in the height of lift corresponding to a given velocity of the periphery of the runner.
speed of the periphery of the rumner.-The experiments demonstrate that the velocity of the circumference of the rumner is great enough if it is $v,=0.88 \sqrt{ } \mathrm{Vgh} / \mathrm{c} / \mathrm{h}$ being the height of the lift. Com-
paring this expression with that given by Professor Rankine-derived from his theoretical discussion of mixed molecular vortices constrained and free-which is, $r^{\prime}=\sqrt{g h},=0.706 \sqrt{2 g h}$, it is to be re. marked that the ratio $\frac{v^{\prime}}{v}=0.801$, and represents practically the eff. ciency of these pumps, as determined by the experiments.
Shape of the annular conduit of the case.-In flowing from the helicoidal blades of the rumner, the water issues without eddies or loss of energy if the annular conduit is formed as in e and f of Fig. 80 . The shape of the cross section of this conduit is the one which avoids abrupt changes in the direction of flow, and, while affording a given capacity of discharge, has the least wetted surface. It ap. proaches a circle, but in reality its outline should be an " elastic curve" such as would be formed by an elastic strip fastened tangentially to the disk surface of the rumer, as at AA', Fig. 86,' and at the other end, as at B^{\prime}, tangentially to a short circular arc selected so as to secure the least practicable wetted perimeter. This form was not determined arbitrarily and it contributes much to the efficiency of the pump. It forms a continuation of the paraboloidal

Fig. 80.-Outline of the cross section of the casing channel in Farcot's centrifugal pumps.

Fig. 87.--Showing the formation of eddies in a channel of cireular cross section.
surfaces of the rumer disks, and its principal advantage is that abrupt changes of the velocity and direction of the water in its flow do not occur, and eddies, such as are indieated in the sketch, Fig. $8 \hat{i}$, are a voided.

Mr. Farcot says that a concentric, instead of a spiral conduit for the case, gave nearly as good economical results, under certain conditions which he does not name. He says that the loss of head from the greater friction occasioned by the higher mean velocity of the water in the spiral conduit, appears to compensate nearly for the loss occasioned by eddies in the concentric conduit, but that an advantage of about 3 per cent. in favor of the spiral case was usually observable. By this is meant, that if the efficiency of the pump with the spiral case were 80 per cent., it would be reduced to 77 per cent. by using a concentric case.
(93) Centrifugal pumps of various sizes, in a series from small to large, are manufactured by the Messrs. Farcot. Their design is neat. Fig. 88 shows a general view of one of them.
(94) Décour's centrifugal pump.-This is manufactured by the Société des ateliers et chautiers de la Loire.
Fig. 89 shows a section. The feature of novelty is a diffuser, or, as it is called, an ejector, surrounding the runner and consisting of

Fig. 88.-Fareot's centrifugal pumps.
two amnular plates made in one piece with the case, and forming stationary expansions of the planes of the revolving rumer disks. The passage way between the plates expands in width as it increases in diameter, forming a flaring outlet to the rumer, through which the

Fig. 83.-Sectional view of Decour's centrifugal pump.
water from the latter flows into the large annular chamber constituting the body of the pump, from which the discharge pipe leads. The action of this flaring ammalar outlet is the same as that of Boyden's diffuser, long since applied in the United States to turbine wheelsand the same as that of Venturi's tube-by which a part of the chergy
of the water, which would otherwise be lost in forming eddies, is utilized in such a way as to increase the discharge.
An official test of a 4 -inch pump, made under the auspices of the Ministry of the Marine, at Brest, in 1886, showed an efficiency of 79 per cent., with a lift of 20 feet.
Nezeraux's centrifugal jet pump.-J. Casse \& Sons exhibited this pump, in which the action of a centrifugal pump and that of a jet pump are combined in a novel way. It is designed for pumping water under a much greater head than can be advantageously overcome by centrifugal pumps of the usual construction, without running them at excessive speed.
Fig. 90 is a section of one form of this pump.

Fig. 90.-Nezeraux's centrifugal jet pump for forcing water wa great height.
A is the inlet pipe, or suction pipe; this enters the chamber B, which may be called the jet-chamber, for it contains a set of jet nozzles, h, leading from the chamber F , and a corresponding set of guide tubes i, leading from B, which, together, constitute a jet pump by means of which water, drawn in through A, is forced into a delivery chamber, C, and thence through the discharge pipe D to any desired height. From the chamber C a large passageway leads downward outside the pump case, on each side, and enters the case again opposite the central opening of the rumner E , so that the two passageways
form the inlet pipes of the centrifugal pump, of which F is the deslivery chamber in which the runner turns.
By this arrangement, when the runner is stationary the pressurg exerted by the head of water in the discharge pipe D is communicated through the passageways G and openings of the runner E to the water in the rumer chamber F, and the pressure is as great in F as in C. When, however, the rumer is made to revolve, the pressure in F will become greater than in C , and may be made as much greater as is desired, the increase being dependent upon the

Fra. 91.-Application of Nezeraux's centrifugal jet pump to lifting water from deop wells.
speed at which the rumner turns. This difference of pressure, when it becomes great enough, will produce in the jet pump a flow of water b ?.ving sufficient velocity to entrain the required quantity of water from the chamber B, the nozzles and guide tubes being
properly shaped and proportioned to produce this result under the prescribed conditions. When the head in the delivery pipe D is great, the larger proportion of the water which flows through the nozzles will circulate over and over again through the centrifugal purnp, a small proportion only being drawn from the chamber B and delivered into the discharge pipe D .

With a centrifugal pump of a given size and speed, this apparatus will pump considerably less than $\frac{1}{n}$ th of the duantity of water that the centrifugal pump alone would deliver, if running under the ordinary conditions and not under the excessive head, and will force this smaller quantity to n times the height to which the centrifugal pump ruming at the same speed would deliver its full volume of water.
Fig. 91 shows the apparatus arranged for drawing water from a depth of 80 or 100 feet below the place where the centrifugal pump is set.
The same system is also adapted as an air pump, for use with a jet condenser, and is said to produce an excellent vacuum. It is also applied in the same manner that ordinary jet pumps are used for exhausting air and gases.
No published results of tests of the efficiency of the Nezeraus pump could be obtained.
(96) Hydraulic rams.-Quite a number of these simple water elevators were shown by different manufacturers, the one first deserving notice being an unusually large machine of its kind, called the "Giant" ram by its maker and exhibitor, Mr. Ernest Bollee, of Mans, France.
A longitudinal section of this ram is shown in Fig. 92, while Fig. 93 is a cross section, in a plane passing through the escape valve.
The Giant ram embodies Mr. Bollee's latest improvements, and differs from rams exhibited by other makers in having the waste valve, A, of the battery, inverted with respect to the usual position of such valves, and counterpoised in such a manner that the valve rises in opening, and is closed by a downward movement. This arrangement admits of placing the valve seat at the bottom of the battery chamber, so that the escape of the waste water takes place downward through the bottom instead of overflowing the top of the chamber, and permits a more complete utilization of the full height fall than is obtainable with other forms, when the rams are placed above the tail water; in fact, in the new Bollee rams a short draft tube may be used beneath the escape valve seat, so that the ram may stand at a convenient beight above the lowest water level and yet utilize nearly the whole fall.
The waste valve A is a puppet or pot lid valve, the stem of which is guided in the bomet of the battery chamber in which the valve works. Its weight is overbalanced by means of two counter-weighted
levers. B, which lift the valve from its seat when the reaction of tho water in the battery chamber takes place, but are so adjusted as to permit the valve to close readily under the action of the escaping waste water as soon as this attains its proper maximum velocity of flow. The delivery valve C, through which the water is forced into the air chamber D when the valve A closes, is also a puppet valve, and is guided in its seat by wings. To prevent an injurious battering of the valve and seat faces, by blows occasioned by the sudden closing

Fig. 92.-Longitudinal section of Bollep's " (iiant" hylramlice ram.
of the delivery and waste valves, hydraulic cushions are provided, consisting of an annular tongue, M. on the top of the valve seat, and a corresponding circular grooveor rablet, N , in the bottom of the valve face. The projecting ring on the seat fits the groove in the valve, so that, when the valve shuts, water is inclosed in the groove N , and as this water can escape only gradually it prevents the metal surfaces from coming violently in contact with each other. An adjustable stop, D, is provided, by which the height to which the waste valve A may lift is regulated. The bottom of the stop, S is recessed, and the top of the crown of the valve male to fit this recess, so that a water cushion is provided here also, to prevent shock when the valve is lifted suddenly so far as to strike the stop.
H. Ex. $410-\mathrm{VOL}$ III- 13

This great ram weighs about $8 \frac{1}{2}$ tons, is 12 feet long, and its height is about equal to its length. The diameter of the supply pipe is 3 feet, that of the waste valve 40 inches, and of the delivery valve 30 inches. The lift of the waste valve is designed to be from 7 to 8 inches, and with this lift the valve is intended to pass 350 liters, or 12.35

Fig. 83.-Transverse section of the battery chamber of Bollee's ram. cubie fect of water per second. Mr. Bollée states that his Giant ram will deliver $1 \overline{0} 0$ liters, or 5 cubic feet, per second-or more than $3,000,000$ gallons of water in 24 hours-to a height three times greater than the fall of the sup. ply water; a duty which represents a high efficiency, even if, as must be the case, he assumes the lift of the water in the force pipe to be measured above the ram and not above the source of sup. ply.*
*The useful effect of a hydraulic ram is described in various ways in the circulars of the manufacturers of these machines; in fact, the efficiency, E , of the ram is assumed by the makers to le represented by one or the cther of the following four different formulie :

$$
\begin{array}{lll}
\mathrm{E}=\frac{q(\mathrm{H}+h)}{\mathrm{QH}} ; & \mathrm{E}=\frac{q(\mathrm{H}+h)}{(\mathrm{Q}-q) \mathrm{H}} \\
\mathrm{E}=q_{\mathrm{QH}}^{h} ; & \text { and } & \mathrm{E}=\frac{q h}{(\mathrm{Q}-q) \mathrm{H}} ;
\end{array}
$$

in which Q denotes the whole volume of water taken from the supply pond, of which the portion q is forced up by the ram to a height, h, above the level of the surface of the pond, by the action of the quantity $(\mathrm{Q}-q)$, which, falling from the pond to the ram, escapes from the waste valve under the head H, measured vertically from the water level of the pond down to the level where the waste water is discharged. Manifestly the last of the four formulæ given above is the only one which expresses the useful effect of the ram, if we estimate this according to the same principle as that upon which the efficiency of other machinery is estimated: for, if w denotes the weight of unit of volume of the water, then $w q^{h}$ is the useful work performed by the ram in taking the quantity q from the source of supplywhich, in the oridinary ram, is the pond from which all the water is taken-and in forcing this quantity up to the height h above the source; while the energy expended in operating the ram is $w(\mathrm{Q}-q) \mathrm{H}$; namely, the energy exerted by that part of the water which falls from the pond to the ram, and is discharged there through the waste valve. The portion of water q which is not wasted also falls to the ram but rises again in the delivery pipe, as high as the level of the pond, without the action of the ram, and the water which is wasted is the only part of the whole quantity Q that is employed in doing the work of lifting the portion q through the vertical distance h to which it is forced above the level of the pond. The expression $\frac{q h}{(Q-q) H}$ then represents the ratio of useful work performed to energy expended, and is the measure of the efficiency E of the ram.
Etelwein long ago obtained from experiments, empirical formule for the efticiency
(98) An automatic air pump for maintaining the proper quantity of air in the air chamber is applied to this ram. It is shown in Fig. 92. F is a pipe rising from the top of the battery chamber, and having near its top a small aperture, !, for the admission of air. This anerture is partly closed by a serew by which the size of the opening may be regulated. Above the opening g is a small puppet valve h. which opens by lifting, and through which air is delivered into a chamber above the valve from which the air finds its way, through a small pipe i, into the main air chamber D. The action of this air pump is as follows:

Immediately after the shock of the supply water, occasioned by the closure of the waste valve, has produced the delivery of a portion of that water into the air chamber, a reaction of the water in the supply pipe takes place, which for a short time reduces the pressure in the battery chamber to less than that of the atmosphere. At this time a small quantity of air is sucked into the upper part of the pipe F through the hole g; but when the period of the next outflow of the escape water has ended, and the waste valve A closes, the shock, again produced by the arrest of the motion of the supply
of well proportioned Mongolfier rams, and experience since his investigations has confirmed the general applicability of his conclusions.
The formula he gives as best representing the mean of the results for all different heads up to $\frac{h}{\overline{\mathrm{H}}}=20$ is

$$
\mathrm{E}=1.12-0.2 \sqrt{h} \mathrm{H}^{\prime}
$$

The following table has been computed from this formula, and shows the duty that a well constructed ram may be expected to perform when the delivery pipe is of liberal size, and the diameter and length of the supply pipe, or penstock, properly adjusted to the conditions under which the ram is used.

Table of the efficiencies of hyfrautic rams.

Erample.-Bollée's Giant ram discharqes 350 liters of water per second throngh the waste valve. in lifting a certain supply to a height above the ram three tines greater than the fall, that is, to a height above the pond equal to twice the head of the fall. Here ${ }_{H}^{h}=2$, and from the above table we have, for the quantity of water lifted, $q=0.42(Q-q)=0.42 \times 300=147$ liters per second. Mr. Bollée says that the ram delivers 150 liters. The efficience of this ram in performing this chaty would be $\frac{150 \times 2}{350}=0.55 \%$, of marly sif per cent. instead of of per cent., the efticiency computed from the formula.
water, compresses the air which has entered the pipe F to a pressure somewhat greater than that in the air chamber, becanse a greater pressure is needed to cause the opening of the main delivery valve than is required to lift the small valve h, and the air in the pipe F is therefore forced into the air chamber. The suddemess of the shock by which the compression of the air in the pipe F is produced prevents the loss of too great a proportion of the air through the hole g, which, though large enough to admit the required quantity of air undor thecomparatively slow aspiration which takes place, is not so large as to allow all that air to pass out again in the short period which its compression occupies. The action of this air pump is much more certain and efficient in keeping the ram in working combition than is the inlet valve provided for the same purpose by Montgolfier, the original inventor of the hydraulic ram.

An air pump similar to that shown by Bollee is applied to the rams displayed by other French exhibitors, and seems to be quite commonly used. (See Fig. 94.)

Fig. 94.-Durozoi's hydraulic ram with air pump.
(99) Durozoi's ram pump.-Mr. M. Durozoi, of Paris, exhibited a ram for using the motive force of river water or foul water under a small head, from one source. for taking purer spring water from another source and forcing it to a high elevation. The general form of this ram pump is not new, but there are unusual features.

Figs. 95 and 96 show sections of the machine.
It is a simple form of diaphragm pump, in which the diaphragm is worked by the shock and reaction, alternately, of the river water which flows into and out of the battery chamber containing the waste valve of the ram.
The water from the impure source enters the battery chamber at \mathbf{A} and actuates the waste valve \mathbf{B}, in the same manner as in the
ordinary ram. A flexible diaphragm, D, of India rubber or leather, separates the battery chamber from a small chamber which is above the diaphragm, and beneath the delivery valve J. When the waste

Fig. 95.-Wongitulinal section of lharozois.s ram pump.
valve B opens, there is a partial vacum formed for a time in the hattery chamber by the flowing away of a portion of the water before the inertia of the mass of water in themain supply pipe is overcome;

Fha, 90.-Transverse section of Inurozii's ram jumu.
this occasions a downward flexure of the diaphragm D, by which pure water is sucked from its source of supply, through the pipe i and check valve s, into the chamber above the diaphragm. When
the waste valve closes, the pressure which is then produced by the arrest of the motion of the outflowing impure water, instead of delivering a portion of this water into the air chamber, forces the diaphragm upward into the chamber above it, and thus forces part of the pure water contained in that chamber through the delivery valve J into the air chamber, and thence through the rising pipe to the desired elevation. The quantity of water thus raised by a ram of a given size depends upon the relation of the height of the fall of the motive water to the elevation to which the pure water is lifted above the source of its supply.
The same manufacturer showed a ram pump with a differential piston; that is, with a piston of large diameter working in a cylinder open to the battery chamber, and having a smaller piston attached

Fia. 9i.-Bollee's ram pump without piston or diaphragm.
to it which works as a pump piston for raising the water which is to be lifted; by this means, with a given fall, water can be forced to a greater height than by using an ordinary ram.
(100) Mr. Ernest Bollée also exhibited a ram pump, for forcing pure spring water by means of river water or foul water, in which he dispenses with a diaphragm, piston, or any substance whatever for separating the foul water from the clear; depending for their separation upon the lack of a tendency of the waters to mingle when they are not agitated.
Fig. 97 shows a section of this ram. C is the inlet to the battery chamber B , which receives the river water and discharges it through the waste valve H. T is an upright pipe, forming a branch from the
battery chamber. It is filled with partitions, which form narrow tubes passing through it and opening into a chamber, A , below the delivery valve E of the air chamber C . The inlet pipe and check valve for the clear water are at D, and the delivery outlet from the air chamber to the force pipe is at \mathbf{F}. The upright branch T is of some leight, and plays the part of a pump barrel. It is divided into numerous narrow vertical passages by small pipes which fill it. Tho changes of pressure which occur in the battery chamber are communicated to the chamber A through the open barel T , and by this means the clear spring water is sucked in through the inlet-valve J, and forced into the air chamber, alternately. The narrow passages in the barrel T prevent such a commotion of the water in the barrel as would cause the spring water which is drawn into its upper part from mingling with the muddy or foul river water with which its lower part is filled from the battery chamber.
In the full-sized glass working model showi by Mr. Bollee a distinct horizontal plane of sharp separation could be seen in the barrel T, betweon the muddy water from the battery chamber and the clear water from chamber A. Whether the diffusion in the clear water, or mixture with it, of other impurities than those which were visible in the water would take place, could be learned only from trials and analyses under various circumstances.
When the difference between the fall and lift is quite small, Mr. Bolle dispenses with the partitions in the barrel T , finding thateven then the waters have no tendency to mingle.
(101) Messrs. W. B. Douglass, of Middletown, Connecticut, Gould's Manufacturing Company, of Seneca Falls, New York, and Silver \& Deming Manufacturing Company, of Salem, Ohio, exhibited in the United States section, well-constructed examples of hydraulic rams of the forms so well known here. They also exhibited ram pumps for two kinds of water.
(102) Hydraulic elevators-Elecators in the Eiffel Tower.--There were five elevators kept rumning continuously to their full capacity, for the conveyance of throngs of visitors to the three principal platforms of this gigantic structure, which formed one of the most attractive features of the Exposition.
Two elevators, of the Roux, Combaluzier, and Lepape system, in the east and west piers, carried passengers from the ground to the first platform, 187 feet above; two others, of the Otis type, built by Otis Bros. \& Co., of New York City, were placed in the north and sonth piers, and ran from the ground directly to the second platform, with a landing at the first platform, and a total lift of 377 feet. Lastly, an elevator, on the Edoux system, carried visitors from the second platform to the summit of the tower, sin feet from the ground, performing the lift of 528 feet in two equal flights of 264 feet each,
the passengers being required to pass from one car to another at midheight.
Water under pressure is the only motive power combining the precision and ease of management required for elevators under the conditions of these; and accordingly all the tower elevators are worked by water, which is supplied by pumps placed in the bottom of the south pier. Those by which the four lower elevators are fed pump the water through a pipe of $9.8+$ inches diameter into two cylindrical tanks, each 9 feet 10 inches diameter and 23 feet long, placed on the second platform. The two tanks are connected by a pipe 19.69 inches diameter, from which four branches aro led down to supply the hydraulic cyiinders at the foot of each pier. On leaving the cylinders the water returns through the underground pipes into the feed tank at the south pier, whence it is pumped anew into the upper tanks. The Edoux lift is supplied by two Worthington pumps, which deliver the water into a tank 9.84 feet diameter and 13 feet deep, placed on the third platform. A similar tank on the intermediate platform receives the discharge water, so that the pumps take their water from the height of daje feet and deliver it to a height of 918 feet. The cast-iron pipes are made extrastrong to resist so great a pressure.
The elevators in the piers are, essen+ially, inclined railways of very steep grade, the rails from the ground to the first platform haring a rise of $1 \frac{1}{2}$ feet to each foot of horizontal distance, while their grade from the first platform to the second is 6 to 1 .
The cars of these inclined railways are two stories high. Each car of the Roux elevators has room for 100 passengers- $\% 0$ standing and 30 seated-while each of the Otis cars will accommorlate 50 passengers, 25 in each story, all seated; the change of inclination of the car while in motion, in consequence of the change of grade at the first platform, makes it impracticable to allow the passengers to stimd. The car of the Edoux elevator has room for fo or 0 on passin. gers, all standing. Twelve trips per hour are made by the carson the Roux and the Edoux elevators, and eight by the Otis: thesp...i of ruming being 200 feet per minute for the Roux, 410 for thetmis, and 180 for the Edoux car. Twenty-four hundred persoms per home can therefore be carried to the first platform by the Roux clevaturs. 800 from the ground to the second platform, or from the first phatform to the second, by the Otis lifts, and 800 between the seroml platform and the summit by the Edoux.

A brief description of each of the three systems will the given, but for more complete information the reader is referred to illustrated articles in Engineering of July 4, 1890.
(11:3) The Roux, Combaluzier, and Lepape elevators.-In this system the car, instead of being drawn up the inclined railway by means of wire ropes, is attached to the lower branch of a circuit formed
by an endless chain, ruming parallel with the rails on which the call runs, and passing over two large wheels, le feet in diameter, one at the head and the other at the foot of the lift. The wheed at the foot is a sprocket wheel, having recesses in its periphery for catching hoh of the ends of the chain links. It is revolved so as to tum the gmbess chain in the direction for moving the car upward, by means of a phanger which works in a horizontal hydraulic cylimder and is thrust outward for hoisting. The plunger carries a pulley shoareat its outer end, over which a pitch chain passes, one end of which is fastened to the framework holding the cylinder in place. This chain is led forward from its fastening and passes downward half aroumd tho sheave, then backward bencath the cylinder, and lastly, half around a sprocket pinion which is keyed fast to an axle on which the $1:-$ foot sprocket wheel is also fastened. The loose end of this chain beyond the pinion is contained in a receptacle formed by a horizontal pige, in which the chain slides back and forth as it is given out or taken in by the rotation of the pinion.

The length of pitch chain taken up) or given out hy each (ommplete movement of the plunger is equal to twioe the stroke of the latter, and as the diameter of the sprocket pinion is a little less than two-thirteenths of the diameter of the 12 foot sprocket whee which drives the endless chain and car attached to it, the stroke of the plunger need be only about one-thirteenth as long as the travel of the car on the sloping railway, or abont $16 \pm$ feet.

Thr endless chain for the car is composed of links formed of heary bars about 40 inches long, jointed together by means of strong pins, and abutting against one another end to end. The chain rums in chamels for its whole circuit, and is confined in these channels in such a manner that the chain can act by thrusting, as well as bembling, without buckling. This affords double security aganst the falling of the car, the action of the chain being as follows: If lab Ingth of the upper branch of the chain eireuit is so adjusted an to act in tension to draw the car upward, the tearing apart of a Thk woulid not result disastrously, as the car would then be held The the part of the endless chain below it, that is, by the part whin it the time lies between the car and the large sprocket wheel hhw: for this part of the chain, formed like the rest of links abuting against one another, and kept from flexure by the chamels in whirh it is confined, would act as a solid bar on the end of which the cor would be supported. If, on the other hand, the upper part of the circuit of the chain is slack, the car will not be pulled upward by the chain, but will be propelled by being thrust upwad from below, by the chain acting like a continuously lengthoning strut extending from the sprocket wheel to the car ; now, if under these conditions the lower part of the chain should yield, then the
car would remain safely suspended from the part of the chain which extends above it.

To lessen the enormous friction which would be occasioned by dragging this heavy chain, weighing 27 tons, through its guiding channels, it is supported on truck wheels which turin on journals on the two ends of each joint pin, aud run, as upon rails, on the top or the bottom of the channels, as the case may be. There are about three hundred and fifty of these wheels in one embless chain. The car is supported by two of these endless chains, one on either side, each of which is provided with its own special hydraulic cylinder, and either of which atone is strong enough to sustain the car. The sheaves, pitch chains, and sprocket pin for each of the hydraulic cylinders are duplicated side by side, each set being of sufficient strength to sustain the load and leave a large margin of safety.

The Roux elevators were noisy in their operation, as might have been anticipated, hut their security was beyond criticism, and their operation during the Exposition seems to have been satisfactory.
(104) The Otis elecators.-The problem which the Otis Brothers undertook to solve was more difficult than that presented by the other elevators in the tower. The continuous lift was much higher than those of the others, and the change of inclination of the track upon which the car ran-roferred to elsewhere, and which occurred at the level of the first platform-increased the difficulty of designing efficient and safe elevators adapted to the service these were to perform. The Messrs. Otis overcame all the difficulties with great skill, and furnished elevators of the American type which were a credit to their firm and to the country it represented.

The hoisting apparatus of these elevators is of the type usually adopted by the Otis Brothers, and consists of a hydraulic cylinder bored throughout its length, and containing a piston whose rods pass through stuffing boxes in the upper cylinder head, and carry at their ends the movable sheaves of a purchase, by means of which the movement of the piston is multiplied sufficiently to give the required lift to the passenger car. The car is suspended by wire ropes passing over sheaves at the head of the lift and connected with the purchase. The piston rods act in tension, for, in hoisting, the pressure water is admitted to the top of the cylinder, and the water below the piston is allowed to escape and return to a tank at the foot of the lift. In lowering the load, the supply and escape valves are both kept closed, while a communication is opened between the top and bottom of the cylinder through a pipe connecting the ends, and the water displaced by the piston as it is drawn upward by the descending load passes into the part of the cylinder below the fistom, an arrangement hy means of which the cylinder is always kept full of water. In the Otis elevators for the tower all the apparatus is of unusual size; the hydraulic cylinders, 38 inches in diameter, are inclined at an angle
of about 30 degrees with the vertical, and in each of these the two piston rods, of t inches diameter, are nearly 40 feet long. The upper embs of the piston rods are attached to a traveler sustained on frucks which run on rails parallel with the axis of the cylinder, and this traveler carries six 5 -foot pulley sheaves, placed side by side, and ading in connection with six similar stationary sheares, secured to the framing of the tower, so as to form an immense 12 -purchase tackle. The length of the stroke of the piston in the hydraulic cylinder is therefore one twelfth of the travel of the elevator car on its inclined track, or about $3 t$ feet. 'To avoid inconvenience and danger from undue flexure of the inclined piston rods, ingenious provisions have been made to allow them to slide through two movable supports located outside and inside the cylinder-outside, between the stuffing box of the cylinder head and the end of the traveler to which the rods are attached, and inside between the cylinder head and the piston-in such a manner that the distance between two supports, that is, the distance between the piston and the stuffing box, or between the latter and the traveler, or between either of these and one of the movable supports, never exceeds half the length of the stroke. The outside movable support is a crosshead which slides on guide bars, and on which the piston rods lie as in a bearing box. The inside guide is a spider, or kind of open-work piston, which rests upon the lower side of the cylinder bore, along which it is free to slide; it is coupled to the crosshead by means of a rod passing through a stuffing box in the cylinder head, and stands midway between the upper cylinder head and the piston when the latter is at the bottom of its stroke, while the crosshead at this time lies just above the cylinder head. During the upward movement of the piston the spider and crosshead remain in the position just described until the piston has risen far enough to come in contact with the spider, which is then pushed upward by the continued movement of the piston, carrying the crosshead upward, away from the cylinder head, at the same time, until the upper end of the stroke is reached, at which time the spider is nearly in contact with the cylinder head, and the crosshead is midway between the cylinder head and the traveler. In this condition of the parts the piston rods are supported by the movable crosshead outside the cylinder, midway between the thacoler and the upper cylinder head, just as they were upheld at mil-length by the spider inside the cylinder, when the piston was at the lower extremity of its stroke. In the downward travel of the piston, the spider and crosshead remain in the position they occupird when the upward stroke was completed, until the piston has dusponded through about half its stroke, when the traveler strikes thr "rosshead and forces it and the spider downward into the position first deseribed.

The counterweight for the car consists of a long truck loaded with
pig iron, and traveling on a straght track which has the samm in clination as the mane track on which the car roms, and is locited bencath the latter, near the hase of the tower. The comoterwoight is commected with the car hy means of two ropes.arranged as a bpurchase tackle, and passing over sheaves at the head of the lift.

To prevent the hoisting ropes fom sagging, they are supported at intervals by grooved sheaves beneath them, except where the indination of the rails gralually changes from the slope it has below the level of the first phatform, to the murh steeper slope abowo that level; here the pull upon the ropes tends to lift them, and, in order to have the line of draft continue nearly parallel to the track, it is necessary to place a series of guide sheaves above the ropes, so that the latter may be pressed downward, and be forced to lie in a concave plane curved upward. In order, however, to permit the passage of the fastenings by which the ropes are attached to the car, and in order to transfer gradually the direction of the pull of the ropes from the direction of the lower part of the track to that of the higher, the holling-down sheaves have to be lifted gradually, and successively, as the car approaches them in ascending, and must be depressed successively as the car passes them in descending: movements which are produced by inclined planes attached to the car and acting on cradles in which the bearings of the sheaves are held.

The usual safety appliances, consisting of clamps acting as brakes on opposite sides of the rail, for arresting the fall of the carriage in the event of the breakage of one or more of the ropes, are applied to this car. These are essentially modified from the customary form, and adapted to the pecnliar comditions umler which they have to work; but before the elevators were put into operation the efficiency of all the safety appliances was demonstrated he cutting apart the ropes, and thus setting free the loadod car, which descended only a short distance, and was brought to rest by the brakes without injurious shock. Safoty brakes are also applied to the counterweight truck to arrest its fall in case of any falure of its ropes.

A fuller description than that given ahove, of the Roux and Otis elevators, may be fouml in a paper read by Mr. Ansaloni at a meeting of the Institution of Mechanical Engineers. This paper is published in full, with illustrations showing many details. in Engineering, Lomdon, July 5, 12, and 19 , and in The Engineer of July 19.
(10\%) The Edoux elecator.--The Edoux hydraulic passenger elevator has been introducal to a considerable extent in Paris. It belongs to that class of elevators in which the car for receiving the passengers rests on the top of an upright plunger, whose length is equal to the height of the lift, and which works in a hydraulic cylinder as long as the plunger, and of considerably larger diameter. When an elevator of this kind does service for the lower stories of a building, the greater part of the upright cylinder must be buried in
the fround, so that when the height of the lift is great its penetrafion below the surface must be to a great depth: its establishment is consequently difficult and expensive in many cases. In the Tromalero the elevator eylinder penctrates es30 feet into the ground. It is a common practice to counterpoisa a large proportion of the weight of both car and plunger by means of a weight suspended from ropes passing over sheaves at the heal of the lift, the preponderance of the (ar and plunger being so adjusted as to be sufficient to overcome the friction and other resistances which would impede its motion, and threfore enough to insure the desent of the empty car. The car of the Edous elevator is combterposed in this way by an invariable weight, but a variable counterposise also is provided for the plunger, in a manner, and for a rason which will now be deseribed.

The effective weight of the plunger is less when at the bottom of its stroke and wholly immersed in the water contained in the hedrablie cylimder. than when it has risen out of the cylinder and stamds at the top of the lift, by an amount equal to the weight of water displaced when the planger is immersed: and its effective weight is diminished or increased in proportion as it is more or less immersed, differing, therefore, for every different position of the car. The effect of this variation of the virtual weight of the plunger on the operation of the elevator, is precisely the same as if the load in the car were uniformly incrased from the time when the plunger starts to rise until it reaches its greatest height. when the excess of loal thas added would amount to the weight of a column of water "f' the same diameter and longth as the plunger. This varying lom acts prejudicially in two ways: First, it tends to make the sperel of the elevator diminish as the ral rises; and secomb, it entails a waste of water; for the quantity used for each trip of the elevator must be sufficient to lift not only the maximum net load which the car is intended to carry, but also an additomal lowl equal to the woight of the whole quantity of water displaced be the plunger.
The listinctive feature of the Eloux elevator is an arrangement for moltralizing this variation in the load, and rembering the pressure which the water is required to exert miform throughout the whole lift. It consists simply in making the wire rope or chain by which the car and counterpoise are comected with each other, so large, that a length of roje equal to the lift of the phanger shall weigh just half ats much as a column of water of the same diameter and length as the planger. With this arrangement. when the car is at the foot of the lift the whole of the rope hangs above the car and its weight is alded to the load in the car which the plunger must lift; but, when the car is at the top, all the rope has been transferred to the opposite side of the sheave, so as to hang above the counterpoise, adiing its wifight to the latter; the plunger is then only loaded with the load in the car diminished by the weight of the rope, the entire uniform
change of load which is thus produced, by the uniform transfer of the rope as it passes over the sheave from the side occupied by the car to that of the counterpoise, being equal in amount to twice the weight of the rope transferred, and therefore exactly cqual to the change in load which is occasioned by the change of the displacement of the plunger in the hydraulic cylinder, and in a direction opposed to this latter change; one change, therefore, counteracts the other, and the load to be lifted remains the same in whatever position the phunger may be. In practice four

Fig. 98 -The Edoux elevator in the Eiffel Tower. chains are often used, one for each corner of the car, so that their size does not become excessively large for elevators of moderate capacity, where a grood head of water can be had. The wire ropes employed are flat, thin, and flexible, and yet of considerable weight per foot of length.
In applying the Edoux system to the Eiffel Tower elevator: for conveying passengers from the second platform to the third and highest, a condition which had to be met was that no part of the apparatus should extend below the second platform, a limitation insisted upon in order to avoid injuring the symmetry of the outlines of the structure. This difficulty and that of the great height of the lift were overcome, without sacrificing any essential feature of the system, by the expedient of dividing the lift into two equal flights. The vertical distance from the second platform to the third is 525 feet. Supposte a station for an elevator car to be located at half this height above the second platform, and that this is the starting point for a car A, Fig. 08, which rises from this place to the third platform, while at the same time its counterweight, consisting of a similar passenger car, \mathbf{B}, descends from the same station, as a starting point,
to the second platform; the car A, making its trips back and forth only between the mid-height station and the third platform, and the car B, between this station and the second platform. When the cars arrive at the mid-height station, which is the lower terminus for A and the upper terminus for B, the passengers who have come up from the second platform in B pass into A, while those who have come down from the third platform in A cross over into B , the upwardbound passengers completing the ascent to the summit, in the car A, while the downward-bound passengers complete their trip in B. Two short, parallel platforms at the meeting station, afford separate passageways through which the passengers can change car's without interfering with each other.
By this arrangement the whole great lift is effected without the employment of any mechanism that had not already been tested by long use in the Trocadero, on a scale which afforded a safe precedent.
The cars are guided between vertical rectangular posts, of which there are three, one extending through the whole height of $5: 5$ feet, anl two of half that height; the one on the left reaching from the second platform to the meeting station, and the one on the right extending from the meeting platform to the summit; all braced firmly to the framework of the tower at frequent intervals. The guides consist of cast-iron pipes, bolted to the posts, and having a slit all along the side next the car. The cars are moved by means of two plungers 12.6 inches in diameter and 265 feet long. working in hydraulic cylinders 15 inches in diameter, which reach from the second platform up to the meeting station. The plungers rise through the guide pipes, which steady them and protect them from the influence of wind. They are connected at their upper ends by an equalizing bar, on the middle of which the bottom of the car A rests. The hydraulic cylinders and rams are of steel pipe, riveted at the connections, except a portion of the length of the plungers, which is of cast iron made heavy so as to afford a preponderant force for lifting the suspended car B. Four flat wire ropes about 11 inches wide, two attached to the car A, and two to the plungers, are led above the third platform, then over sheaves, and downward to the car B, where they are fastened to the ends of an equalizing bar, from the center of which the car is suspended.
In the operation of the elevator four conditions occur:
First. Car A may be empty and car B loaded.
Second. Both cars may be loaded.
Third. Both cars may be empty.
Fourth. Car A may be loaded and B empty.
Only the first and last conditions need be considered.
Under the first condition, suppose car A at the top of its lift and B
at the second platform. The car B and its passengers are now sustained by the weight of the plungers, and the weight of the latter must be as great as the weight of the passengers in the car, added to the unbalanced weight of the ropes hanging above the car B and to the weight required to overcome the frictional resistances. The last is assumed to be 5, 250 pounds, and the weight of the passengers 8,800 ; as the water displaced by each foot of length of each phunger weighs $5+$ pounds, the weight of each rope should be $13 \frac{1}{2}$ pounds per rumning foot. The weight of the two plungers is, therefore, $8,501+$ $525 \times 4 \times 13 \frac{1}{2}+5,250=42,400$ pounds.

Under the fourth condition, suppose A to be at the foot of it.s lift and B at its highest position, that is, suppose both cars to be at the mid-station; then, as the same length of rope hangs on the side of one car as on that of the other, the upward force required is equal to the weight of the passengers in A, added to that required to overeome friction, and to the weight of the plungers, diminishsd by the weight of water displaced by the latter ; or in numbers, the force $=8$, sino + $5,250+42,500-262 \frac{2}{2} \times 108=56,550-28,350=28,200$ pounds. As the combined area of the plungers is 250 square inches the head of water required above the top of the hydranlic cylinders, is $\frac{28,200}{250 \times(1.44}$ $=2 t 0$ feet.
(10tj) Work done and water consumed.-(From Engineering, London, July 5, 1889.) Each of the Roux elevators consumes 1,925 British imperial gallons of water per trip, or the two together 3,850 gallons. Each Otis elevator consumes 1,728 gallons per trip, or the two together 3,456 gallons. The four elevators together consume therefore 7,306 gallons in one minute, since each of them takes one minute for the ascent; this is equal to 121.8 gallons per second. The difference of level between the pumping tank at the south pier and the supply tanks on the second platform is about 4.43 feet, after adding the loss of head. The power absorbed during the ascent of the four elevators from the ground level is thus equivalent to $\frac{7,306 \times 10 \times 443}{33,000}$ $=980.7$ horse-power, or say 1,000 horse-power. The Edoux elevator consumes 31.69 gallons per second. The difference of level between the two tanks, adding the loss of head, may be estimated at 393.7 feet, which will give for the power exerted in the ascent $\frac{31.69 \times 60 \times 10 \times 393.7}{33,000}=227$ horse-power. The combined power thus amounts to over 1,200 horse-power, which, however, is in reality exerted only at intervals, namely, at the times of the ascents, or for about one-fifth of the time occupied in making the complete trip up and down. The power is accumulating in the tanks during the stoppages and descents, and consequently less than 300 horse-power is required to be developed continuously by the pumps.
(107) Ellinyton's hydraulic bulance ele cator.-An clevator: designed for use in cities where hydraulic power is furnished by water under a pressure of $\mathbf{i o g}$ or soo pounds per square inch, distributed through pipes in the streets, was exhibited in operation in the British section. liy the Hydraulic Engineering Company, of Chester and Lomdon.
The elevator is of the direct-acting type, in which the cage is attached to the top of a phunger, which has a stroke as long as the height of the lift, in a hydraulic cylinder sunk in the gromed. It is

 PWersume inch.
impracticable to apply directly to the lifting phanger of such mevators a pressure so great as that which the supply water exerts, becanse the cross section of theplanger would require fobe so small, for an clevator of moderate capacity even, that it would be too slemder to
H. Ex. 401-vol $1 H-14$
sustain the loal. For example. if the water at foo pennds presure were admitted directly to the plunger, the diametar of the latter would not be greater than $1 \frac{1}{}$ inches for an elevator accommodating five passengers.

Mr. Ellington has made it possible to use a planger of any desired size. by a device which affords at the same time a means of counterbalancing the dead weight of the care and plunger, without employing a suspended counterpoise with its somewhat complicated accompaniments of sheaves and ropes. Reforing to Fig. 99, the eylinder, A. in which the lifting plunger. B. works, is connected through pipes. and through a hollow plunger. C. with another herdraulic cylinder, D. of the same capacity as at but of larger cross section and propertionately shorter stroke. For comvenience this larger cylinder is inverted and slides up and down orer the fixed phonger C , which is fastened to a heavy base plate resting on a foundation. An invariable quantity of water is contained in the celin. ders A amd D and their comnections, so regulated that D stands at the top of its stroke when the elevator cage is at the foot of the lift. and at the bottom of its stroke when the eame has risen to its highest point. The deal weight of the cage and phomer B is coment balanced by weights attached to the cylinder D. and the load in the car is lifted by the action of the high-pressuresuphy water applied so as to force the cylinder downward. This is done by atmitting the supply water to a small hydradic eylmor. chosed at the hotom. which hangs down so as to form a deep perket inside the rydinder D, and receives a fixed plonger. B. held in place by a crosshead at its top and by side rols which extemd downwarl and tie the phunger to the foumdation base plate. The plunger E is hollow and the water is conveyed through it to its erlimer. If water shmuld lak from cylinders dand Dor their commections, the cylinder D would desemd lower than it should do when the rage is at the top of its lift: this action is taken advantage of to afford a means of supplying the de. ficiency by armitting some of the pressure water though a valve which is opened antomatically by the cylinder D when the latter stands toolow.
(10s) Otis passenger elevator.-The American Elevator Compan! of New York City, exhibited an Otis hydranle: high-speed passenger elevator, in the building in which the great terrestrial globe was displayed.

This elevator wats used continuously for conveying visitors to the top of the building.

A gotd medal was awarded for the exhibit.

VII.-The transmission of power by compressed alr and rareFIED AIR.

(109) A problem of growing importance which presents itself to the engineer for solution, is the distribution of power in cities for use under circumstances where the establishment and care of a steam boiler on the premises is impracticable, or would be inconvenient or umprofitable. The cases where there is a demand for a distributed motive force from which power can be derived, are already very numerous: and the luxury of having a convenient, safe, and cheap source of power for domestic use, or for the use of the artisan who needs only a small supply, must, when once enjoyed, become a necessity. as the supply of gat for lighting and that of machinery for domestic use have become. There are cases where even very considerable power an be profitably derived-from a motive forco supplied from a distance, as, for example, for running isolated phants for deatric lighting.

Seroral methods, dieft or indirect, for offecting this distribution of power present themselves and have been more or less successfully employed. Thoy all have their distinctive mbantages for different ciremmstances of their use. Several will be commerated.

1. The distribution of water power through the same mains as those through which the water supply of the city is obtaned, and ako through a separate system of pipes used equedally for power supply. has been deseribed in this report.*
2. Hydraulic power for the operation, chiefly, of hydranlic cranes, capstans, hoists, elevators, riveting, etc., has been very successfully distributed in several dities in Fagland and on the continent of Europe. by means of a water supply under very high pressure- 800 pounds per square inch-through pipes in the streets. This source of fower is only applicable for special uses, and can not be profitably used for rumning machinery in general. ${ }^{\gamma}$
3. Electricity provides another means of distributing power.
4. Illuminating gas is available for the distribution of power, by supplying the fuel for the gas engine.
5. Steam distributed through pipes in the streets, used principally for heating, also furnishes a source of power; but hitherto has not bern protitably applied.
6. Highly heated water, distributed in the same way as stemm, has also been used.
7. Compressed air has been successfully distributed throurh pipes in the streets.
8. Rarefied air, also conveyed in pipes, finds its application for power distribution in Paris.
[^18]Both last-named systems were illustrated in the Exposition.
In discussing the availability of a particular medium for the con-- veyance of motive force, from the point of view of cheapness to the consumer, the questions which arise-after that of the first cost of obtaining or producing and storing the medium itself at the central or distant station from which it is distributed-relate to the cost of the chamels for its distribution, and their maintenance; and in this connection the question whether the medium can be made useful for other purposes than for power is a vital one; for, if the cost of distribution can be paid for in great part, or wholly, by the charges for these other uses, the cost of the medium delivered for power may be reduced nearly to that of its production at the central station.

A comparison from this point of view, of the different systems enumerated above, is useful.
The several uses to which the medium can be applied are:
In system 1, water supply and power for general purposes.
System 2, hydraulic power only.
System 3, lighting and power.
System 4, lighting, heating and power.
System 5, heating and power.
System 6, heating and power.
System 7, cooling and power; ventilation incidental.
System 8, power only ; ventilation incidental.
After the question of the cost of the medium through which the forco is supplied-or often, indeed. independent of this to a considerable extent-the features of any system which are valued by the consumer are, safety in the use of the medium, small expense for attendance upon the motor, compactness of the motor and its availability for use in any given roon or position, and, lastly (in many cases, a feature as important as any) convenience of use. With regard to the last the following conditions are to be considered: The alsence of unpleasant smell or heat, the facility the medium affords for its disposal after it has been used, the ease with which the motor may be started, its reliability for constant service, and its simplicity of construction, so that it may not be liable to disarrangement if neg. lected or unskillfully managed.
It is not necessary here to compare the different systems in these respects, but it may be said that, except in the feature of costliness of the medium, the desired conditions are nearly all satisfied in the use of compressed air; while it must be admitted that the cost of the power to the consumer is quite high, at the rates at which compressed air is sold in Paris.
(110) The Poppsystem, exhibited in the Exposition by the Parisian Company for Installations of Compressed Air and Electricity-Vic-
tor Popp \& Co.-is an example of a very extensive system for distributing compressed air in Paris.
It is the outgrowth of an enterprise started 20 years ago for supplying compressed air for operating clocks, so as to distribute uniform time throughout a large section of the city. At present, however, although about eight thousand clocks are operated by the air. its use for this purpose requires only a very small proportion of the power developed at the works of the company, where the air compressors in (nperation at the time of the Exposition were working at their full (apacity of 2,000 horse-power. The demand for power in the district where the air is distributed was even then far greater them could be supplied, and the capacity of the works was being increased to 4,000 - horse-power.

The works of the company are situated in St. Fargeau street, near the Buttes Chamont, more than a miles from the center of the district where the greater part of the air supply is delivered, and nearly 5 miles from the most distant place to which the main pipes extend. The collective length of the pipes for distributing power exceeds 30 miles, and for the time service is about 40 miles, not including service pipes.
The company publishes a list of over two hundred streets in which its pipes are laid, and the names of three hundred and fifty consumers, employing the air in four hundred motors varying in size from one twenty-fifth of a horse-power to 50 horse-power or more. Some further particulars of the company's plant and the working of the system are given.
The air-compressing machinery is all at the St. Fargeau street station, and is operated by steam.
There is a small compressor for the time service, a 350 horse-power beam engine operating compressing cylinders, and six pairs of compound, coupled, horizontal, condensing, compressing engines, having an air cylinder behind each steam cylinder and in line with it. The diameters of the high and low pressure steam cylinders of the compound engines are 22 inches and 35 inches respectively, and of the air cylinders 238 inches, the length of stroke heing 48 inches; these six engines develop 340 indicated horse-power each, when rumning at ti revolutions per minute, the steam pressure at the boilers being about 90 pounds.
As St. Fargeau street is situated at a distance from the river, the supply of water for stem condensation and for cooling the air in the compressors, has to be taken from the city mains, and is very expensive. To economize it the same water is used over and over again, and is cooled after each use by exposure to the atmosphere, a great extent-about 30,000 square feet-of cooling surface being provided, over which the water flows slowly, and to which the outside air finds free access. Water to supply waste from evaporation, and a small
additional guantity needed in warm weather to keep the temperature of the condensers low, is all that has to be taken from the mains for daily use.

The compressed air is delivered at a pressure of ris-pound gange pressure-batmospheres absolute-into roservoirs in the engine rom. and from these it passes into the distributing mans. The total quantity of compressed air delivered daily corresponds to from 7,000,000 to $8,000,000$ cubic feet at atmospheric pressure and temperature. The volume of the reservoirs is 9,000 cubir feet collectively.

The principal conduit for conducting the comprosed air from the works was, at the time of the Exposition, a cast-iron pipe of nearly 11.8 inches diameter. having a unform thickness of three-cighthe of an inch. The longths of pipe abut end to emb, and the joints are made tight in the way shown in Fig. 100).

Fin. 100.-hection of pipe juint for empressed air.
a and a are rings of India-rubberpacking. spluare in section, an(ircling the pipe: 7 is a short castiron sleeve against which the rubber rings are compressed, and made to embrace the pipe tightly. by means of two cast-iron rings. c.e. which aredrawn together by boits. This joint is efficient, and gives some elasticity to the lines of pipe; it is used on all the distributing mains, of whateversize.

The mains are lorl through the strects: part of ihie way through the great sewers. in whieh thes are suspended, and part of the way moler the roalways and sidewalk. where they are buried. At intervals automatic traps with floats are provided for the removal of water which comdenses in the pipes.

The velocity of the air in the mains is at times as high as 45 fer per second, and yet the loss of pressure from friction is not great. Professor Kementy found that, at a place 3 miles distant from the Sit. Fargeau Street station, and at a time when the indicated power there was 1,250 horse-power, and the velocity in the main 20 feet per secomd. the loss was only 4 or 0 pounds.

The air is used in various kinds of motors. A cheap. compact. rotary engine is employed for powers as small as from one-twelfth to one-half of a horse-power. For greater power than this the air is used in vertical or horizontal engines of the same kind as those in which steam is employed, without alteration of the engine in any way to adapt it for the new use: double cylinder. tandem on couphed, componnd engines being used where the power required is very considerable.

To insure constant uniformity of pressure, the air is delivered to the consumer through a reducing valve which diminishes the pressure to about 65 pounds. Before ontering the reducing valve the air passes through a meter, which consists simply of a fan wheel driven by the air flowing past it. These meters are tested under the same conditions as those of its use and the rating thus obtained enables an estimate to be made. from the indications of the meter, of the quantity of air delivered to the consumer.
The air is not all used in motors, but is applied in a variety of ways: For raising liquids, as wine or beer, into tanks from which it can be drawn; raising water for domestic use into tanks in the attics of houses when the pressure in the city pipes is insufficient; operating hydraulic olevators, hoists, etc. : and furnishing blast for furnaces. It is also used for refrigeration. At the morgue the air is used for cooling the chamber where the bodies are exposed. At the Commercial Exchange airequivalent to 1 on horse-power isemployed for cooling refrigators in which meats, vegetables, butter, etc., are preserved. The air is also used in several phaces of amusement for driving ventilating fims, while parts of the building are cooled in hon weather by the cold air exhansted from the motors.
The demand for the compressed air, including that needed by the company for operating the dymamos in its clectric-light stations. became so great that armanments had to be made for doulling the capacity of the works and duplicating the large distributing main. This addition was in progress. but not completed, at the time of the Exposition. New compressors of improved construction were heing built by the John Cockerill Company, of Seraing, Belgium. and one of them was exhibited in Machinery Hall. The makers of these new compressors gunamtee an economical efficiency corresponding to the delivery of $12 t$ pounds of air. compressed to 90 pomuds gange ?nessure--7 atmospheres ahsolute-for every pound of coal comsumed mader the boilers. These in. reased facilities for producing and delivering the air are now completed.
Wherever economy of the air used for power is an important consideration, it is heated just before being used. by means of a reheatings stove on the premises where the motor is amployed. This process not only seeures an increased ecomomical efficiency of the wir and the motor, but also affords a means of anoding the excessive cooling of the expanded air, and prevents the accumulation of ice in the exhanst pipes. The reheaters are compact, and the quantity of fued required is small, so that it need be furnished only at intervals of several hours. Coke or coal is used for fuel in the stoves for the larger motors, and gas for the smaller sizes. The reheater for a 10 horse-power engine is about 00 inches diameter and 30 inches high, or for 1 horse-power s inches diameter and 1? inches higri.
(111) The Popp system, as applied in Paris, has been made the
subject of caroful experimental investigation at different times he Professors Radinger of Vienma, Reidler of Berlin, and Kenneds of London. The results of the different tests do not differ greatly from one another, and are favorable to the system.

Professor Reider found that a 10 horse-power engine consumed per hour a quantity of air corresponding to 1,350 eubic feet at atmospheric pressure and γ° F. temperature, for each horse-power exerted at the brake, when the air was used without reheating; while this quantity was reduced to 780 cubic feet per hour when the air was heated to $3: 20^{\circ} \mathrm{F}$. before entering the motor. As the afficie cy of the 10 horse-power motor was found by Professor Kemedy to be 67 per cent. in the first case, and 81 per cent. in the second, the above quantities correspond to the consumption of 900 cubic feet of cold air and fis) cubic feet of heated air per hour and per indicated horse-power.
The small motors in which the air is used in Paris are quite inefficient, so that the hourly air consumption rises to 1,060 cubic feetestimated at atmospheric pressure and $\%^{\circ}{ }^{\circ} \mathrm{F}$.-per brake horse-power, in the thorse-power motors, and 1,600 cubic feet in those of 1 horsepower, even when the air is heated; while the consumption of cold air in the small rotary motors amounts to as much as 4.9 cubic feet of atmosphere per hour for each foot-pound of work performed per second; which is at the rate of an hourly consumption of 224 cubic feet of air at atmospheric pressure, or 37 cubic feet of the compressed air-at 75 pounds gauge pressure-for a motor exerting, effectively, one-twelfth of a horse-power. The motors experimented upon were in some cases at a listance of 3 miles from the St. Fargeau street station, and the conditions under which all were tested were essentially the same.

Professor Reidler found that $3 \geqslant 0$ feet of air at atmospheric pressure and temperature were compressed and delivered into the reservoirs for each indicated horse-power developed in the steam cylinders of the compressing engines at the station.*

The indicated power which must be exerted in the steam cylinders of the compressors at the St. Fargeau street station, in order to obtain each effective horse-power from the motors of different capacities using the air either at $70^{\circ} \mathrm{F}$. or reheated to $320^{\circ} \mathrm{F}$., has been computed, and is given, with other particulars. on page 21%.

The prices charged by the company for the use of the compressed air vary according to circumstances. In some cases the power required to do certain work is estimated, and a certain gross sum is charged by the year for the use of the air to do the work. Where water is raised or elevators worked, the charge is by the cubic meter of water raised to a certain height, or per cubic meter of water used in raising the elevator cage through a certain lift. In general, how-

[^19]ever, 1.5 centimes is charged for a volume of air corresponding to 1 cubic meter at atmospherie pressure; that is, at the rate of s. 5 cents per 1,000 cubic feet, at atmospheric pressure. or about one-half of a cent for 40 cubic feet of the compressed air at at-pounds grage pressure.

Quantity of air required by the motors and cost of pouer to the consumer.

With one of the small rotary motors, one-twelfth of a brake horsepower corresponds to the exertion of about 0.7 of an indicated horsepower at the station, and the cost per hour for the air necessary to run it to its full capacity is about \because cents.

The motors smaller than 10 horse-power are very uneconomical in the use of air, but there is no reason why a great improvement should not be made in this respect, and the cost of the power to the consumer be correspondingly reduced.

The cost of reheating the air is very small; $:$ or 3 cents per day of 10 hours, per indicated horse-power, corers the expense if coal is used, and eight or ten times this amount if gas is the fuel.

It is clamed that a very important increase of economy in the air required for the power can be obtained by intermixing with it water in the form of spray, which is injected into the reheated air as it passes to the motor. This process is not yet extensively employed, but Professor Reider's experiments to test its efliciency indicate that the air consumption can be reduced by this means to $\bar{j} 0$ cubic feet, at atmospheric pressure, per hour and per hrake horse-power. with the larger air engines.

The compressors in use at the St. Fargeau street station have not been economical in the use of steam, for their arrangement is such that the air is not properly cooled during its compression. In the new eompressors this difficulty will be remedied.
(112) Mekarski's system for the application of compressed air as the motive force for locomotivesand dummy cars for st reet ralways, was shown in Class th, and is described in Professor Haupt's report on that class.
(113) Distribution of power hy ratefird aid.-Another plan for the distribution of power in Paris, which is introduced to a limited extent, is ly means of marefied air-Petit \& Boudenot's system-and was the subject of an exhibit hy the "Societr de distribution de fore motrice a domicile." +1 Rue Beaubourg, Paris.

In their circulars it is stated that the company was established for the purpose of distributing motive fore for very small engines-from one twenty-fifth of a horse-power to 3 horso-powers-and within a radius of half a mile of a contral station. The present plant at the station consists of a number of air-exhatusting pumps, actuated he three Corliss engines of from fos to 100 horse-power each, by which a vacumm is maintaned in large cylindrical resomon's with which the distributing pipes are comected, the pressure in the reservors being kept at one-third of that of the atmosphere. The main pipes in the streets are carried through the sewers and under the sidewalks, are of cast iron from f to s iaches diameter. and have a total lenerth of about two-thirds of a mile. (One-inch to 3 -inch lead pipes are used for service pipes and risers to the motors.

It is stated that one hundred and forty subseribers take jow wor from the company.

Rotary motors were at first employed for very small powers, hut have been abamoned. Now the sizes of motors introduced are limited to three: viz., of one-half, 1 , and $1 \frac{1}{2}$ horse-power respectively. They are all of the same type, a compact, vertical, double-acting trunk engine.* and are leased to the sulnseribers by the company.

The motors, which takeair at atmospheric pressure from the room in which they work, discharge it into the exhausted service pipes, and are necessarily quite bulky in proportion to the power they can exert, because the effective pressure on the piston is necessarily small, being only that of the atmosphere less that in the pipes-not over 8 or 9 pounds per square inch.

The company publishes results of a trial of the efficiency of one of their one horse-power motors, from which the following figures are derived:

Kesults of the test of " 1 horse-poner rarefied air motor.

Turns per minute.	140	134	125)	115
Mean effective pressure per area, pounds	$\text { 2. } 1 ?$	4.15	6.08	7.95
Indicated horse-jower	11.3)	0. 66	0.90	1.11 N
Brake horse-power	0.010	0.55)	(1.73	0.19
Consumption of air per hoour :				
Total	500	900	1,400	2, 0100
Per indicated horse-jower	1,400	1,370	1,520	1,850
Per brake horse-jowner		2,000	2,100	2,100

[^20]With the exhausting machinery in good condition, about 800 cubie pect of atmosphere per hour could be drawn into the pipes-and the rapuired vacuam be maintained-tor each indicated horse-power ex. erten in the steam cylinders of the engines at the station. The low folioctive pressure that must be made araiable makes it necessary to mis large distributing pipes, and increases the first cost of this plant. The service given by the company is, however. very satisfactory to the subscribers, and the business has heen developed to a profitable extrint.
The award of the jury for this exhibit was a silver medal, the same as that given to the Victor Popp Company.

VIII. - Pneumatic postal dispatch.

(114) The Postal Dispatch and Telegraph Burean of the French Govermment exhibited in their special building the apparatus of the pmomatic dispatch, which is so extensively employed in France as an auxiliary to the district telegraph or a substitute for it. While the pneumatic dispateh is not new. having been adopted in Paris as maly as 1867, after many years previous use in England, yet a record of its present development and use in Paris is of sufficient interest to warant its insertion in this report: and as it furmshes another example of the application of pheumatic force for distributing power, it may properly he described here.
A map, showing the network of dispatch tubes, the power stations, and the air and vacum pipes comecting the stations with the dispatch tubes, as they were arranged in 18s8, is given in Fig. 101.
In 1889 the total length of the dispateh tubes was 120 miles, and of the air pipes is miles. while the number of offices containing the apparatus for sending and receiving dispatches somewhat exceeded one hundred. Thereare seven power stations, containing machinery for furnishing compressed air through the air pipes and for exhansting the vacuum pipes. The largest station is at the main post-office, and contains a 60 horse-power Corliss engine, for operating compressors and air pumps having a collective capacity of 1,0 ofoculie feot of air per minute. From the seven power stations, the air and vacuum pipes comnect with thirteen principal dispatch offices, from which the motive force is distributed thronghout the whole system of tubing. These air and vacuum pipes are not used for the conveyance of dispatches, their function being simply to supply motive force to the principal offices for further distribution through the dispatch thbes. The messages, inclosed in leather-covered cases, are propelled from office to office through the tubes. Offices of secomdary impor:ance are connected with each other and with the principal officess by pairs of dispatch tubes, one for semding and the otherfor returning. Many such pairs of tubes radiate to a number of secondary
offices from each of a few of the principal offices where the traffic is greatest. In many cases offices of minor importance are connected with each other, and with a main or secondary office, by means

of a single line of tubes leading from office to office and forming a lool; that is, the line starting from the main office leads first to the nearest minor office, thence successively to a second and third or even a fourth office, and from the last leads back to the starting place.

In such a loop the transmission of the dispatches is usually in one direction only. For example, in sending from the main office to the fourth or last office in the loop, the dispatch, insteal of being sent through the tube leading directly from the fourth to the man office. is sent to the first office and forwarded thence by way of the secomd and third offices, thus indirectly to its destination. In the same way, a dispateh is sent from the first office in the loop to the main oflice, he way of the secomb. third, and fourth offices suceessively. insteal of being sent backward through the receiving tube which comes directly from the main offiee. The direction of transmission can, however, he reversed if necessary. In some cases an isolated minor office has only a single tube leading to it. through which the transmission of dispatches is made in bothdirections, hackward and forward, compressed air being used for sembing the dispatedes cutward, while the return trip is effected by forming a comection with to vacum pipe in the main office. The tubes are of wrought iron, lap-welded, carefully drawn, mooth, am oif very even size.
The greater part of the tubing is 2 inches in diameter inside. A few of the tubes, however, through which the traflic is great, are half minch.larger; the exact sizes being 85 and 80 millimeters. respectively.
There are 110 miles of the smatler tubes, and only 10 miles of the larger. They are carried through the sewers in all directions. Where it is necessary to make a bend in the tube. for turning a corner, the radius of curvature of the bend is from forty to fifty times the diameter of the lore of the tube, and is so gradual as to prevent obstruction. The pressure in the air pipes is about $1: 3$ pounds per square inch, and the vacum in the rarefied air pipes equivalent to $+\frac{1}{2}$ pounds.
All the offices are connected by telegraph for signating. The speed
 19 miles per hour. The dispateh (ases can be sent in tratins of two or three at once, and can consey fifty or more dispatches at a time. They are dispatched every three minutes through the tubes lowning from the offices where the business is greatest; wry fiftern minutas from any other office when there is anything to semb. From this it will be seen that the sending capacity of the tube is very great, boing many times that of a wire of the district telegraph, which may be: said to be limited to about fifty dispatches per hour. The messag's are written by the correspendents on small blanks. which can io rlosed seenemy and waled for preserving secrecy.
(11:5) Figs. lio: to 105 show the fistures used for roceiving and sending dispatches. They form the termini of the tubes, and there are as many of them in each office as there are tubes combecting with that office. The fixtures usually stamd side by side in pairs. one fixture for receiving dispatches from one direction, the other for send-
ing in the opposite direction. Those shown in Figs. 102 and 103 are used in the thirteen principal offices, which contain air and vacuun pipes.

A is the vertical end of the dispatch tube, terminating in the rectangular box B , which forms a receptacle for the dispatch case. C and D are the air pipe and racuum pipe, respectively, and E and F pipes comecting C and D with the box B . I is a pipe connecting the boxes B of the two fixtures of the pair with eath other: J, a branch from I, connecting with the open air; and G. H. K, and L,

Fig. 102. - From wiew of a pair of the pheumatic dispatch instruments used in the principal offees.
stop-cocks for opening or (losing the pipes to which they belong. At the front of the box B is a door, which is kept closed air-tight except when opened for inserting or removing the cases. A rod, P . can be pusherl inward to prevent the dispatch case from dropping into the tube when it is necossary to retain it in the box.

M is an air-tight sliding gate worked iny a lever. N. for opening the dispateh tubo to allow a case to pass, and for shatting it to provent the escape of air when the bos B is opened.

The fintures shown in Figs. $10 t$ and 10 a are used in the secondary and minor offices. They differ from those deseribed above only in the absence of the air and racuum pipes and their comections.

Two posts which stand on the floor and support the box B takr the place of the pipes E and F of Figs. 10: and 10:3. Corresponding
parts in the several figures are indicated by the same letters, and the description need not be repeated. The compressed air is used in mearly all cases, and the vacum only on the longest lines, the tubes hoing kept under pressure except in front of a case when the transmission is being made.
The operation of the apparatus can be understood from a single example. To send a dispatch case from a principal office, the attendant first signals the receiving station, then shats the stopeock G (Fig. 10:) and slide M. opens hex B. inserts the case in the mouth

Fig. 103.-Side view of the instruments shown in Fiz.. 10e?
of the tube A, closes the box, and reopens the rock (t. He then pulls the handle N to open the slide M, and the dispatch case starts on its journey. At the receiving station, suppose the left-hand fixture in Fig. 104 to be the one at which the dispateh is to arrive. The attemdant on receiving the signal shuts the left-hand cook and operns L, thas putting the right-hand bex in communication with the oproll air. He then opens the slide M, and awaits the arrival of the casio. which is announced by the sound of the case in striking the top of the box. He then closes all the stopeocks, and the slide and opens the door of the box to remove the case after which he closes the bex and reopens the slide and the 1 wo stoprocks K . in order to maintain the pressure in the tube lealing fom the left-hand fisture, so that
the other offices of that particular line of tubes may be suppied with air. To receive at a fixture in one of the main stations the comnunication is made between the box and the open air in the same way as with the simpler fixtures. Whenever it is necessary at any office to increase the propulsive force by making use of the vacuum, the tube or line of tubes to which that office belongs can be put in communication with the vacum pipes through the receiving fixture at the main office of the line, by closing the cock L (Fig. 102) and opening H .

Fig. 10 . .-.Front view of dispateh instruments used in the smaller offices.
IX.-lnstrliments for meascring presslde, speed, etc.
(11fi) Steam gauges.-The most interesting and extensive display of pressure gauges was fomen in the space allotted to Mr. Edonard Bourdon, of Paris, who continues the business of his father, the late Mr. Eugene Bourdon, who in 1849 invented the steam gatge which bears his name. The value of the elastic flattened tube, as the pres. sure organ of a steam gange, became recognized as soon as the invention was introduced, and has made Mr. Bourdon's name known in every land. Noarly all modern steam gatuesemborly his invention in forms that are but little if at all different from those in which it was originally introduced, or which were described in his patent, or early
tried by him. Few inventions of so novel a character have remained so little altered in essential details and methods of application, after such long and continued general introduction, as has this simple instrument.
The good reputation which the Bourdon type of gauge obtained for itself in Europe is to a great extent due to the conscientions care taken in its manufacture. It is safe to say that there have been, and are, no better Bourdon grauges made than those produced by the house established by their inventor; and the exhibit made by Mr. Edouard Bourdon showed that he feels it incumbent upon himself

Fig. 105.--Side view of the instruments shown in Fig. 104.
to maintain the reputation his father established, by insuring that the product of his factory shall continue to be of the most excellent character.
Besides the large collection of gauges of all sizes, adapted for the great variety of uses to which they are applied, he exhibited an interesting series of sections of the tubes used in their manufacture. Mr. Bourdon uses more than seventy varieties of these tubes, for it is fround that in order to attain the best results--that is, to insure miformity and permanent accuracy in the action of the gauges. having regard also to economy of material-it is necessary to employ tubes of different cross sections for gauges of different sizes and ranges of pressure, and that a change in the length or curvature of H. Ex. 410-VOL III- 15
a tube having the eross section best adapted for a grauge designed for a certain range of action, will not adapt that tube for acting equally well in a gatge intended for a different range; it is neces. sary to change also the outline of the eross section or the thickness of its sides. In Mr. Bourdon's gatages the tube sections are so related t" the combitions the gauges are designed for, that the ultimate: strain which is suffered by the material of the tuhes, as the result of the distortion they undergo when subjected to the greatest pressure. is as nearly as possible the same in the diferent gatuges. When the strain is thus properly limited the grauges are likely to retain their accuracy maltered for a long time.

Phosphor bronze, having a tensile strength of bat,ou pounds per square inch, is the material used for tubes which are not subjected to extremely high pressures.
()f the bronze tubes, six patterns having different outlines of eross section are adopted, and each pattern is made in eloven different thicknesses, namely, from 0.008 inch for the thimest, to 0.048 inch for the thickest, differing uniformly by 0.004 inch. It is lomed that sufficient uniformity of the material can not be obtained throughout the different parts of the cross section if the bronze tubes are made thicker than the limit named above.

For excessively high pressares, ruming up in some cases to to,000 pounds per square inch, the tubes are made of Firminy sted of the quality used for piano wire. In one pattern of sted fube adapted for this great pressure, the sides were (1.2 inch thick, the cross section being nearly elliptical and measuring o. 64 by $0 .+t$ inch outside. (11~) Mr. Edouard Bourdon makes these gauges for very high pressures the specialty of one branch of his business. He exhibited an interesting machine, invented in Liks by Mr. Fugene Bourdon. for in raduating and testing them, which is shown in its original form in $\mathrm{Fig} .10 \%$.
It acts by hydrostatic pressure produced by a pump, and the pressure is weighed by weights suspended from a scale beam.

The gatuge to be marked or tested is attached to a chamber, A, into which oil or water is forced from the pump eylinder 13 , whose plunger is actuated by the screw and hand-wheel below it. The intensity of the pressure in the pump, and consequently in the chamber A, and in the gatuge, is measured by weighing the force it exerts in thrusting upward a small vertical plunger, c, of known diameter, which penctrates the uppor part of the pump eylinder, B. The upper extremity of the small plunger o pushes agrainst an inverted stirrup, d. from which hangs a steelyard. E, the fulcrum of which is at f. The force of the upward thrust of the plunger e can be weighed by weights, W, suspended from the free end of the steelyard.

The plunger o passes through cupped leather packings in the

Ful. 106.-Mourdon's hydrostatic press with revolving plunger, for testing steam gauges.
top of the pump cylinder, by which leakage is prevented. The frim tion produced by the packing, and by the guide through which tha plunger e passes, is liable to be considerable and variable, and it: force in resisting the movement of the plunger can not be estimat... accurately; if, therefore, means were not taken to neutralize th. effect of this friction, so far at least as it affects the sensitiveness if the movement of the plunger e in the direction of its axis, the: force exerted by the liquid in the cylinder B. to thrust the phanger upward could not, be accurately measured by weighing the form the plunger exerts to turn the steelyard. Mr. Bourdon overcam, this difficulty by providing means for giving to the plunger a a rapid movement of rotation about its axis, by which the friction is so nearly overcome that the longitudinal movement occurs without sensible resistance. The rotation is produced by the crank! $!$. through the gear wheels h and i.

The efficiency of this device is demonstrated by observing the artion of the gauge while the process of weighing the force is carrient on in the following way: The weight W , corresponding to a given hydrostatic pressure, is applied to the steelyard, and, without rotating the plunger c, the pump is worked until the weight W is lifted: the gauge needle assuming a certain position which is noted. A small addition to or diminution of the weight W under these conditions pro. duces no change in the position of the gauge needle; if, however. the plunger o be rotated continuously by means of the crank, the needle will move slowly, and will finally settle in a position slightly different from that which it occupied at first; under these conditions. the rotation of the plunger c being kept up, if a very small change be made in the weight W, to either increase or diminish it, the gauge needle responds promptly to the change by moving slowly into a new position, and whenever the weight W is restored to its original condition the gauge needle settles back to the precise point which before corresponded to that weight, this correspondence taking place whenever the original weight is reached, whether it be arrived at by removing surplus weight or by supplying a deficiency. The sensitiveness of the apparatus is found to be very satisfactory, and the machine, slightly modified in form, is used for graduating and marking all the gauges that are intended for higher pressures than can be shown by a mercury column of practicable height.

It was invented and in use as early as 1868, for the Amales du Con. servatoire des Arts-et-Métiers contain an account of a test of a gauge made November 20,1868 , by means of the machine.

It is an early example of the application of the principle of dividing the force required to overcome friction into two components. with the smaller one in the direction in which sensitiveness of movement is required; a principle embodied by Rider in his cut-off,

Fig. 107.-Sectional view of Buss's tachometer.
in which a semi-cytindrical cut-off valve, turned by the governor. slides lengthwise in a seat on the back of the main valve.

The gauges Mr. Bourdon exhibited did not offer any novelty of form.
(118) A gauge was noticed which is intended for use beneath railway cars, to show whether the pressure in the reservoirs of the air brakes is preserved. It can be read from either side of the car, the back of the gauge having a dial as well as the front, and can lo. read at a glance. The divided are on which the pressure is read is short, and at one side of the dials, so that the pointer of the needl. rises and falls to show change of pressure. The brakemen staming on either side of the car need only notice whether the peinter stands high or low to learn the condition of the presime and the mistakes are avoided which would inevitahly oceur if the peintor traveled from right to left, or the reverse; for it is liable to be looked at from opposite sides.

Fic. 10s.-. Front view of Buss tachometer.

Mr. Pundon also exhihited a great variety of safety valves. iubricators, ete, all of excellent workmanship and carefully sturim design.
(119) Bussss speed indicators athl recorders.-Messis. Buss \& Cu.. of Paris, exhibited Mr. Ed. Busssinstruments for indicating at onte the speed of a revolving shaft-tachometers-also a speed recorder called by him a"tachyoraph." The exhibit contained governor: also, and received a gold medal.

Although not new. the Buss tachometer merits a description hepe.
Figr. 107 shows the tachometer in section, and Fig. 108 is an outside view on a small scale, while Figs 109, 110, and 111 show details.

It embodies the principles of a centrifugal governor.
The cylindrical box A (see Fig. 10\%) incloses the revolving cantrifugal pendulums, while the drum-shaped dial box C contains the train of gearing for moving the needle Z, which indicates on the dial (see Fig. 108) the speed at which the pulley B revolves. The
boxes A and C aro hang in bourings on the stamd which supports the instrment, so that the dial may be furmed into a convenient position for reating.
D) is the spindle carrying the dentritural pemblums and drivern from the pulley B through the coupling J. The two pendulums E alld F_{2}, one ot which is shown in perspertive in Fig. lo! are sus. pembed in a fork, F, at ono end of the spimble D.

Fiti. 111.--surtinn at A J Fig. 110.

One of the pendulums is attached to a stiff coil spring; see R-Figs. 110 and 111 -which show the emd of the spindle D with its fork, the wrights, and spring.

The elastic force of the spring. which increases as the spring is deflected more and more, resists the varying effort of the pendulums to fly outward under the influence of the centrifugal force, and is in equilibrium with this effort at all speeds of the pendulums, thas determining different definite positions of the pendulums for different speeds of revolution of the spindle.
A sliding rod, G, is attached, by means of a yoke. shown in Fig. 10%, to the pendulums E and E_{2} in such a manner as to couple the pendulums together and make their movements coincident. The rod G receives longitudinal movements from the pendulums when they swing outward and inward about their points of suspension. and thus the rod has a different position endwise for each different
speed at which the spindle D and its pendulums revolve; this endwise movement is marle to turn the indicating needle $Z /$ by means of a pair of links, H, and a train ol geaving; the speed at which tho. pulley D revolves at any instant wan therofore be ascertained by noting the division of the dial toward whied,

Fig. 112.--U U right tachometer. the needle points.

The rod G , which rotates with the spindle, is coupled, by means of a sleeve, to the links H, which do not revolve.

Fig. 112 shows an upright form of the stationary tachometer.

A portable tachometer, in its case, is shown in Fig. 113. It has several little spindles projecting from one end, shown at the left-hand end of the figure; one of them is a prolongation of the main spindle of the instrument whid carries the centrifural pendulums. the other: are so geared to this spindle that the velocit. ratio is different for each.

The dial is marked with as many rows of divisions as there are spindles, and the whote is so arranged as to indicate speeds from en to 3,000 revolutions per minute.
This instrument is applied in the same way as the simple revolntion counters so generally used, namely, by means of a pyramidal point applied to the end of one of the spindles, which is then inserted

Fig. 113. Buss's portable tachometer.
in the drilled end of the revolving shaft whose speed is to be indicated. It is intended for temporary use only, and for taking an observation lasting only a short time, as the means of lubrication are
mot such as to permit of contimuns rumming for any considerable length of time.

The Buss "tachygraph" is shown in Figs. 114 and 115.
The front of this instrument has a dial which shows by the needle. at each instant, the speed of the machine to which it is applied, and in all respects the speed-indicating part of the instrument is predisely the same as in the tachometers alrealy described. At the back of the dial box is a clock movement, shown in Fig. 115, which communicates a uniformly progressive lengthwise movement to a baud of paper on which the speed is registered, at each instant, by a

Fuc. 115.--View of back.
BUSS'S SPEED RE(OORDER.
mark drawn by a pencil which is moved crosswise of the paper hand. ber means of a bell-crank lever connected with the sliding rod of of the titchometer.
The" tachygraph " performs the same function as Moseropis sperd rameler, an English invention well known in the United States, hat is more compact.
Fig. 116 shows a short section of the diagramobtained from a Buss spendrecorder applied to the drum of a winding engine in a colliery.
(0) Steam-entime indicutors.-Nearly all the French indicators -hewn were of the Richards type without essential modification, this indicator being still almost miversally used in continental Gnopre. It originated in the United States in 1850, was introduced
in Europe in lstes, and speredily disphaed others, hut in turn will ? grachally displaced by later monditations of the principle whicha simer the expiration of the original patent, hate eome into use in the. L'nited States, having been made desimble by the comditions involv.... by the high rotative sped mow often used in stemm engines. Than. mondiacations melater chiofly to the mothod of extioling the magnition mosement of the pencil in a :traight line and consist in more libe. and lighter merhanism, A good example is the Crosby imblathe.

 as high an atard ats was given for any exhibit of this kind.

 recorder.
(121) Water meters. A great mumber of water meters were exhihited; few, however, possessed nowelorinteresting features. Seratal of the moters were of the kind dexoriberl as inferential, in which the impart of the water in flowing through the meter canses a matl furbine or screw whee to twran, amblem the rotation of the when therateof flow is infermed, and the discharge computed. The grantre number of the moters, however, were of the piston type and must of these duplex, impolving the principlriof the Worthington meter, in Which the valve for distributing the water in either of the erlime is actuated by the movement of the piston of its mate. Mams of these duplex meters are arranged with the eylinders vertieal instran of hovizontal, a departure from the original form which is of donht ful value.
(1O2) The Schänheyder motrio-A very interesting meter wis shown in the British sedtion. It is the invention of Mr. W. Sehinn. heyder, manufactured by Beek \& Co., London. The description, partly taken from Engineering, was supplied by Mr. Schänheyder.

Figs. 117 to 119 show the meter. Fig. 117 being an outside view, Fis. 118 a transverse vertical section, and Fig. 119 a plan with the
rover removel: one of the there rylandres with its pistom brine in

 piston aml itstail rod complete.

Fin. 11̈̈, Schänhegter's water meter
The meter casing is in halves bolted together, with the joint mate sight hy a suitable packing ring. Within the casing are three eytinders, each capable of sliding to and foro agamst roller gudes in a

Fro. 118. - Vertial section of Schönheyders meter.
lime transverse to its axis. Each cylinder, which is open in front, is fitted with a piston with cupped leather packing and a tail-rod quide. All the three pistons are formed in one with a central valve having passages commumbating with one side of the pistoms, and, therefore, with the cylinders, and free to slide longitudinally and
transversely on a facing in the center of the casing. Through this facing there are four ports, or passages, one in the center (triangular) acting as an eluction port, and three (oblong) acting as induction ports and armanged around the middla one. Each of tho beforementioned passages in the valve has a port passing through tho facing of the valur, so proportioned as to size and position that. be the to-and-fro and side movement of the valve over the facines. each port is alternately in commmacation with the induction and eduction ports, and the respective cylinders will, therefore, also In. in altermate comection with induction and eduction. Water beine admitted under pressure to the casing, after passing through a non-

Fig. 119.- Plan of Schïnheyders water meter, with the tops of the rase removed.
return valve, and being free to pass away from the eduction port to the outlet, the three pistons will be caused. by the pressure actin! on their outer sides, to pass alternately in and out of their cylinders, whil. these reciprocate latemally. The path of the valve (with its attached pistons) is approximately circular, and the stroke is limited by a central roller depending from the cover and free to revolve on a stud: a ring or "roller path" heing formed on the upper side of the valve.

The counter gear is worked hy a crank, whose pin enters a hole in the top of the valve and is turned romal through the satd circular movement of the valve. The spindle of the crank passes through the central starl. The guide rollers are placed, one above the other, on suitable stationary pins guided both at top and bottom, and one wing of each cylinder bears against a bottom roller, while the other wing bears against a top roller.

The ports are not parallel to the center lines of the in cylinders, but: are placed at a slight angle, so as to compel the moller path to "cling" to the central roller even at low speeds: in other words. so as to make the machine always endeavor to take slightly lomger strokes than it ought to do, the central roller in the roller path restricting this temdener:

The cylinders are prevented from twisting roumd on their pistons bs suitable guides under the edges of the wings; but there is a slight dearance here, so that the valve will always bear on its face, even after some wear has taken place, and will not be held up by the eylinters. The counter gem is ol simple construction as shown ; no small pins or sceress are used in the arrangement. and the wheels are embedded in vaseline.
The stroke of the pistons being positive (being equal to the difference in diameter of intermal ring, or roller path, and contral roller), the meter is accurate at large and at small matesol dolivery-even to a dribble: and, owing to the circular movement of the heaviest parts (β istons and valve), the meter will work, when called upon to do so, at exceptionally high speeds without injury. and with hardly any noise. Owing to the circular movement of the valve, its face and the face of the stationary seat wear each other to true and highly polished surfaces, hence tightness of the vital parts is insured.
The cylinders, boing single-acting, will nearly always bear on their rollers, but at each turn of the center, when both the inlet and outlet ports are closed for a short time, the cylinders are slightly raised from the rollers, this action causing them (the rollers) to be always "traveling," and, therefore, to be continually presenting new wearing surfaces.

The meter is simple in construction and simple to repair; not a single bolt, screu, or small pin is used amymbere, ercepting only the cover bolts; and when the cover bolts are removed all the working purts can be taken out by hand. even without discomecting the meter from the service pipes.

The case is of cast iron, the rollers and the central face are of rulcanite, the pistons are packed with leather. All other parts are of gun metal, and the whole is water lubricated.

For hoiler feeding, when hot water has to be measured, the vulcamite is replaced with gun metal and the leather cops with "quilted" (ups-a kind of canvas pressed into cup shape, cut to lengthes and sewed over. The meter can be used for measuring almost any kind of liquid, such as oil, beer, milk, cane juice, petroleum, etc.

The meter has been improved in some particulars lately. The inlet valve shown in the figure, for preventing the meter from being used if set up the wrong way, is now dispensed with. The worms and worm wheels are inclosed in a special chamber filled with vaseline, and water surrounds the counter gear, the cover of the counter
box being made water-tight and strons enough to support the samo intermal pressure as that in the meter case. The glass lems is made. tight hy a rubler ring, and the casing being of gun metal, and thr joint ringe of canvas, all the sumpomdings are clean and will not discolor the water. As there is no "flow" through the chamber containing the counter gear, the water does not become fouled from the vaseline or from the (rusty) water in the meter. The advantage of this :mmangement is threefold:

1. There is no end pressure on the spindle passing through the comber plate. henee diminished wear of worms and wheds.
2. The glass is never" foggy." hence the dials can alwats be casily read.
3. No dirty water. mud, ar sand ('an enter livom theoutside through the usnal leakage hole and clog the wheels.

Should the watere through some aceident, heeome elondy, the smatl cover can remlily be unserewod and the counterbox filled with clean water. ()n closing the cover down the air will escape he a small hole provided for the purpose. Should the grlass brak, no serions harm will result, a small leather collar on the through spindle preventing much waste of water.

The apparatus for holding the worms and wheres has mot a single small screw or pin about it. By the perentiar form of the bearings holding the aboms the wheels are locked in position. The end of the spring pressing on the through-spintle is slightly hollowed, so that it can mot shilt sidewise, and it is "hinged" to the phate be slightly indenting it after inserting it in a saw-ent mate in a lug.

The only portion of the meter the wear of which will aftect the registration, is the central roller and its pin. 'The periphery of the roller itself hardly wears, because its only motion is that of rolling ; and the bearing wears but slightly becanse of the large diameter of the roller as compared with the stroke of the moter, which makes the motion very slow, and because of the very large surface of the bearing. The pin is of gun metal, and the roller is bushed with vulcanite. When wrar does take place the stroke is slightly increasel and the meter becomes a littli"slow." It does not, however, become leaky, as most meters do, by wear.

As to durability: A numbar of meters have now heen several yars in use, and many attempts have been made to run them " 0 death" by working them at exerssive rates for long terms, but without success. Of these cases, the tests at Bimmingham, by Mr. Gray, should be mentionel. A one-half-inch meter was run for many hours at the rate of 1,500 gallons per hour without any visible injury or wear, and without affecting the aceuracy of the registration.
(123) All the tests show that the meters are "slow" at large rates of delivery, and "fast" at low rates, owing, no doubt, to a slight increase of stroke when driven by high pressures, on account of the
springing of some of the wonling parts. At very low rates they asain become "slow."

The results of a few tests are given:
Tists al Fiemuatuteruowks, in May, 1889. of ome-hulf-inch meter, No. 156 (Schönhrijuler's putent).

Tests at the Berlin watemorks, in March, 1889, threc-quarter-inch meter. No. 13: (Schünheyuler's putent).

Tests of water meters (Sehnähnyderis palent).
NO. : 2 , 1-INC'H METER FOR HOT WATER.

* Six feet vertical, and abont 10 feet of 1 -inch pipe, and a 1 -ineh valve. The outlet was checked in many of these experiments. Owing to pipe resistances the capneity of meter is not fully shown. Thus with to pounds pressure and free out let, discharge is wer z.for gallons per hour.

NO. 1H, ONEMADF-IN(H METER.

+Four feet head op water to drive slowly.
general mecthanics.
No. 130, onehmaffinch merer. \ddagger

frive ieet six inch head to drive slowly.
NO. 1:0, ONE-HAJFIN('H MFTERS

\S Four feet six inch head to drive slowly.
These tests were made by Beck \& Co., London.
(124) The Thomson water meter.--Thomson's water meter, exhibited by the inventor, Mr. John Thomson, of New York, received a silver medal. The meter is shown by Figs. 120 and 121.

Fig. 120.-Sectional view of Thomson's water meter, showing the inlet and outlet ports.
Its principle is the same as that of the Davies and Bishopp disk stom enginos, once quite famons in England for the novelty of their mode of action.
The measuring chamber of this meter is in the form of a contral zone of a hollow sphere, having ends at top and bottom, which are conical frustums, whose sides slope inward toward each other, and hence toward the center of the sphere. At the center of each of H. Ex. 410-vol ill- 16
these conical ends is a spherical socket with its center of curvature in the center of the spherical chamber.

In these sockets fits a solid sphere which forms the central boss of a thin, flat, circular disk, the edge of which exactly fits the interior of the spherical chamber. This disk constitutes the piston of the chamber and has a movement of mutation or wabling about the center of the sphere as a center of motion, the character of the movement being such that the spindle in the axis of the disls receives a conical motion, so that its end sweeps around in a circular path. The chamber is divided at one side by a vertical radial septum or partition, extending from the periphery of the chamber to the central sockets, and the disk is perforated with a narow radial slit so that it may straddle the partition. The whole measuring cham-

Fro. 121.-Sectional view of Thomson's water meter, showing the 'septum of the measuring chamber.
ber is inclosed in a globular case into which the water to be measured flows. From this the water enters the measuring chamber through an opening in the spherical wall on one side of the radial partition, and is discharged into the outlet pipe of the meter through an opening on the other side of the partition, the two openings in the wall of the chamber being close together, separated only by the thickness of the partition.

The water can not pass from the inlet opening to the outlet without so displacing the disk as to cause a complete oscillation and a single revolution of the end of the spindle, and each of these complete movements corresponds to a quantity of water equal to the whole contents of the measuring chamber. The disk spindle engages with a star wheel on the end of one of the arbors of a train of gearing forming a register, aml turns it with a miformºmotion, A small conical roller on the end of the disk spindle bears against the coni-
cal end of the bearing of the register arbor, which is exactly conaxial with the measuring chamber, and by this means the disk spinde is gruiled in its circular path in such a way as toinsure the proper mosement of the disk with the least possible fretion.

Themeasuring apparatusisof elemontalsimplicits. Functionally it consists of only two parts, the chamber and disk, for no valves are required to effect the distribution of the water in the chamber.

Hore than two thousand of these meters are in use in Now York City:

```
    SPECIAL REPOR'T
    N
APPARATUS ANI METHODS OF MININ(: ANI METALLLRGY,
    CLASS 48,
    13Y
HENIRY M. HOWVE.
```


TABLE OF CON TENTS.

A.-Borind ant shaft-sinking.
Page.

1. Lippmann's patent filtering column 249
2. New boring tools 250
3. The Kind-Chaudron shaft-sinking process 号
4. Lippmann's moditication of the Kind-(Chaudron process 26
B. - ROCK DRILLS AND AIR COMPRFSSORS FOR MINES.
5. The Bosseyeuse or wedging drill 203
6. The Dubois and Francois air compressor 268
7. The cost of compressing air 269
8. Ventilation by the Körting jet-blower 270
9. Heating air for compressed-air motors. 2ส1)
C.-Honstina machinery.
10. Tail rope counterweight $\because 0$
11. Rossigneux's pump-rod balance 272
12. Brake attachment for hoisting engines 27
13. Champigny's V-grooved pulley 277
D. - Mining tools and applances.
14. Safety lamps 278
15. Fastenings for safety lamps 284
16. Steel mine cars 287
17. Hardy's patent picks 288
18. Hardy's multiple wedge 288
E.-Mining transiortation, etc:
19. Transportation by hanging chains 289
20. Fan brake and gravity road at Billwa 292
21. Taza's basculeur 295
22. Fougerat's basciteur 297
23. Éleu basculeur 299
F.-(TRUSHING MACHINERY.
24. Blake's multiple-jaw crusher 301
(. - Blowing machinidy for metalidergical works.
25. Cockerill blowing engine 304
H.-Rolling-mills ani hron-working applances, etc.
26. Chatillon et Commentry plate mill 30 i
27. Valenciennes blooming and rail train 308
28. Fox's machine-flanged plates 311
29. Fox's corrugated boiler furnaces :311
30. Lafitte's flux plates 312
31. Self-skimming foundry ladle 312

APPARATUS AND METH()DS OF MINLGG AND METALLURGY.

By HENRY M. HOWE.

A.--Boring and shaft-sinking.
(1) Lippmann's putent filtering rolumn*-Figs. 1, and 3-is a device for obtaining clear water from quicksands, ete. It consists of a thin-walled polygonal east-iron columm, in sections, bolted together tandem, made up of (i-inch square pinels, as shown in Fig. 3. On the outer face of each panel are eight madial chamels, leading to a 1-inch hole, A. Fig. 1, in the cen-
 ter of the panel, the hole passing completely through the wall of the columm. A porous (f-inch square tile. b, is ladid in each pancl, as shown in Figs. 1 and $:$ and cemsented around its edges to the flanges which bound the panel. These porous tiles are the filterers ; the chamels in the face of the panels lead the water, which penetrates the tiles, toward the central hole of each panel, and through this hole to the interior of the column, whence the water is pumped to the surface.

The procedure is as follows: First a well, C, considerably larger in diameter than the filtering columu is to be, is sunk to the water-bearing stratum and lined with masonry or iron piping, as the case may be. Next, a common closed iron pipe, of diameter intermediate between this upper well and the filtering columm, is sunk in the water-bearing stratum to the depth deemed suitable for the filtering column. The tiltering column itself, its upper

[^21]end preferably prolonged by a common closed pipe. D, as shown in Fig. 3, and its lower end closed with an iron plate, E, is next sunk within the temporary piping, which is then drawn up, leaving the filtering column in contact with the quicksand or other material of which the water-hearing stratum is composed.

This device was adopted at Rambouillet, near Paris, where the extremely fine Fontainebleau sands are said to contain very good drinking water, of which, however, the authorities were mable to avail themselves; for "in spite of all precautions and of many and varied experiments, the dangersand inconveniences due to the fluidity of the sand manifested themselves so intensely and persistently" as to defeat all efforts to obtain a water supply.

Here a filtering column, 1 is inches in diameter and 11 fect 6 inches long with a filtering surface of $3: \frac{1}{4}$ square feet, was sunk within a temporary tubing $2 \boldsymbol{o}$ inches in diamoter. The base of the filtering column lies at a dopth of 39 fent 5 inchess, and is immersed 23 feet in water. Two pumps drew 3,000 gallons jer hour from this filter, for several days in succession, without lowering the surface of the water below the limit of suction.

It is stated that the filter has now heen in use for 18 months, and that, far from becoming clogged, it gives out 20 per cent. more water than at first.
(2) Vew boring tools.-The first four which will be desseribed aro shown by Lipmmann, * followingones by Armalt, \dagger, the last by Becot. \ddagger We are indebted to these gentlemen for the cuts.
I. Lifting-ram, Fig. 4.-This tool is designed for freeing the trepan in case it becomes wedged in the rock at the bottom of the borehole. Should this occur, the rods are unserewed from the trepan, the ram shown is then lowered through the tube, whose bore it almost exactly fits, so that the female screw d on its lower end readily catches the male serew on the upper end of the trepan, to which it is then easily attached by screwing.

The ram is then pulled up repeatedly by means of light rods reaching to the surface and attached to its cars a a. It is then hammered agrainst the shoulder c, the blow thus delivered loosening and finally releasing the trepan from the arevice in the rock in which it has been caught.

The upward blows, delivered thus close to the trepan itself, are clearly much more effective than upward blows delivered at the surface, for the force of the latter is met and opposed by the resilience and inertia of the whole length of rods reachingr from the surface to the bottom of the bore-hole.
II. Reamer, Fig. 5.-This is designed for reaming out the rock in the bore-hole immediately below the end of the tubing.

[^22]$e e$ are the cutting edges of the cutting tools, which are pivoted to the rod. As shown, they just fit easily in the tubing. Cords, h h and i, on each side of the rod are attached to little pins, k, k, on the rutting tools. As the reamer is lowered through the bore-hole these cords grow wet, shrink, and thus act as strong' springs to rotate e e about the pivot, throwing the cutting edges outward till their shoulders just above $k i k$ rest against the fixed flange above them on the rod.

Fig. 4.-Lifting ram.

Fig. 5.- Reamer.

Fig. 6.-Pipe-cutter.

The tool is readily withdrawn, for when it is drawn upward the outer elges of the cutting tools e e are pressed against the lower edge of the tube, and the tools are thus folded together again and brought into the position shown in the cut.
The cords $h h$ and i of course play the part of very simple springs.
III. Pipe-cutter, Fig. 6.-This tool is designed for cutting the tubing apart at any depth in the bore-hole.
The tool is lowered to the proper position, and the cutting tool a is then driven outward till it bears against the walls of the tube. by turning the rod in the direction of arrow p (i.e., to the left). In do-
ing this the little cam b, by its own friction against the walls of the tube, is rotated in tho direction of arrow e; i.e., it is opened, for when closed it just fitted asily within the tube. When the cam is thus opened it jams against the walls of the tube and prevents the head f f'f from turning. Under these conditions the rod g alone turns, sliding over ff by means of the rachet c.

As the rod thas turns in the direction of arrow p, the conical head h is driven downward by the left-handed serew-thread shown just above it, thus forcing the cutting tool a outward a little, and by this means feeding the tool toward its work.

As the teeth of the rachet slip past each other each click is distinctly perceptible at the surface, by sound and freling, as the workman holds his hand against the upper part of the rod. In this way

Lippmanis Nippers fon Shaft Sinking.
he knows just how far the rachet has turned, and hence just how far the cutting tool a has been fed out, at any given instant. He can thus stop this left-handed rotation when a has been fed out far enough, and then proceed to turn the rod to the right in the direction of arrow e. This motion folds the eccentric b inward, so that it no longer jams in the tube, and a cuts into the tube as the rod continues to turn to the right.

When the cutter head has made a few revolutions the maneuver must be repeated, so as to feed the tool out a little farther, and these processes are repeated till the tube is cut through.
IV. Nippers for shuft-sinking, Figs. 7 and 8.--This tool is designed for gripping and lifting to the surface tools, etc., which have
fallen to the bottom of a shaft which is being sumk by the KindChaudron process, i.e., while the shaft is full of water. It differs from the nippers used in bore-holos, chiefly in being of larger size and having four jaws instead of two.
V. Light simling outfit.-Fig. a shows a light portable iron apparatus, by Armult, suitable for sinking bore-holes to depths of from 50 to 65 t'eet.

Fig. 9.-Arrault's portable sinking outflt, for holes from 50 to 0% feet deep.
The legs of the tripod are made of iron piping. Arrault shows or despribes four other sizes of this apparatus, the largest suitable for sinking bore-holes to a depth of fool feet. In all the sizes except the one shown, a hand-winch is used for raising the tools, etc., and the
tripod is braced more or less strongly. I condense certain information concerning these sinking outfits in the lollowing table:

TABLE I.-Dimensioms, ete., of Amranlt's light boring omtit.

M. Arrault informs me that with this light outfit the distance sunk by hand per 10 hours should be about \because feet to 2 feet 6 inches for limestone, 5 feet for very soft rock, and 6 to 12 for sand, ete.

Using steam a bore-hole 15 inches in diameter should, ho states. be sunk at first at the rate of about 15 feet per et hours. He informs me that he has sunk through 19 f feet of limestone passing from a depth of 19% feot to one of 39.4 feet, in 10 days, the hole being driven true enough for piping.

Mr. Lippmann informs me that hesunk the Montron well (Loire). whose final diameter is 10 inches, to a depth of $1,600 \mathrm{f}$ (e.t in 16 months. He shows a collection of small erustaceans and fishes, some of which were 4 inches long, which have come ap through deep artesian wells.
VI. Solid trepans.-Arrault shows a large trepan, with a cutting, edge 39 inches long, cast as a single piece in chrome steel, and weighing about 1,000 pounds. Thes heavy trepans have hitherto usually been built up. For the single-piece trepan cheapness, strength, and simplicity are claimed.
VII. Couplings for rois.-Instead of having a socket and female thread on the lower end of each rod, which fits a male thread on the upper ond of the next lower rod, Arrault joins the rods by couplings or sleeves, quite like the couplings of common wrought-iron pipes of small diameter. To diminish the wear he rivets the coupling to one, say the upper, of the two rods which it unites, the serewing and unscrewing thas taking place wholly between the coupling and the lower rod. After these threads are so far wom that they are no longer safe, he draws the pin by which the coupling was riveted to the upper rod, and then rivets the coupling fast to the lower rod, so that after this has been done the sorewing and unserewing take place between the coupling and the upper rod. In this way the threads on rod and coupling need not be renewed until this second
set of threats has hern worn out. In affect, this is substituting the wear of a coupling for part of the wear of a rod-end: and the adrantage is that it is easier to rephace a couphing than to replace a rodent.

Vlle. Bell ame rone joints.-To compensate for the wear of the threads at the joints of horing rods, Beent makes fla socket containing the female serew bell-shaped and the male serew eone-shaped, diminishing the diametor hy per bot of the lemgth of the serew. As the threats wear, they can always be made tight by serewing them together farther and farther. He also makes the seetion in the serewed ends considerably larger than in the shank, so that when rupture oceurs it may alwas be in the shank, as this is far more readily repaired than the threaded ends.
M. Becot states that neither of these doviees is original with him.
(3) The Kind-Chaudron process for sinking shatts through bat, and especially through water-bearing ground, consists first in sinking the shafts as one does a common bore-hole, i. e., without pump)ing; the shaft while sinking remaining full of water, and the rock or earth driven through being removed be tools similar to those used in sinking deep bore-holes (trepare ete.), but of course of diameter corresponding to that of the shaft. Socondly, in lining or "tubhincr" the shaft bofore unwatering it, hy lowering through the hole thas sunk a water-tight tubbing column oomposed of massive atst-iron rings or tubs, bach ring cast in a single picee. flanged and accurately faced at each end, and bolted firmly to the adjoininer rings. 'The amular spare between this tubbing and the walls of the shaft is then filled from botom to top with hydraulic cement, and not till then is the water pomped out of the shatt.

The tubbing column is; bolted together ring by ring as it is: lowered through the water. Lis descent is facilitated by closing its lower fand with a water-tight false bottom, A A, Fig. 10, so that the tuibbing column floats; in the water, the cast-iron walls of a ring of tubbing weighing less than the water which it displaces. In this false bottom is a pipe, B , which is continued up through the tubhing as, by the addition of ring after ring, the eolumn grows: and, by means of cocks in this pipe, water is admitted from time to time into the interior of the tubbing in quantity sufficient to cause it to sink far enough to bring its upper end to a convenient height for attaching more rings. This false bottom is, of course. finally removed, after the tubbing has been mate fast, the shaft being sunk through the good ground beyond by the usual methods.
I. The joint between the bottom of the tubbing and the surrounding rock is made tight, by a sort of gland and packing arrangement, much like that of a common stuffing box, so that the water may not leak into the shaft around and under the bottom of the eubbing. The gland-ring C(I) D. Fig. 10, lies below the false bottom and within
the lower joint of the tubhing; outside this ring, and between its lower flange C C and the flange E E, at the botton of the tubbing proper, the amulus called the "moss-box" lies. In this amulus a quantity of clean dry moss is tightly packed, while the lower rings of the tubbing are still alowe ground. Themoss is held in place by a stout netting while the tubbing is descending through the water. When the tubhing reaches the bottom of the shaft, the flanges C are first stopped as they strike against the ledge, i. e., the bottom of the shaft, and as the column of tubbing continues to descend, the flanges

 process. Dimensions are in meters.
E E are brought nearer and nearer to the flanges C C , so as to compress the moss powerfully both outward against the rock which forms the walls of the shalt, and downward against that which forms its bottom. quite as the gland presses the packing in a common stufling box against its walls and against the piston rod. When the tubhing columin is completely lowered, its whole weight rests on this moss.
These details probably suffice to emable the reader to understand
the following description of the progress made with the KindChaudron process since 1878.* Further information is accessible to American readers in M. Dehy's paper on this process. \dagger
II. Progress between 1878 amd 1889.-In this period sixteen shafts have been begun or finished by this process: In Belgium, 5 ; in France, 3 ; in Britain, 1 ; in Germany, $\%$.

The bottom of the tubbing of these shafts lies at a depth of from 303.4 to 1,066 feet below the surface, the sum of the depths of the bottoms of these sixteen tubbings being 9,0 or 6 fleet. 'Three of these shafts are in course of execution.

Shafts of greater importance than those formerly sunk have been successfully sunk in this period, some of them through quicksand. I will now describe two of the most important of these.
III. Sinking the Ghlin (Belgium) shafts.-These two shafts, whose tubbing reaches to depths of 1,011 and 1,066 feet, respectively, were begun in May, 1873. The sinking and tubbing of the first shalt were finished in February, 1885, those of the second shaft in April, 188%

The ground sunk through consists of-
First. Tertiary and Quaternary water-bearing strata, loose amd quick, reaching from the very surface to a depth of about 65 feet.

Second. The marls, flints, and greensands of the Upper Cretaceous. apparently bearing much water.

Third. The Cretaceous quicksands, known as "sables achéniens," which present the real difficulty.

First a ring of masonry (see Fig. 11), 21 feet 4 inches in diameter inside and 2 feet thick, was sunk to a depth of 23 feet, by removing the sand and freeing its inner circumference as much as possible, while pressing downward on the upper surface oi the masonry itself. At this depth serious difficultios arose, and it was therefore decided to drive the masomry no farther.

By this time the regular sinking plant was installed, and the engineers now proceeded to sink a cast-iron columm, using a light trepan, dredging buckets, ete. With these tools and with the aid of presses placed above the shalt, a cast-iron column was sunk at No. 1 shaft through the upper water-bearing sands to a depth of 39 feet. Within this a second cast-iron column was farther driven to a depth of 59 feet, when it reached the upper part of the marls. The two cast-iron columns were much injured in this descent, and even cracked, for there was much difficulty in piercing the quartzose

[^23]H. Ex. 410-voL III-17

Fig. 11.
Fig. 12.
Part section of No. 2 shaft at (ihlin, Belgium, sunk through quicksand by the Kind-Chaudron process.
masses which they met in the sands. The shaft, however, was still plumb, and had a clear inside diameter of nearly 19 feet. In view of the importance and depth of this shaft, and of the expected permanence of the workings, it was, of course, imperative to tub these
upper water-bearing sands most securely, since any failure of the tubbing would deluge the workings below with avalanches of sand. A third cast-iron column was therefore sunk within the first two to a depth of 70 feet 6 inches beneath the water, its lower end resting in the marl. The annulars space between this column and the two outer ones was then filled with concrete, and the water-hearing sands were thus firmly sealed up.
In the second shaft, profiting by the experience with the first, the engineers were enabled to reach the solid marl, at a depth of is feet 9 inches, with two columns of cast-irou instead of three, as shown in Fig. 11. This was accomplished toward the end of December, 1874.
Sinking through the marl. - Here a relatively narrow preliminary shaft was first sunk, and then reamed out to a diameter of 14 feet 5 inches. After some trials it was found that a diameter of 6 feet 6 inches for the preliminary shaft gave better results than a smaller one of, say, 4 feet 6 inches, a shaft of the former size sinking as economically and almost as fast as the smaller one, and being reamed out to the final size of 14 feet 5 inches much more quickly.
For sinking this large shaft a trepan was used which, without its accessories, weighed 20 gross tons, while the trepans for the preliminary shafts weighed from 10 to 12 tons. In $18 \% 6$ relatively slight progress was made, as very compact silicious ground was met, which the trepans simply crushed instead of cutfing. The engincerss in charge were driven to trying the free-fall arrangement for the cutting tools, and finally developed a form of it which was easily applied, and which doubled the rate of sinking.*
After several years' work the water-bearing marls were successfully passed, impermeable ground was reached, and at a depth of 925 feet it was thought that the Coal Measures had been reached. What was their disappointment, however, on finding wholly mexpectedly, and at a depth of about 930 feet, a bed of quicksimen some 50 feet thick (sable boulant achénien).
In shaft No. 1 three sheet wrought-iron columns were successively sunk in this quicksand, reaching comparatively firm ground in the Coal Measures at a depfhof 984 feet. The dimensions of these wroughtiron columns were as follows:

Diameter.	「ength.	Depth of lower end below surface.
Ft. Im.	Feet.	Feet.
13 8t	17	981
13 2	28	034
1211	29	934

[^24]Unfortunately the schist on which the quicksand rested was itself very treacherous, and in order to find a solid base for the tubbing itself it was found necessary to sink with the trepan to a depth of 1,007 feet, following up this sinking with still another wrought-iron column, which extended to a depth of 997 feet from the surface.
In shaft N (o. 2 , again profiting by the experience in shaft No. 1, they reached the coal-bearing strata with two wrought-iron columns; but a third and supplementary one had later to be olaced above. But though they passed thas comparatively readily through these quicksands, new trouble arose in the coal-bearing strata, They found the schist at a depth of 1,008 feet, but they had to push down to a depth of 1,063 before finding safe foundation for the final cast-iron tubbing column, and to carry the wrought-iron tubbing to a depth of 1,050 feet. Thus the five successive columms of wroughtiron tubbing used in the lower part of shaft No. 2 , as shown in Fig. 12 , sealed up 126 ruming feet of treacherous ground.
Sinking the tubling.-Tho shaft having thus been sunk to firm ground, and being still full of water, the relatively easy work of sinking the final columns of cast-iron tubbing, each of which was to tub one of the shafts from top to its present bottor: as a single solid water-tight lining, now began. The tubbing column of No. 1 shaft, consisting of 214 cast-iron rings, with a total height of 1,007 feet, was lowered into place in less than 2 months; but an accident occurred which threatened most serious disaster.
In sinking the tubbing column through the water, as it floats on its false bottom, the latter has to support the whole weight of the column above, less the weight of the water admitted intentionally within the tubbing to enable it to sink, or, in the present case, some 2,200 tons. Now, when the tubbing had been lowered to a depth of about $\% 40$ fect, and while there were still 6.4 cast-iron rings to set and bolt upon its upper end, a leak occurred in the false bottom. Had the bottom itself broken, or had some joint sprung a leak?
Of course here was serious danger that the water would accumulate within the tubling not only faster than they could pump it out, but so fust that the whole mass would sink to the bottom with a rush.. There was nothing for it but to pump for dear life, and to bolt ring after ring to the top of the column as fast as possible, and so strive to keep its head above water, working without ceasing day and night. At length, after nine days of this peril and strain, the tubbing reached the bottom of the shaft and rested safely on the rock, its top) still within reach. The shaft was saver.
To avoid the danger of another occurrence of this kind the tubbing of No. 2 shaft was provided with two false bottoms, one at its very base, the other about 250 feet higher up. Thus the first false bottom had to support only the first 150 rings of tubbing before being reenforced by the second. It is evident that, by admitting water
into the space between the two false bottoms and thas compressing air between them the upper false bottom can be mado to support as much of the weight of the whole as is desired.

The work of surrounding the tubbing eolumns with mortar (beton) presented no features of especial interest, though indeed it was no simple mattor to place the little bucketfuls of mortar at a depth of over 1,000 feet. The work occupied about 2 months at No. 1 shaft. Four little steam engines drove double lines of wire rope, which took the full buckets to the bottom and brought the empty ones up.
IV. Shaft at Gmeisenau.--Sinking tubbing columns beneath the water lecel.-The Kind Chaudron tubbing column usually extends unbroken from the bottom of the water-bearing strata to the surface. At Gneisenau, in Westphalia, however, the water-bearing strata, some 140 feet thick, are overlaid by some 660 feet of good ground, in which a shaft could be sunk and lined in the usual manner without resorting to the Kind-Chatudron process. (On piercing the waterhearing strata, however, the water gushed into the shaft, and filled it nearly to the surface.

To unwater the shaft was plainly impossible. It was therefore sunk while lull of water, through the water-bearing ground, by trepan and sludge box. It was now clearly umecessary to tub the whole depth of the shaft; the upper gifo foet were in grood ground, and all that was necessary was to tub the 140 feet of bad ground. and to seal up the amular space between the tubbing and the rock at either end, so that water might not lak around the ends of the tubbing: for safety, however, the tubbing column was marle 80 feet longer than the thickness of the had gromad, so that its ends might be the more securely soaled.

The tubbing column was put together in the usual way, setting ring after ring on its upper end, and sinking it little by little by admitting water from time to time into its interior, so that its hoad was ever at a level convenient for setting more rings. But in order that the tubbing column, some $: 200$ feet long, might be rearlily lowered through the 600 -odd feet of water which overlay the portion it was to occupy, it was closed at top as well as bottom, only enough water being admitted into it to enable it to sink at fair speed through the water.

It was thus lowered, being still controlled by rols which passed up through the overlying water to the surface. It was like lowering a gigantic closed can far below the surface of the water. When it came to rest at the bottom of the shaft a valve in the false top was pulled open by a wire which reached to the surface. The water now rushed into the tubbing column, and its weight pressed the moss box or strfing box at its lower end hard against the rock walls of the shaft. The annular space around the tubbing, between it and the rock walls of the shaft, was now filled with béton, which was
lowered by little buckets guided by wires which had been attacher to the outer circumference of the tubbing at its lower end before low. ering it, and which ran to the surface.

The shaft was now pumped dry, the water of the bad ground being effectually shut out by the tubbing, moss box and beton. The false top and bottom of the fubbing were removed, and the shaft was: continued into the good ground beyond.
(4) Lippmann's modifications of the Kind-Chaudron process.-Lippmann has abandoned the moss-box arrangement, and instead places a ring of iron filings or turnings around the outside of the bottom of the tubbing, so as to form a species of rust-joint. The iron filings may be lowered quite as the béton is.

Instead of lowering this by little buckets he runs it down after mixing it with water, through sheet-iron pipes 4 inches in diameter, which reach from the surface to the bottom of the annular space between tubbing and rock. A little iron rod reaches down through each of these pipes. By moving it occasionally the béton is prevented from cloggings in the pipe. The sheet-iron pipes are of course shortened as the work proceeds. After a little practice the men can fill about 50 rumning feet in 8 hours, which appears to be much quicker work than that accomplished by Chaudron's plan. We saw that 2 months were needed to back about 1,000 rumning feet of tubbing by Chaudron's method at Ghlin.

Lippmann further dispenses with the internal column of piping B, Fig. 10, with its series of cocks, and instead has a single cock in the false bottom itself. This cock is opened and shat by a lever moved trom the surface. Ho objects to the internal column on the ground that it is liable to be broken, thus flooding and sinking the tubbing column.

We saw that Chaudron first sinks a preliminary shaft, which he later reams out to the full di-

Fig. 13.-Lippmann's Fili. 14.-Shate of euts made by doubly Y trepan. Lippmamn's double Y trepan. ameter sought. This is because a single straight-edged trepan works disadvantageously when of large diameter ; for even if it be turned only through a very small angle between successive strokes, the distance between successivecuts near the circumference is very considerable.

Toavoid this Lippmamo uses. a trepan like that shown in plan in $\mathrm{Fi}_{i g}$. 13 , a sort of double Y. which, as shown in Fig. 14, cuts the rock upinto a series of lozenges. With this trepan he sinks the shat at once of full size.

B.--Rock drills and air compressors for mines.

(5) The Bosseyeuse or wedging drill,* for drilling and breaking down rock.-This machine is a rock drill, which can be swung easily either vertically or horizontally while working, so that it may cut at will either the common round holes or long slots. It is further provided with a ram-head (Fig. 22), for striking the wedges (Fig. リ1). which are used for breaking down the rock. To use this ram-head we detach the common drill bit and attach the ram-head in its place.
The machine was devised for driving levels in coal mines without using explosives, breaking the rock down by wedging instead of by blasting. It is reported that eighteen out of the twenty-three explosions examined by the Belgian administration of mines in the three years ending in 1882 were caused by the use of powder.
I will first describe the machine itself and then its use, espectially the system of wedging employed for driving levels, etc.
Fig. 15 shows the wedging drill and the wedges in place; Figs. 16 to 19 the details of the machine, Fig. 20 the bit, Fig. 91 the wedge and feathers, Fig. 22 the ram-head.
The drill itself is about 4 feet high and 2 feet 6 inches wide, and can drive levels from 4 feet high by 5 feet wide to 8 feet high and 11 feet wide. \dagger "It is mounted upon a carriage rumning on wheets, G and H , and capable of being fixed by the screw J and sleeper K (Fig. 15). In the center of this carriage is an upright upon which is mounted a frame capable of being moved in all directions. By means of a hand wheel and a worm, M, it can be rotated in a horizontal plane; the screw N serves to tilt it, and the screw L to raise and lower it. In this frame are two long guides, B, upon which is mounted the motive-power cylinder A (Fig. 17), which can be moved along them by the screw O and hand wheel C. Compressed air is distributed to the aylinder by the slide valve C , the rod of which is enlarged at one end to form a plunger, D, working in a cylinder to which the air gains access through a leak hole in the plunger. This air is periodically evacuated by the opening of the air valve a by the tappet lever F, when the excess of pressure in one direction moves the valve. On the return stroke the piston is arrested by the counter piston K working in an extension celinder to which air passes through the leak hole N.
The boring bar J has a key groove down cach side (Fig. 19), and passes through a ratchet wheel, which is partly turned at each stroke

[^25]of a pawl operated by the rod I, which has an oscillating motion imparted to it by the pistons H. H."

Munner of driving. - In order to break down tho rock by wedging we must first have an open space, or at least a cut, slot, or groove,

The Francois and Dubois Bosseyeuse or "ram drill."
toward which we may wedge the rock beside it. This shot may be cither vertical or horizontal, according to the cleavage of the rock, etc. Once this slot is cut and holes drilled beside it, the rock is easily broken down by inserting wedges in these holes, and striking them with the ram, which is carried by the Bosseyeuse or wedging
drill itself, the ram simply taking the place of the common bit used for driving holes.
Manner of cutting the shot.-Two wass are alopted, one for hard, the other for soft rook.
In case of hard rock. Figs. $: 3$ and $: t$, a row of holes about $2 \frac{1}{2}$ or 3 incher in diameter, and as near together as possible, is first driven much as with a common rock drill. The spandrels between them are then cut out, replacing the common bit with a flat, chisellike tool, which of course is driven withont rotation.
In the case of soft rook (Figs. 25 and 26) two holes $2 \frac{1}{2}$ or 3 inches in diameter are first driven, one at either end of the proposed slot, and filled with wooden plugs. The slot between them is then cut

Fit. $2: 3$ (elevation).

Fit. 24 (plan).

Driving in head rock with the ram drill. (Dimensions are in metres).
with a special bit, the machine working as in driving a common hole, but swinging back and forth from one end of the slot to the other continuously, by means of the worm Mror the serew N (Fig. 15) already mentioned, so that it cuts a slot instead of a round hole.

It is recommended that the slot be at least 30 inches deep, the holes for wedging being from 4 to 6 inches deeper. The number and arrangement of the wedging holes must of course be governed by the hardness and cleavage of the rock, etc. These holes laving been drilled, iron feathers are placed in them, and between these, steel wedges (Fig. :21). The cutting bit is now removed from the Bosseyeuse, and is replaced by a ram-head, which is driven against these wedges repeatedly, breaking down the rock by wedging it toward the slot.

Rate of progress and consumption of air.-Two test trials are re.ported, one for drifting in hard sandstone (gress), the other in

Fig, 25 (elevation).

Fig. 26 (plan).

Driving in schist with the ram drill.
schist. Figs. 23 and 24 show the placing of holes, etc., for the former trial, Figs. 25 and 26 show the arrangement for the latter. The following details are recorded.

FIRST TRIAI; DRIFTING IN HARD (iROUND.

Nature of rock: very hard compact sandstone.
Size of level (2.10 by 1.75 metres), 6 feet 10 inches by 5 feet 9 inches.
The slot was made by cutting fifteen holes (sixteen are shown in the illustration) 34 inches in diameter and $35 \frac{1}{2}$ inches deep (0.08 by 0.90 metres).

The intervals between the holes being (0.005 metre), i_{6} of an inch.
Time occupied in drilling one hole, from 25 minutes to 1 hour.
Time lost hetween holes, from 0 to 7 minutes.
Time occupied in drilling fifteen holes, 9 hours 23 minutes.
Time per hole, 37 minutes, including time for placing and changing drills.
Time for drilling patoper, 34.5 minutes.
Time for changing and placing drills, 2.5 minutes.
Total consumption of air, (189.77 cubic metres), 6,701 cubic feet.
Consumption of air per hole, (12.65 cubic metres), 446.8 cubic feet.
Pressure of air, (4.3 atmospheres) 63 pounds per square inch.
In cutting these holes the machine worked 8 hours 48 minutes.
Consumption of air per hour of active work (21.5 cubic metres), 7an cubic feet.
(utting out the spandrels between the holes orcupied 2 hours 15 minutes.
And consumed (37.2 cubic metres) of air. 1.314 cubic feet.
In cutting these spandrels the machine worked 1 hour in minntes, and 18 minute's were occupied in changing the machine from hole to hole.

Consumption of air per hour in cutting spandrels (19 cubic metres), fify cubic feet.
Breaking down the rock after cutting the slot required twenty-six holes of about 39 inches deep.

To drill these holes occupied 16 hours.
Time per hole, 37 minutes.
Total consumption of air, (401.21 cubic metres), 14.162 cubic feet. Consumption of air per hole (15.4 cubic metres), 543.8 cubic feet.

Wedging off the rock from these holes occupied of active work 2 hours 98 minutes.

Consumption of air. (33 cubic metres), 1,165 cubic feet.
Total time for drilling these wedging holes and breaking down the rock, excluding time creupied in cutting the slot, 25 hours 24 minutes.

There were thus 6 hours 56 minutes delay for cleaning up, etc., but cleaning up, continued also while the holes were drilling.
Total length of drift, (0.87 metres), 2.85 feet.
Total consumption of air, (661.18 cubic metres), 23,344 cubic feet.
Total time occupied, all delays included, 45 hours 48 minutes.
Consumption of air per hour, (14.38 cubic metres), 507.8 cubic feet.
The machine was actually at work 30 hours 21 minutes.
Consumption of air per hour of active work, (22.04 cubic metres), 777 cubic feet.
Consumption of air per rumning foot, (816 cubic metres per running metre), 8,800 . cubic feet.

Consumption of air per cubic foot, (223.052 cubic metresper cubic metre), 223. cubic feet.

SECOND TRIAL; IRIFTINC IN SCHIST.

Dimensions of drift, (2.1 by 1.6 metres), 6.8 by 5.2 feet.
Two holes were first drilled, one at the top and one at the bottom of the face of drift as shown in Fig. 17.
Depth of holes (0.865 metre), 2.84 feet.
Time occupied in drilling holes, 6 minutes and 13 minutes, respectively.
Consumption of air in drilling holes (4.13 and 8.12 cubic metres), 146 and 286: cubic feet.
Time occupied in cutting slot from hole to hole, 2 hours 33 minutes.
Depth of slot, (1 metre), 39 inches.
Consumption of air in cutting slot, 54.46 cubic metres.
The rest of the time (active work) in drifting, after the slot was cut, was 15 hours. 8 minutes.

During this time the wedging drill worked, in drilling, 4 hours 50 minutes.
In wedging down, 1 hour 7 minutes.
Air consumed in drilling, total (125.89 cubic metres), 4,446 cubic feet.
Per hour (27.97 cubic metres), 988 cubic feet.
Air consumed in wedging off, total (6.21 cubic metres), 219.3 cubic feet.
Per hour, (6 cubic metres), 211.9 cubic feet.
Distance drifted (0.95 metres), 3 feet 1.74 inches.
Consumption of air per running foot of drift (196 cubic metres per metre), 2,111 cubic feet.

Consumption of air per cubic foot of drift, 65.584 cubic feet.

RESULTS OF REGULAR WORKING.

During 6 consecutive months, in which twenty-five wedging drills were in use, the cost of operating one drill per diem was found to be as follows:
A drill with 48 -inch cylinder costs $\$ 1,200$; one with 37 -inch cylinder costs $\$ 750$, necessary tools included in each case. At 10 per cent. per annum the cost of amortization would be .$\$ 0.40$ to 0.25
Cost of repairs to the wedging drill per diem (0.57 frane) 0.11
Cost of repairs to tools (0.81 franc) . 0.06
Miscellaneous iron and steel used (0.30) franc).............................. 0.06
Drill-steel used (0.33 frane) . 0.07
Oil, 0.13 gallon (0.35 franc) . 0.07

The cost of labor for driving the wedging drills was from $\$ 1.27$ to : $\$ 1.88$ per diem per machine, and the average rate of driving in each of six drifts was from 18 to 25 inches per shift in schist, it being estimated that the rate of advance in sandstone is half that in schist.

After working for 10 years at Marihaye without burning a grain of powder, the engineers seem more than satisfied with the substitution of mechanical appliances for explosives, and they claim that, while offering greater security to their worlmen and to the property, the cost of mining a ton of coal compares favorably with that at other mines undor utherwise like conditions.
(6) The Dubois \& Francois air-compressor.-This powerful compressor is built by the Cockerill Company of Seraing, where the classical air compressors for piercing Mont Cenis were built.

The compressor shown at Paris is horizontal, compound, condensing, with two horizontal air cylinders, each tandem with one of the steam cylinders. Beyond the steam cylinders is the crank shaft, the cranks standing at right angles, with a single fly wheel between them. The high-pressure cylinder has a Meyer cut-off, variable but not automatic. The governor simply controls the throttle valve, to prevent dangerous speed, since moderate changes of speed are of little importance.

The suction valves are flat steel disks faced with leather or rubber, and closed by spiral springs. The discharge valves are bronze puppets, seating directly on cast-iron, and held down not by springs but by a little piston, itself driven by the compressed air.

The distinctive featu:e of the Dubois \& Francois compressor is the introduction of cooling water into the air cylinders in two distinct ways and for two distinct purposes. Above each air cylinder lies an open trough, into which a pipe about $1 \frac{1}{4}$ inches in diameter discharges water. When I saw the compressor at work this pipe was discharging its so-called full capacity into this trough; this gives an idea of the quantity of water used by the compressor, as all that runs into the trough passes into the air cylinders. But I was informed that this was about double the normal quantity of water. The suction valves stand above the cylinders, with their stems horizontal and parallel with the axes of the cylinders; i. e., the disks themselves are vertical. The lower edge of each valve is submerged in the water in this trough, so that, while the valve is open, the water simply gushes into the cylinder through it. The water thus introduced, while it, of course, exerts a certain cooling effect, is chiefly to fill tise clearance, and to thus insure that all the air drawn in by the piston at each stroke shall be expelled during the return stroke.
In the second place a little of the water which has been thus drawn into the cylinder and again expelled, while still under pressure, is converted into spray by a special apparatus, and blown into the cyl-
inder ends. Enormous surface of contact with the air of course makes it an excellent cooling medium.

Under these conditions it is stated that the volume of air drawn in is never less than 90 per cent., and may even reach 94 per cent. of the volume passed through by the piston; i. e., the product of the area of the piston into its stroke.
The principal dimensions of the compressor are as follows:

	Feet.	Inches.
Diameter of low-pressure cylinder, 1.150 metres	3	9
Diameter of air cylinder, 0.60 metre.	1	$11 \frac{1}{2}$
Stroke of all eylinders, 1.900 metres	3	$11 \pm$
Revolutions, nommal		45
Revolutions, safe		50
Steam pressure, 8 atmospheres		118
Air pressure, 6 atmospheres.		88
Capacity of compressor at 40 revolutions, air at		123,600

The compressor can, however, while ruming at 50 revolutions, compress air up to 114 pounds pressure per square inch. The fuel consumption for the five compressors of this type which the Cockerill Company is building for the Compagnie Parisienne (Paris Compressed Air Company) is guaranteed not to exceed 8 pounds of coal per pound of air delivered at a pressure of 88 pounds per square inch. The Compagnie Parisieme demands that the temperature of the air delivered at this pressure shall not be more than $27^{\circ} \mathrm{F}$. (15° (.) above that of the surrounding air.
(7) Cost of compressing air.-In test trials at the Marihaye coal mines, lasting twelve days, the following numbers were arrived at as the cost of compressing 1 cubic metre of air (35.3 cubic feet, 1.3 (cubic yards):

	Rate.	Amount.
Amortization of the compressing plant	5 per cent. jer annum.	80.00041
boiler plant	4 per cent. per anmum.	0.00017
piping, etc	8 per cent. per annum.	0. (k)014
Coal	S2 per ton (2, 240 lbs)..	0.00367
(iil, ute.		0.00008
Labor.		0.00070
Total.		0.00517

Each pound of coal evaporated 7.3 pounds of water. 7.7 pounds of coal were consumed per hour per 1 horse-power of the air cylinders. The labor of engineers and firemen is charged at the rate of from 60 to 65 cents per shift.
The report admits that the consumption of coal per 1 horse-power per hour may appear excessive, but points out that the trials were under far less favorable conditions than usual, for in most test trials
the time is short and the compressor runs regularly. Here, however, the trials lasted 12 days, and the speed of the compressor varied greatly. Indeed, it often happened that the compressor stopped altogether, while the condensation in the

Fig. 2t.-Arrangement for lowering filling at Lyons shaft. pipes continued, the boilers being fired all the time to keep the steam pressure up. They claim that, under favorable conditions, the cost for fuel on a test trial could be reduced to but little more than half that found in this trial.
The compressors were of the Dubois \& Francois type, with stroke and diameter of about 4 feet and 15 inches.
(8) Ventilation by the Körting ,jet blower.In experiments at the Marihaye coal mines, in which Körting blowers were worked with compressed air, it was found that each blower furnished 106 cubic feet (3 cubic metres) of air per minute, and in doing this consumed ($0.1 \bar{u} 4$ cubic metre) 5.4 cubic feet of air at a pressure of 68 pounds per square inch (4.3 atmospheres). Or, in other words, for every cubic foot of air at 63 pounds pressure delivered to the Körting blower 20 cubic feet are delivered by it for ventilating purposes.
(9) Heating air for compressed-airmotors.In describing the air compressor for the Compagnie Parisienne, the Cockerill Company states that the efficiency of compressed-air motors may be increased enormously by preheating the compressed air, and by injecting water with it. Thus, wheredryairat 88 pounds pressure (6 atmospheres) and at $68^{\circ} \mathrm{F}$. $\left(20^{\circ}\right.$ C.) works with an efficiency of 46.7 per cent., if the air be preheated to 392° F. ($200^{\circ} \mathrm{C}$.) the efficiency rises to 64.8 per cent. ; and if water be injected simultaneously, the efficiency rises to 87 per cent., and that practically one may count on 80 per cent. efficiency. The expense of preheating the air and of injection they report as not more than 0.2 cent per horse-power per hour.

C.-Hoisting machinery.

(10) Tail-rope counterweight at the Lyons shaft of the Montrambert et de la Béraudière Coal Mining Company.-This counterweight regulates the speed of descent of the cages which carry filling to the
lower levels of the coal mine. As shown in Fig. 27, two cages, each carrying two filling cars, run in this shaft, and are suspended from either end of a common cable. We have in short a gravity balance, the weight of the descending full cars drawing up the empty ones. The problem presented was to devise a counterweight which would increase the average rate of descent, while decreasing the final velocity gently but surely.
This is very simply effected by hanging a cable or tail rope beneath the cages, each of its ends hanging down from one of them, so that when the two cages are midway down the shaft and therefore side by side, this cable forms a long narrow upright U, reaching to the bottom of the shaft. This tail rope is made 2.02 pounds heavier per running yard (1 kilogram per running metre) than the suspending cable, so that in a shaft 984 feet (300 metres) deep there is a difference of weight of 661 pounds (300 kilograms). At the beginning of the descent the whole of this excess, E , of the weight of the tail over that of the suspending cable reënforces that of the full over that of the empty cars, e, and accelerates the descent. But as the full cars descend, less and less of E pulls down on the descending cage and more and more of it pulls down on the rising cage ; at mid-travel this excess E pulls equally on both cages; toward the end of the descent E pulls chiefly on the rising cage, and thus acts as a brake.*
This tail rope, then, is a differential counterweight. Over a simple counterweight (such as we would have, for instance, if the weight of the tail rope were equal to that of the suspending cable instead of being greater) it has a double advantage. With it the average velocity of descent and ascent is greater, so that more filling can be lowered per hour, while the final velocity is less; so that, in case the brakeman neglected to apply the brake promptly and firmly, the shock would be less than with a simple counterweight.
Clearly, if the excess E be fixed, the smaller the weight W of the filling in the descending cage the more slowly will the cages travel, till, when W becomes less than \mathbb{E}, the weight of the tail rope pulling down on the rising cage would arrest it before it reached the surface. A series of experiments made with different weights of filling gave the results shown in Table 6, and represented graphically in Fig. 28, in which ordinates represent the distances passed through and abscissæ time.

[^26]Table 6.-Experiments with the tail-rope goternor.

*The cages stopped automatically at 11 metres from the end of their normal trip.
Actual working.-As shown in Fig. 2π, the weight of the two full cars has carried them to the bottom of the shaft, bringing the upper of the two down to the landing, and the lower of the two empty cars t_{0} the landing at the surface. At the bottom of the shaft a full car is replaced by an empty one; at the surface an empty car is replaced by a full one. Each cage now has one full and one empty car, and they thus balance each other. On withdrawing a bolt, the excess E of the weight of the tail rope hanging down from the upper cage over that of the suspending rope, added to that of the safety guard which the upper cage has lifted from the mouth of the shaft on arriving at the surface, suffice to overcome friction and to draw the upper cage down and the lower one up. They are arrested as soon as the upper car of the upper cage and the lower car of the lower cage have come opposite their respective landings, and again a full car is substituted for an empty one at the surface, an empty one for a full one at the bottom of the shaft. The bolt now being withdrawn, the weight of the filling plus E sets the cages in motion; the upper descends rapidly, pulling up the lower.

In practice, the load of filling in each car varies from 1,100 to 1,300 pounds (500 to 600 kilograms). The brake is applied lightly when the cages are within some 115 feet of the end of their travel. Under these conditions the average length of the trip is 41 seconds; that of discharging and recharging, 24 seconds, or, altogether, 65 seconds. 900 to 1,000 cars have often been lowered in 10 hours. 223,654 cars were lowered in 28% days in the year 188%, or, on an average, 779 cars per shaft.
(11) Rossigneux's pump-rod balance.*-This is a very simple differential balance for Cornish mine pumps, which aims to increase the average while lessening the final velocity of both the up and down

[^27]stroke. The essential feature which distinguishes it from the common balance is that, insteal of hanging from trumions, it rests on a

Fig. x_{1}--Curves showing the velocity of the cages as regulated by tail-rope gowarnor.
pair of rockers, AA, Figs. 29 and 30, much as a common rocking-chair does, and on them rocks back and forth. The ratio between the lengths of its two arms, and hence the upward pull which it exerts. on the pump rod, are constantly changing.
H. Ex. 410 - VOL III- 18

Thus at the begiming of the up-stroke it rests on the left-hand end of the rockers A A, the counterweight at its right hand end has the maximum moment, pulls up most strongly on the rod, and accelerates their rising motion greatly. As the stroke advances, the point of suspension of the balance moves to the right, the moment of the counterweight and the upward pull on the rods decline, reaching a

minimum at the end of the stroke, when the balance rests on the right-hand end of the rockers A A.

During the down-stroke the reverse occurs. The moment and hence the upward pull of the counterweight are at a minimum at the beginning of the stroke, so that the minimum resistance to the descent of the rods is now offered. As the stroke advances this re-
sistance constantly increases. At the beginning of the stroke the resistance offered by the counterweight, plus the water, plus the friction, is less; at the end of the stroke it is greater than the weight of the pump rods.

In Fig. 31 ordinates represent weights, abseisse the travel of the pump rods during the downstroke. The line A B C represents the resistance of the bilance to the descent of the pump rod. MI () represents their free weight (i, e., the excess of then weight over that of the water plus friction), O D represents their travel.

Fig. 31.-Diagram. Work of the balance on the down-stroke.
A B C D O is the work of resistance of the balance. OMND is the work of the free weight of the pump rods. B is the point of equilibrium.
The surface A M B is the excess of the work of the free weight of the rods over the resisting work of the balance during the first part of the down-stroke.
The surface B C N = A M B is the excess of the resisting work of the balance over that of the rods during the latter part of the down-stroke.
B, the point of equilibrium-when the resistance of the balance, plus water, plus friction, equals the weight of the pump rods-is reached after the middle of the stroke ; ie., the velocity of the rods is accelerated during more than half the stroke.
The circumstances which led to the adoption of this balance at the Ondaine shaft of the Montrambert Company were as follows: It was necessary to lower the pump $3: 2$ feet (100 metres). The pumping engine was of the single-acting Cornish type, with a balance; it was in good condition, and to replace it with a double-acting
engine with a fly wheel and much expansiom, at a cost of $\$ 100,000$, was deemed inexpedient. The leading dimensions were:
Steam cylinder, diameter, 72.4 inches (1.84 metres).
Steam cylinder, stroke, maximum, 9 feet 10 inches (3 metres).
Steam cylinder, stroke, usual, 0 feet 6 inches (2.9 metres).
Plungers, diameter, 15.0 inches (0.395 metres).
Plungers, stroke, 8 feel 0 inches (2.6 metres).
Discharge pipes diameter, 10.7 inches (0.4 metres).
The new Rossigneux's balance, Figs. 29, 30, is made of iron 0.59 inch (0.01 i metre) thick, and is suspended by two cast-iron supports weighing about 13 tons together. These receive the rockers or shoes, which are stecl castings weighing about 11 tons. The whole rests on forged steel plates, supported by cast iron, resting in turn on masonry.
Though the normal motion of the balance would only cause it to rock without sliding, the shocks which often arise at the ends of the stroke might displace it. Its rockers are therefore provided with two large teeth, which gear into corresponding depressions in the

Fig. 32.-G. Pinette's hoisting engine.
plates on which they rock, so that if the balance be shifted slightly by these shocks as it rocks, these teeth bring it back to its normal position.

The chief dimensions, etc., of the new balance are as follows:
Total length, 44.62 feet (13.6 metres).
Lever arm of bulance bearing on pump rods when balance is horizontal, 19,84 feet (6.048 metres).

Distance from center of counterweight axis of balance, 21.06 feet (6.42 metres).
Distance from center of gravity of balance to axis, 12.22 feet (3.724 metres).
Travel of balance on its supports, 7.05 feet (2.15 metres).
Radius of circle of rockers, 15,84 feet (4.83 metres).
Total weight of balance and counterweight, 144,182 pounds (65,400 kilograms).

Maximum velocity on up-stroke, i. 18 feet (1.58 metres).
Maximum velocity on down-stroke, 3.61 feet (1.10 metres).

Siecomids.
Length of up-stroke. $\because .39$
Stoppage after up-strokr .
Length of down-stroke. 3.77
Stoppare after down-stroke . 3.10
10.80

In practice the engine and pump make 5.5 strokes per minute.
(1:) Bralie attachment for hoisting engimes.- In the hoisting engine shown in Fig. 3: the brake band is held away from the drum by a simple and convenient device, a pair of nearly radial telescopic arms containing spiral springs, which allows the arms to telescope when the brake band is drawn to the drum.

The engine here shown is intended for depths of 1,000 feet and under. It can be used under ground, but is designed rather for the surface.

The table which follows may be useful in giving an idea of current French practice.

Nominal horse. power.	Vertical load.	Velocity of rope.	Diameter of drum.	Length of each drimi.	Approximate weight.
	Pounds.	Feet.	Inches.	Inches.	Pounds.
45	4. 100	3:3	CH^{3}	24	19,800
60	6,000)	3:3	6i	31	24,000
80	7,700	323	71	39	28,1000
100	8,800	3\%4	79	47	33, 3000

(13) Champigny's patent V-grooved pulley,* for wire ropes (Fig. 33).-The V -groove offers a manifest advantage over the U-groove: the cable wedges itself into the groove, and so tends less to slide; or, to put it otherwise, given adhesion can be obtained with a shorter arc of contact between rope and pulley.

But as a common V -groove wears, it soon becomes a U-groove, the round rope wearing the groove to its own section. Champigny ingeniously overcomes this tendency by making his pulley of two disks, held slightly apart by distance pieces, against which they are of course firmly bolted. Clearly, as the pulley wears the groove will ever remain nearly V-shaped; at least it never can

Fia.33.-Section of Champigny's grooved pulley. become even approximately U-shaped.

When the pulley has worn so far that its effective diameter is inconveniently reduced, he restores it to its origimal pitch by substituting thimer distance pieces for those used at first. This of course can be done repeatedly.

D.-Mining tools and appliances.

(14) Safety lamp.s.*-A good safety lamp must fulfill several conditions, some of which are all but mutually exclusive:

1. It must give a good light.
2. It must not go out when inclined or swang, either in still air or in a current, mild. strong, or even violent.
3. Both when in a current and when, owing to the presence of an explosive mixture of fire-damp and air within the lamp itself, an internal explosion occurs, it must hold the flame in and not allow it to pass out so as to ignite a surrounding explosive atmosphere.
4. When surrounded by a combustible mixture of fire-damp and air which may burn within the lamp, the lamp must not grow so hot as to redden the exposed ironwork, or to crack the glass, or to set the oil boiling, lest the surrounding gas, in case its proportions become explosive, be ignited.
5. It must be either beyond the power or against the immediate interest of the miner to open it, or at least to open it under conditions which can cause an explosion.

Without attempting a discussion of this complex problem, I will simply point out how some of the lamps brought forward in comection with the Exhibition fulfill, or are designed to fulfill, certain of these conditions, premising that the draft of the lamp is one of the most delicate and important points. It must be so strong as to supply the wick with oxygen enough to give a clear flame, even when the lamp is inclined or swung, or in a current of air, even if this be moderately impure. But if a considerable excess of air over that needed for this end be admitted. either when the lamp is in repose, in a draft, or inclined, then, in case the surrounding atmosphere be itself combustible, it burns within the lamp; the heat thus generated, added to that given out by the wick, heats the lamp so hot that its walls redden, its glass cracks, or its oil boils. The lamp needs, then, enough draft to burn the oil under all conditions (as to position, motion through or of surrounding atmosphere, etc.) when the surrounding atmosphere is not highly combustible; but should not

[^28]under any condition (as to position, etc.) have enough draft to burn the oil plus any large quantity of combustible mixture should the atmosphere become strongly combustible.
Hence the draft of the lamp-the rate at which the air passes through it-should be nearly constant. Special precautions, then, must be taken to prevent strong currents of air from altering it. Such currents are of course likely to be met, for instance, when the miner walks through a drift against an exceptionally strong ventilation current, swinging his lamp back and forth unconsciously as he walks; here, when the lamp is swinging forward, the effective velocity of the current is equal to its velocity through the drift, plus the velocity of the miner's walk, plus the velocity with which he swings the lamp forward. Again, the centrifugal force due to his swinging the lamp tends to change its draft.
The lamps which we will now consider may be divided into those in which the current of air rises, and those in which it descends toward the wick. The former class includes the Davy, the Gray, the Fimat, Figs. 34, 35, 36, and 3i; the latter includes the Marsaut and the Mueseler, Figs. 38 and 30. The advantage of the descending current is that the air becomes more or less mixed with the products of combustion before reaching the wick, and a very small quantity of these inert gases, nitrogen, carbonic acid, and vapor of water suffices to render an explosive mixture wholly inexplosive.
Moreover, these products of combustion dilute the entering air; hence, if the surrounding atmosphere of the mine consist for the moment of a combustible mixture of air and fire-damp, the proportion of oxygen in the atmosphere immediately around the wick readily falls so low that not enough combustion can occur to keep this atmosphere, plus the gases distilled from the oil, up to the point of ignition, and the lamp goes out.
The descending current, then, has a double advantage, of rendering an explosive mixture locally inexplosive, and of putting the lamp out when the surrounding atmosphere is highly combustible. With descending-current lamps a far smaller degree of constancy of draft is needed than in case of ascending-current lamps, since the latter lack this double advantage, and must rely on the constancy of their draft to keep them alight in currents of air and to put them out in explosive mixtures.
But these advantages are necessarily coupled with the disadvantage that the flame is much less bright than when, as in case of the ascending air current, the air arrives at the wick unmixed with the products of combustion. Hence repeated efforts to obtain a safe lamp with ascending current.
A great defect of the old Davy lamp was that but little of the light could pass the wire meshing. Were this remedied by placing
a glass chimney opposite the flame, and inclosing only the parts above and below in wire meshing, a lamp with ascending air current resulted, which, however, went out on the least provocation. The centrifugal force due to swinging the lamp in walking sufficed to overcome the draft of the lamp, the products of combustion were forced back on the flame, and the lamp went out.
In Gray's lamp, Fig. 35, the centrifugal force is balanced by making the air current first descend through vertical tubes, so that its downward travel is nearly as long as the upward travel of the prod-

Fia. 34.-Dary's safety lamp.

Fig. 35.-Gray's safety lamp.
ucts of combustion. The position of the entrances for air, too, should greatly lessen the influence of currents of air on the draft of the lamp. Still the draft is not, constant enough. For, on the one hand, the lamp does not readily go out when placed in an explosive mixture, but enough air enters to burn both this and the oil, and the lamp grows dangerously hot. And if, on the other hand, we throttle the passages so much that this can not occur, then moderate agitation checks the draft so much that the lamp goes out even when surrounded by pure air.
Fumat's new lamp, Figs. 36 and 37, seems to have overcome these difficulties, for on the one hand currents of air, swinging, etc., seem to produce little effect on it, and on the other Le Chatelier states that it goes out immediately when placed in an explosive mixture, adding
that it is the only lamp within his knowledge with ascending current which does.*

In the lower part of the lamp we have an annular passage, A A, which distributes the air so that it passes to the interior from all sides.

The middle section of the lamp has, on one side only, a metallic down-take, B, through which the air descends to the distributing passage A. The right-hand face of the right-hand wall of this downtake, i. e., the face next the flame, is highly polished, and thus serves as a cylindrical concave reflector.

The upper section has in the first place a wire-gauze chimney, C, protected against currents by the sheet-iron chimney D , outside of which is the jacket E , which has 77 holes 0.2 inch in diameter (5 millimetres), each carrying a little ferrule or tube 0.2 inch long. These holes lie in the face of the jacket opposite to the down-take B. The air enters through the lower of these holes, passes down through the down-take B and through the distribution passage to the flame: the products of combustion pass up through and across the wire-ganze chimney C and escape through the upper holes in the jacket E, as indicated by the arrows.
We have here two columns of gas, separated by the sheet-iron chimney D and the glass chimney F. All but the lower part of the inner column is hot, all but the upper part of the outer column is cold. The centrifugal force developed in swinging the lamp affects

[^29]these two columns so nearly alike that the draft of the lamp is not seriously changed. Again, currents of air pressing in through the holes in the jacket E strike into the cold outer column, which transmits the pressure to both ends of the hot column alike, and the draft of the lamp is not affected.
Placed in an atmosphere containing fire-damp this burns to a certain extent within the lamp, the cold column becomes heated, expands, loses its density and so diminishes the draft; at the same time less of it by weight can pass the wire-gauze of the distributing passage A A, less oxygen reaches the flame, which after a certain limit ceases to grow. Placed in an explosive mixture, not enough oxygen can reach the flame to keep it up to the point of ignition, and the lamp goes out.

Comparing this lamp with Gray's, we note, first, that the two columns are probably decidedly better balanced against the centrifugal force; I, because the cold column is heated to a considerable extent through the chimney D; and, II, because the upper part of the cold column is itself, if not hot, at least very warm, while in Gray's lamp the difference in temperature and hence in density between the two columns must be decidedly greater. Second, the additional heating of the cold column automatically checks combustion when Fumat's lamp is in a combustible atmosphere. To these I think should be added a third point, that the air. after entering the lower holes in the jacket E, becomes somewhat diluted with the overlying products of combustion which are passing out of the upper holes, since the entering and escaping bodies of gas are here in direct contact with each other and must inevitably become more or less mixed. To what extent this dilution occurs, with its advantage of giving safety and disadvantage of dimming the flame, direct trial alone can show, but it should be to a much smaller extent than the common descending current lamps. Finally, it would seem as if currents of air should affect the draft of Fumat's somewhat less than that of Gray's lamp; but on this one hardly likes to speak confidently.
Let us now return to the lamps with descending air current. The oldest of these, according to 'hatelier, is the Clanny, a Davy lamp in which the lower part of the gauze cylinder is replaced by glass. The air enters through the lower part of the gauze and immediately above the glass, descends along the walls of the glass and passes to the flame much as in the Marsant lamp, Fig. 38, the products of combustion passing up through the axis of the lamp. In addition to its much greater illuminating power, this lamp had the advantage that it went out when placed in a still explosive atmosphere. Unfortunately, if the atmosphere were in motion, the quantity of it which entered the lamp became so great as to supply enough oxygen to keep the flame alight; the fire damp as well as the oil burnt, the gauze became red hot, and hence allowed the flame to pass.

It was found that a metallic shield around the gauze tended to prevent currents of air from increasing the quantity of air which entered the lamp, even if they passed at the rate of 36 feet (11 metres) per second.
Marsaut's lamp, Fig. 38, is based on this principle. It is a Clanny lamp with the wire-gauze chimney G doubled or tripled, and protected by a sheet-iron jacket, H. The air enters horizontally and vertically through holes in H , and is baffled so as to diminish the effect of passing currents by the inner metallic ring opposite these holes. The products of combustion escape through holes in the upper part of the jacket after passing the gauze chimney G. The lamp goes out when in a still explosive mixture, as the exit passages are so slight that much of the products of combustion is baffed back, mixes with the entering explosive mixture and makes it incombustible. But this result is attained only by careful adjustment of the dimensions of the lamp, the permeability of the gauze. the size of the orifices, etc.

Fig. 38.-French form of Marsaut's lamp.
J is a bushing which may be screwed up or down to suit variations in the length of the glass chimney K, so that this joint is readily secured. The use of gaskets may be more convenient, but it is less safe than this arrangement. This joint is clearly made good wholly independently of the joint between lamp and oil cup.
In spite of the apparent safety of this lamp, it is reported that the sheet-iron covers of certain Marsaut lamps were found reddened with iron oxide as if they had been red-hot, after the fatal explosion in the St. Etienne coal mines, where they were in use. It is thought that the flames lengthened so much as to heat these covers red-hot, and that the explosion was thus precipitated. The explanation that the covers were heated to redness by the explosion does not seem reasonable. Quite an appreciable time would be required to heat these thick covers so hot that their surface would turn red. Could the flame of the explosion last so long? And if it lasted so long and were so hot as to heat these covers red-hot, would it not leave clear evidences of this condition of things on the other parts of the lamp, which, if the covers were heated to redness directly by the flame of the lamp itself, would still be relatively cool? Many competent judges in France, however, hold this lamp wholly blameless, and prefer it to all others.

Mueseler's lamp, Fig. 39, is, according to Le Chatelier, more extensively used than any other with descending current. Mueseler intentionally baffles back the products of combustion, so that they may
dilute the entering air, by making them pass through a long narrow chimney, M, whose section is too small to allow them to pass readily,

Fig. 39.-Mueseler's lamp. and which at the same time prevents the flame, in case of its lengthening when the surrounding atmosphere is combustible, from coming in contact with the gauze chimney N. This chimney is the essential feature of the lamp.

This lamp always goes out when placed in an explosive atmosphere, either still or moving horizontally, and it is not put out by currents of air.

Since its invention in 1840 many modifications of it have been proposed, some of which wholly destroy its safety Much confusion arises from calling all these modified lamps Mueseler, and Le Chatelier would reservo this name for those of the dimensions of the Belgian royal decree of 1876 , which follow:

Dimensions of Mueseler's safety lamp.

	The inventors.		Laws of 18, ${ }^{\text {and }} 1876$.	
	Inches.	Millimetres.	Inches.	\| Millimetres.
Wire.guage-	$\begin{array}{cc}1264 & \\ 0.013\end{array}$			
Meshes to the square inch.			929	
Diameter of wire..			0.013	0.33
Glass chimuey -				
Height	2.76	70	2.4	62
Outer diameter.	2.01	51	2.36 to 2.40	(1) to 61
Inner diameter........	1.13	44	0.13 to 2.20	54 to 56
Sheet-iron chimney-				
Diameter of top.	0.39 to 0.44	10 to 12	0.39	10
Diameter of base.	0.98	矿	0.98	25
Diam ter of bell.	1.18 to 1.38	30 to 35	1.18	30
Height above diaphragm.	3.74	95	3.50 to 3.58	89 to 91
Height below diaphragm.	0.93	25	1.02 to 1.10	26 to 28

(15) Fustenings for safety lamps.- It has been found that miners so readily pick any common lock for fastening their safety lampsthe carelessness of a single miner who seeks to trim his lamp, thus exposing the lives of thousands to great danger-that fastenings other than keys and wholly beyond the control both of miners and foreman seem very desirable. I will describe three shown at Paris: Cuvelier's Hydraulic Method, Raffard's Magnetic Fastening, and the lead-rivet fastening.

Cuvelier's hydraulic fastening.--The lamp is opened by unscrewing the joint $U \mathrm{U}$, so that the lcwer part containing the oil vessel, wick, etc., is separted from the ring V, to which the chimney, etc.,
forming the upper part of the lamp are attached. In the conditions shown in Fig. 40 the bolt a prevents our unscrewing this joint; the lamp is locked.

Fig. 40.

FIG. 41.

Cuvelier's hydraulic fastening for safety lamps.
The bolt a is held up firmly by the claws $s s$ of the stout spring h, and can be lowered so as to permit us to unscrew this joint U only by withdrawing ss from beneath the shoulder of a.
Now just here is the gist of the matter. This spring is a flexible tube like that of a pressure gange, bent around nearly to a circle. It is so stout that it can not be opened by pushing a wire into it; indeed, there is no entrance through which a stiff wire could be pushed. But it is readily opened, its two sides moving apart, as in the direction of the arrows in Fig. 41, on introducing into it through the little hole m, water or other fluid under enormous pressure. The hollow tubes k, opening centrifugally when under hydraulic pressure. withdraw the claws ss from beneath the collar on a, the spring R forces a down, and we can now unscrew our joint U, and thus open the lamp. The pressure is readily supplied in the lamp-filling room from any convenient source, but underground the miner, of course, has no means of generating or applying it.

A convenient form of press for supplying water under pressure is shown in Fig. 42.

We have in the first place a cast-iron reservoir, G, in the middle of which is fixed a strong bronze hydraulic cylinder, about $1 \frac{1}{8}$ inches in diameter. In this cylinder plays a pliunger, 1 , its lower end carrying a leather U packing. This plunger is held down by the weights B, and raised and lowered by the hand-wheel C. From the bottom of this cylinder runs a narrow tube, conveying water under pressure to

Fia. 4:-Press for opening C'hevalier's fastenings.
the lamps, and controlled by a cock, F. From a little hole or induction port near the top of the cylinder runs another little tube to the bottom of the outer reservoir. When the piston is lifted by the handwheel C , a partial vacuum arises in the cylinder; as soon as the packing of the plunger has risen past the induction port, water rushes in from this outer reservoir and the cylinder is thus filled automatically. Tho rods E pass through pipes fastened to the bottom of the reservoir.

The apparatus certainly seems simple. Thero is only one valve, the cock $\mathrm{F}^{\text {in }}$ the little pressure-pipe, and this cock and the packung on the plunger seem to be the only parts to which attention must be given.

This form of fastening has been adopted by eight important French and Belgian collieries. For information we are directed to apply to M. Catrice, Péruvelz, Belgium.

Magnetic fastenings. - The bolt which locks the lamp may be held in place by a powerful spring, to which is attached a bar of iron so shaped that it may be withdrawn, drawing with itself the bolt of the lamp, by means of a powerful magnet. The lamp, thus unbolted, is now opened by unscrewing its base from its upper part.

In Villier's arrangement the bolt of the lamp carries a horseshoeshaped armature of soft iron, which is drawn down, unbolting the lamp, by means of a powerful electro-magnet, magnetized by a magneto-electric machine driven, through a pedal, by the lamp man's foot. But the power required to drive the magneto-electric machine is so great that a single lamp man, using all his strength, can open only six lamps per minute, and only three per minute during continuous work.

Ruffard has substituted for Villier's electro-magnet a simple permanent horseshoe magret, capable of lifting about 44 pounds. This magnet is fixed horizontally and immovably immediately beneath the top of the table shown in Fig. 43, its poles being prolonged up through the table-top by little iron cylinders 0.67 inch in diameter and 0.78 inch long, so placed as to fit against the ends of the armature attached to the lamp bolt.

In a hole in the table-top plays a copper disk, driven by the pedal B and the lever A. It fits the base of the lamp, and has two holes through which our little cylinders pass.

To open the lamp, place it on this copper disk, bringing the ends of its armature against those of our little cylinders. and raise the lamp by pressing on the pedal. As the armature, and through it the bolt, are held down firmly by the magnet, we thus unbolt the lamp, and can now unscrew and open it. Nothing remains but to free the base of the lamp from the magnet. This is done by pressing the pedal down a little farther, thus raising the copper disk a little higher, and with it separating the armature from the magnet.

As the distance through which the lamp man has to lift the lamp itself, and later the armature, in order to free it from the magnet, is
small, the amount of work done is said to be inconsiderable, only one four-hundredth of that required in Villier's arrangement. It is reported that one lamp man can open more than 30 lamps per minute without fatigue.*

The lead rivet fastening is shown in Fig. 44. After the lamp has been screwed together, bringing two ears, a, on the body of the lamp, and, b, on its hase, opposite each other, a lead rivet, r, is slipped through them, and a letter or other device is stamped on it.

Of course the workman can open this fastening by cuiting the rivet with his knife; but he thus leaves a record which he can not efface, and which should lead to his discharge.

Fit. 43.-Apparatus for opéning Raffard's magnetic fastening.

Fig. 44.-French form of Marsaut's safety lamp with lend rivet fastening.

Similar to this is the plan of soldering the two parts of the lamp together.
(16) Steel mine cars.--The rapidity with which steel cars have driven wooden ones out of use in the last few years is striking.
Romain Sartiaux, said to be the most important maker of mining cars in France, reports that, up to 1884, in the coal mines of the basins of the North and of the Pas-de-Calais in France, wooden mine cars alone were used, exceptat Anzin, Escarpelle.and Meurchin, where iron cars had already been introduced. The first trials with steel cars were made in 1884, 2, 650 cars being used as an experiment. Last year Sartiaux supplied 5,250 steel cars, 11,552 steel axles with steel wheels, 23,377 steel wheels without axles, 31,369 steel axle boxes.
These cars are made wholly of steel (apparently mild Bessemer

[^30]or open-hearth steel). Their cost is said to be about the same as that of wooden cars of equal capacity, while their life is much longer (8 to 10 years if galvanized, 6 to s if black, against 3 years for wood) and their repairs much less expensive, to wit: Ten cents per car for the first year, 20 cents for the second, and 40 cents per annum for the subsequent years, while the cost of repairs to wooden cars is from $\$ 2$ to $\$ 2.60$ per ammm per car in this district. It is only fair to add that the ratio of the cost of wood to that of steel is very much greater than in the United States. One may travel hundreds of miles through thickly settled parts of France without seeing a wooden house or a shingled roof.
(17) Hardy's patent picks.-Two of these are shown in Figs. 45 to 47. That in Fig. to needs little explanation. The sleeve at the end of the handle presses outward strongly, and so tends to keep the pick from slipping, while it of course protects the handle greatly.

Fig. 45.-Hardy's pick.

Figs. 46, and 47.

In the "Acme" pick, shown in Figs. 46 and 47, the pick proper, C D, fits into a socket on the handle, instead of having the handle fit into an eye in the pick. The pick proper has a groove on its upper side, just fitting the top part, A B, of the socket. In order to insert the pick into the socket the wedge E of the latter must be withdrawn, as shown in Fig. 47. The pick is then slipped in, and E is then driven home, forcing the top $\mathbf{A B}$ of the socket into the corresponding depression in the upper side of the pick. This pick is designed especially for coal mining.
(18) Hardy's patent multiple wedge for bringing coal down (Fig. 48). -Instead of a single wedge, a pair of wedges are used, shaped so that a third may be driven between them.

In using it a pair of feathers, as usual, is first inserted in the hole; within these is driven the first wedge, or rather pair of wedges, wedging the coal down somewhat, and within this pair of wedges is then driven the third wedge.

Fin. fs. . Itardys multible wedge.
E.--Mining transportation, etc.
(19) Transportalion b!! hangin!g chainss at, Ä̈n-S'rlima. Alye ria.The problem which was presented at Ä̈n-Sedma was fo framsont an enomous quantity of rich iron ore to the Xediterrancan from a point 2.300 feet above sea level and 3.75 miles distant in at straight. line, a dozen deep ravines lying between.

Five plans were considered :

1. A common railway, with a maximtim grade of :o per cent., and more than 18 miles long.
2. A 39-inch railway rumning through the principal valley and fed by gravity inclines.
3. A railway with rack and pinion arrangement.
4. A suspended wire-rope ralway.
5. A malway governed by hanging chains.

The latter was decided to be much tho cheiper method under the existing conditions, and was adopted.

The lime has a total length of t.ta miles (projected horizontally), and a total fall of 2,292 feet, so that the werage fall is 9. in $^{\text {a }}$ per cent. But as there are level places, and erom grades, the actual average fall is 15.5 per cent. The maximmo grate is limited to 30 per cent. To keep within this limit it was necessary to span streams at a great height by means of trestles and very light hridges, and to pierce the summits by tumels, sometimes of considerable length. Woreover, in order to avoid grades of to and even bo per cent, it was found necessary to have several curves.

The hanging chain arratugement.-Conceive a common doubletrack narrow-gange milway (Fig. 49), with a very steep grate, so

Flg. 4!--Transportation by hanking chains at Aïn-Sedma. Plan of railway.
steep that the ore cars, if left to themselves, would run down it at tremendous speed-in short, a gravity road. Imagine that about 5 feet above this road, and at considerable intervals, lies a series of transmission or toothed pulleys, A A', with vertical axes which stand
H. Ex. 410-vol in- 19
midway between the tracks. Conceive a series of long endless chains, each slightly overlapping the next, each running around a pair of these pulleys, and each thus forming a long straight-sided loop, its straight sides parallel with the tracks, one side thus hanging above the middle of the down track and rumning down hill, the other side hanging above the middle of the up track and rumning up hill. Conceive further two suries of ore cars ruming on these tracks at considerable inturals (Fig, su), a series of full cars ruming on the down

Fig. so.-Trausportation by hanging chains at Ain-Sedma. General vies.
track, a series of empty cars running on the up track. Conceive that each car has at one end, on its upper edge, an open U notch or crotch, so placed that the chain which hangs above the track hangs into and rests in it, thus laying hold of the car. This grasped, it is evident that the full cars on the down track, as they tend to run down hill, will dray this chain down hill with them, and that as this side of the chain travels down hill and approaches the pulley A' (Fig. 49) at its lower end, the other part of the chain which lies above the up
track will be dragged up hill towards pulley A, and with it the empty cars upon which it hangs and to which it attaches itself by means of the notches or crotehes already referred to. Finally, conceive that these transmission pullevs are just a little higher than the tops of the ore cars, so that as a car approaches a pulley, say A^{\prime}, the chain is gradually lifted out of the notch on its upper elge, the car thus released rumning on by its own momentum to join the chain on the further side of the puller, which, of course rums around a pulley similar to A and immediately beneath it, and is therefore not shown in Fig. 4!.
Thas one side of each of these endless chatins is pulling empty cars onwards and up hill, the other side is holding back a series of full cars which are rumning down hill.

Fig. 51.-Transportation by hanging chains at Aïn-Sedma. Station at head of section.
The whole line is divided up into six sections, and each section contains several endless chains, each chain tandem to and barely overlapping the next.

All the chains of each section are in communication and under mutual control; those of the different sections are independent.

In each section are many transmission stations, one at the end of each chain. A transmission station consists simply of two driving pulleys, i. e., toothed pulleys, fixed on the same shaft. The links of the chains lay hold of or "mesh" into the teeth of these pulleys, and thus it is that successive adjoining chains are under mutual control.

The station at the head of each section has in the first place a loose pulley, which simply forms the lower end of the next upper section, and returns the descending chain. In the second place, it contains the main driving, or rather brake pulley of the lower section. This: pulley is of the Lancashire type, and has stout vertical steel bars for teeth, which lay hold of the upper chain of the lower section and prevent its slipping. The chain makes one and a half and sometimes two and a half turns around the pulley.

The speed of this main brake pulley is controlled, first, by a fan brake (Fig. 51); secondly, by a common band brake, by means of which the upper chain of the section may be checked or evon arrested, when through it, and thence through the pulleys of the transmission stations, we at the same time check or arrest successively the several lower chains of the same section.

The track and the travel of the ore cars are continuous from the top of the line to the sea. At the stations, both those of transmission and those at the section heads, the cars leave the chains momentarily, or rather the chains are lifted by the pulleys so high that they lose hold of the cars, which by their momentum pass from chain to chain. 'The inclination of the up track must be reversed from an up to a down grade for a short distance on each side of each station, so that the cars rumning on it may pass reatlily from chain to chain.

The gauge is 21.65 inches: the distance between the up and down tracks, 11.8 inches. The rails are of Bessemer steel, and weigh about 13 pounds per rumning yard. As the chains of the differentsections support different stresses, owing to differences in grade, so their weight varies from about 17 to 26 pounds per running yard, their total weight being about 150 tons. They are of charcoal iron. Seven. hundred ore cars are used.

The plant was built after the plans of M. Brüll, director of the mines, and under his direction, much of the material being supplied by the Taza-Villain establishment, to which we are indebted for a deseription of it.
(?()) Fren brakeand gravity road at Bilboa.*-The distinctive feature of the Cadegal gravity road at Bilboa is the use on a large scale of the fan brake (Fig. 52).

The rich iron mines of Somorrostro lie at the summits of precipitous mountains, midway between Bilboa and the sea, at a height of from 650 to 1,000 feet. The problem of transporting the ore from the mountain tops to the plane at their feet is well solved by the use of the gravity road.

The Cadegal gravity road is about 2,000 fect long, with a total fall of about 525 feet Its inclination is 35 per cent. in its upper, 30

[^31]per cent. in its middle, and 85 per cent. in its lower part. It is a straight double-track road, of 39.4-inch gauge.

The machinery (Fig. 52) consists of a great double drum, slightly conical, nearly 20 feet in diameter, covered with three-quarter inch

iron plates, and supported by three strong spiders, the middle of which is toothed, and gears into a pinion on the shaft of the fan brake.
The fan brake is made up of four straight blades at right angles to each other. They are 6 feet $\%$ inches wide, while the outside diam-
eter of the fan is 16 feet π inches. This brake acts solely by the frictional resistance which the air offers to the swift turning of its blades.

The peripheries of the end spiders of the drum have rims arranged so that they can be grasped by the band brakes, which can be worked by the engineer who stands at the head of the incline, at a distance of about 200 feet. The band brakes are held away from the drum by counterweights, as shown.

The cables are of steel, and $1.5 y$ inches in diameter. The drum itselt stands high enough to let the trains which form on the level at the head of the incline, and which have eight 2 -ton cars each, pass beneath it. The upper and lower ends of the gravity road are so arranged that all the maneuvers of the cars, both on arrival and departure, are effected by gravity.

When the train is released at the head of the incline its descent at first increases rapidly, as the fan brake, now moving slowly, offers but little resistance. As the speed of train and fan brake increase, the latter offers more and more resistance, so that the velocity of descent very soon becomes constant. The fan brake is designed to give the train a maximum speed of about 600 feet per minute, which corresponds to a velocity of 90 revolutions per minute for the fan itself. Actually the train runs down the 2,000 feet of incline in about 3.5 minutes, while from 6 to 7 minutes are oecupied by the maneuvers at the ends of the incline, so that we have a trip about every 10 minutes, or a traffic of about 1,00 o tons per 10 hours. This, we are informed, could be raised easily to 1,500 tons, by having more cars per train.

This descent of the full cars and the ascent of the empty ones. be it understood. is accomplished without the use of the band brakes, the fan brake regulating the speed of the trains quite automatically, and without the intervention of the engineer, the band brakes being merely held in reserve in case of need. They are strong enough to arrest the train at any point in its descent.

The advantages claimed for the fan brake are:

1. That we avoid the friction and consequent heating and wear of the lagring of the band brake;
2. Perfect regularity of descent;
3. That it can be easily regulated in phace, by changing the surface of its blades to suit variations in the conditions of descent. To these may be added another:
4. That the arrangement requires much less careful and constant supervision than the band and other common forms of brako; and that, as the resistance is necessarily applied extremely gradually, we avoid wholly the shock and consequent deterioration of the machinery due to sudden and violent application of the brake by careless hands.
(21) Malissard-Tusés automatio: Basculeur." or dumping pliant, Figs. $5: 3$ and 54 .-This is an armgement for discharging coal from cars into boats, without power, and with but little labor. The car itself, with a short movable section of track, tips far enough to let the whole charge of coal slide out into a pocket, from which a chute leads to the boat. In order to accomplish this the movable section of track is laid on a strong platform of iron beams, which is movable, and pivoted at the point (), as shown in Fig. 53. As shown, this pivot, instead of being in the center of the track, is much to the land side, so that the weight of the loaded car tends to tip the platform down towards the chute and boat.

Fio. 53.-Malissard-Taza's " Basculeur," or coabtransferring plant.
A heary bob, counterweight, or pendulum, M. (Fig. 53) is fastened bencath this tipping platform, so that it has toswing and rise as the platform and car tip. This pentulum is of such a weight that, while it is readily swung, and lifted by the weight of the full car, it suf'fices to bring the platform and car back to a horizontal position when the car is empty.

Clearly, without some special precaution the weight of the full car would tip the platform down violently, and after the car was emptied the pendulum would bring it and the platform back to their original position with a shock. To obviate this a hydraulic moderator or brake is attached to the platform. It consists of a hydraulic cylinder, H, with piston and piston rod, p, connected with the beams T of the tipping platform, at x, by the connecting rod b. The upper and lower ends of this cylinder are comected by a pipe, l, in the middle of which is a cock, which controls the passane of water from one end of the cylinder to the other, and thas the motion of the piston, and through this the motion of the tipping platform and car.

This hydraulic cylinder is merely a moderator or brake, and not a motor; we may call the cock which controls the motion of the water from ono end of the cylinder to the other the brake cock.

The lower end of the chute may be moved by a wire rope ruming orer a windass at the level of the tipping platform, so that the stream of coal may be directed to the firr or near side of the boat at will: while the boat itself is towed lengthwise by an andless iron rope, passing over sheaves about level with the boat and fastened to the vertical face of the masomy wall at such a distance on either side of the chute that we can bring all points in the length of the boat bencath it. This towing table is driven by a second windlass at the level of the tipping platform, and with it one man can radily shift the boat lengthwise.

Fig. it.-Malissard-Taza's "Basculeur."
The manner of operating the basculeur is as follows: The tipping platform is fastened in a horizontal position by means of a safety bolt. A full car is run upon it, and the stops Y are screwed by the hond-wheels shown against the water side of the car, to prevent the latter both from moving lengthwise, and from tumbling over into the chute when the platform and car tip. The safety bolt is now drawn, and the brake-cock connecting the two ends of the hydraulic cylinder is opened, allowing the water to pass from the upper to the
lower end of the cylinder, thus permitting the piston to rise, and the platiorm and car to tip. Before the platform has tipped as far as is shown in broken lines in Fig. is3, the brake-cock is gratually closed, so as to chock the motion of the car and prevent shock. As the car and phatform reach the pesition shown in doted lines, the fasteninges of the car doors strike agranst fixed stop) which unatch them, allowing the car doors to fall open. The phatform is immediately bolted in its inclined position, and held there till all the coal has run out, when the safety bolt is again drawn amb the brake-cock again opened, the weight of the pemdulum now righting can and platform, and foreing the water from the lower to the upper end of the cylimer.

The application of the pendulum is a particularly happer one. When the car and platform begin to tip. the pendulum oftors the minimum of resistance to their motion, its resistance increasing ritpidly toward the end of the stroke, and thas temding to lessen the shock. On the return stroke, howerer, when the weight of the pendulum rights the car and platform, it acts most powerfully at first, when the most powerful action is needed in order to orereome the inertia of the car and platform. Toward the end of the stroke. however, when its accolemating action would only tend to caluso shoek, it becomes weaker and weakrr, and finally nil.

The baseuleur shown in Figs. 53 and bt is in use at the coal mines of Marles for 10 -ton cars.
The advantage of this arrangement over Fougerat's and that adopted at Élen is that no power is required for transforing the coal, while in these latter arrangements power is noeded for lifting the boly of the car in dumping. On the other hand, a little extratime is needed in Taza's arrangement for fastening the cars by the stops Y, though it is not clear why this may not be mande automatice.
(: \because) Fougerat's basculeur. Fig. ns, used by the Bruay Coal Mining Company (Pas-de-Calais. France), raises and tips the coal car and a movable section of track, as shown in kis. 0. . The phattorm and movable track are pivoted at B, and are lifted by the hydraulic eylinder E , the link F compensating for the horizontal travel of the apparatus. A screw near D prevents the car from overturning.

The winch K enables us to raise the chate $(t$ completely out of tho boat, so that the latter may pass on, or to simply change the inclination of the chute, to suit changes in the angle of repose of the coal. The worm bencath the chute controls the end of the chute, and thus enables us to discharge the conl to right or left, or even to arrest it.

In loading by hand the cost was formerly 2.4 cents per ton, and they could only load from fifteen to twenty 10 -ton carloads daily. With a single basculeur the cost is only 0.6 cent per ton, and with the same number of men and cars as formerly they now load seventy 10 -ton carloads daily. Much more could be loaded could it be
brought to the basculeur, which can load 100 to 120 tons per hour, all maneuvers included, and has loaded 50 tons in 11 minutes.
Compared with 'Taza's basculeur the one before us has, as just pointed out, the disadrantage of needing considerable power for

raising the car and platform, but the advantage that the coal probably slides out more gently, the door swinging open little by little as the cartips, and letting the coal out little by little; whereas in Taza's arrangement it is clearly necessary that the car doors should
be kept closed till the car has tipped through its full travel, since it is the weight of the coal that tips tho car. The doors being thas suddenly opened, tho coal all grushes out at once, and more violently.

The cost of the apparatus is given as about $8: 00$ to 8940 .
These baseuleurs are clearly applicable to materials other than toal, and with equal advantage.

(23) Coal-transferring plant at Éleu (Figs. 56 to 59).-This is an arrangement for transferring coal from cars to boats, differing from Malissard-Taza's in that the body of the car, which is pivoted on the
truck, is tipped by power, instead of the whole car and a section of track being tipped.

A sheet-iron chute, C, leads the coal to the boat A. In it a pocket is formed by the gate D . The section of the chute beyond D is movable, so that by varying its inclination the velocity of the coal may be controlled. At the very end of the chute is a second movable section which, as shown in broken lines, may be swung so as to deliver the coal towards either side of the boat at will. The grate D) and these two movable sections of the chute are moved by the windlass E. These movable sections of the chute are counterweighted, first by a heavy counterweight, secondly by a differential one which comes more or less into play to suit the varying positions of the end section of the chute.

The cars used are wholly metallic, weigh when empty 15,600 pounds, and consist of two boxes, F, each holding 5 tons, and pivoted on the car truck. An ingenious catch, shown in Figs. ay to 59 , allows the car door to swing open when the body of the car has been tipped so much that the coal will slide out. This catch can also be opened by hand when the car is level. so that these cars may be used for common filling purposes, etc., as well as for dumping into the chute.

This catch works as follows: The latch O is pivoted at Q, so that, when the door is to be opened by hand, it can be raised by the handlever P, releasing the lug N on the door, as shown in Fig. 5s, but a stop on the truck prevents O from turning farther down than as shown in Figs. 57 and 59 ; hence, when the body of the car is tipped, the lug N descending, slides down and out of the jaw in O, and the door then swings out as shown in Fig. 59.

Each of the two boxes F of which the car body consists is raised and tipped 35 degrees by a hook K , which in turn is moved by one of the two single-acting steam cylinders J, by means of the chains
shown in Fig. 5f. Thehook K is attached automatically to the car body.
Cars are brought by a locomotive in trains of twenty to the track which passes through the dumping phant, and are successively heought opposite the chute hy means of a wire rope 1 , Fig. 5 s, ruming over the sheaves $L \mathrm{~L}$, and driven by the stemm winch H , which readily moves the whole train bodily in either direction. This sterm winch and the tipping cylinders are operated by levers which are phaced so as to be simultancously controlled by the engineer, who, with one other man, can, it is said, load six boats, or say 1.500 toms in twelve hours. A :50-ton boat has been thus loaded in 47 minutes.

Fig. Go.-The Blake crusher: npened to show its construction.

F.-Creshing machiner`

(?4) The Blake multiple-jene crusher or granulator. Figs. 60 and G1, is a morlification of the famous Blake crusher, with a number of jaws instead of a single pair, and designed for granulating, but hardly for pulverizing, already crushed ore, etc. Fig. 64 shows the machine opened to exhibit its interior; Fig. 65 shows it assembled for use. We note in the former three movable jaws, which rock around shafts at their bases. The chute shown feeds the already
crushed material between all these jaws simultaneously. The lefthand or fourth jaw is fixed.
The fly-wheel shaft carries an eccentric, which at each revolution forces a pitman upward against a pair of toggles which force the breech piece to the left, and thus, through the tension rods on either side of the machine, pull the right-hand movable jaw to the left. When, as in working, the spaces between the jaws are filled with mineral, this transmits the pressure to the left from jaw to jaw. and thas the mineral in all the spaces is spueczed and crushed at each turn of the fly wheel and stroke of the pitman.

Fig. 61.-The crusher ready for work.
During the return stroke the jaws are all opened to the right, following up the motion of the temsion rods by rubler huffers at their their upper comers, shown at the bottom of Fig. 60.
"The tensile strains are wholly upon wrought irom or steel, while those of compression are resisted by cast iron. The machine is closed, and the dust made by it wholly confined. The pivoting of the rear toggle-block is an important feature, and makes it easy to adjust the opening and take up the wear on the toggles and jaw plates by means of tension-rods. The construction of the pitman is somewhat, similar to that in the Blake challenge breaker, with the difference
that there is no tensile strain upon the pitman rods; they, in combination with the breedes, permit an easy adjustment of the length of the stroke of the main toggle jaw. This is effected by lengthening or shortening the pitman by means of washers on the rods brneath the breeches."

With the carlior machines there was a troublesome tendency to clon; the later ones seem to be doing much better. Some which wore sot upat the Leyon Mountain mills of the Chateaugay Ore and Iron ('ompany have, acerording to Mr. Blake, been in continuous use night and day evor since. Thare are now fourtoen of these mathines in these mills. while in all twonty-seven machines had been sold up to July \therefore liss.

Mr. Blake informs us that, "A multiple-jaw (rushor with three jawse each :0 inches by ? inches, reeriving pieces l! inches and smallor, will readily (rush 100 to lin toms of hatel quart\% or lem mathetid iron ores consisting of disseminated grains of matantite in a tough foldspathie gathgre fororn-gram size amd dust in $\because 4$ lomrs. If it be supplemented with another ornshor with firo jaws.
 crushed tome-tenth of am inch amd smaller, that which isalrompror dured to whe-tenth in the first marhine being taken out he sereming beforesembing the coarse to the seeond or supplemental crusher."

We hase no direct information as to the consmmption of power in grambating with this multiple-jaw armsher, but for (rushing lumps of lean Chateagay magnetite, 1 is inches in diametor and less. in Blake crushers and subsergently gramulating them in this machine. not more than half a homepower is needed per ton of ore. For (rushing, gramulating, and concentrating lex.slt tons (of ex.eft pounds) of this ore the total cost was $\$ 0.84$ per $2 \therefore+20$ pounds (80 :30f pre 2.000 pounds). The item of " Mill-supplies, renewal and repairs" was from so.075 to 80.08 per ton, including all repairs to jigs as well as to crushers and other machinery, and to the building itself.

Certain data as to cost, etc., follow:

As already pointed out, the mehine aims to granulate rather than to pulverize, in short to replace Cormish rolls, especially as preparatory to concentration. Mr. Blake thinks it inexpedient to use it for
arushing finer than between 10 and 20 mesh, but recommends it especially on aceount of its low eost for labor, for power, and for repars, its large output, and its small proportion of fines.

The following tablogives the proportion of product of each of seremal degrees of fineness, as determined by T. A. Edison in crushing Chateaugay magnetite:

Per cent.						Percemt.
Through	$4 \mathrm{mmNo}$.	14.10	Through	60 on N		1,1:
Through	Son No. 16.	$2: 3.50$	Through	\%0 on No		3.:3
Through	16 on No. 20.	10.74	Through	80 on N	910	, 1
Through	$\because 0$ on No. 30.	15.35	Throunh	90 on No		. 17
Throumh	$30 \mathrm{om} \mathrm{No} 40.$.	9.30	Through	100 on No.		$\because . \because 1$
Through	40 on No. 50.	8.85	Through			(5.09)
Through	50, on No. 60 .	3.3i				

(x.-Blowing machinery for metalldeqiacal works.
(:5) The Cockerill bowing engime for hast furmaces.-The popularity of this admimble ongine is shown by the fact that the ond at the Exhibition is the one hundred and fifty-seeond of this type built by the Sociáté Cockerill.

It is a vertical compound engine with one air and two steam eytinders. At the genema level are the cam shaft, and the main shaft which carries two fly wheels, one at eitherend. Immediately above the main shaft are the two steam oylinders: next comes the arosshead, to which their piston rods and the comocting rods are attaded bolow, and to which the piston rod of the air eylinder is attached above; while above all comes the single air eylinder. The comecting rols are attached directly to wrist pins on the fly wheels.

The principal dimensions are as follows:

of aircrol	Feet. !	Inchers 10
Diameter of high-pressure colinder	2	11
Diameter of low-pressure evlinder.	3	111
Stroke.	צ	0
Diameter of air pump).	2	1
Stroke of air pump.	4	11
Diameter of feed prump.		$5!$
Stroke of feed pump	2	:3!
Ditmeter of fly wheels	23	9
Weight of fly wheels		19.8
Normal sperd.		1.5
Volume of air delivered at lis revolutions, at 47 pounds pressure, cubiefeet . $13,70 \cdot 3$		

While allhering to this general type of engine, the Cockerill Company has made some important modifications, the most noticeable of which is in the manner of driving the cam shaft. It was formerly driven from the crank shaft by a train of gearing; this has been replaced by a single eccontric attached to the crank shaft, which drives the cam shaft by a small pitman. This is not only a more silent way
of driving the cam shaft, but one which consumes less power, avoiding the friction of the gearing. The steam passages are larger than of old, the crosshead is strengthened, the cylinders are fastened more firmly to the bed plate, and this last is heavier than formerly. While 15 revolutions is called the normal speed, the engine may run advantageously at 18 revolutions.

The cut-off of the high-pressure cylinder is variable, but not automatic, and occurs at about one-third stroke. The piston packing in each of the four cylinders consists of a single steel ring, set out by springs. The air cylinder is neither lubricated nor cooled.
H.-Rolling mils and iron working Applainces, etco.
(:6) Universal revorsing plate mill of Chatillon et Commentry.This mill, which is at Montluzon, France, has two interesting features: arrangements for inclining the upper roll, so as to give the plates a pentagonal section, and for changing the distance between the rolls while always keeping their spindles parallel with each other and with the driving shafts. The first not only gives a considerable saving of metal but, what is much more important, permits us to reduce the great expense to which makers of armor plates have hitherto been put, of machining their plates to forms like that sketched in Fig. 62. The second aims to effect a considerable saving in friction, and hence in power.

Leading dimensions, etc.-The rolls are 39 inches (1 metre) in diameter, and 19 feet (5.8 metres) long, and weigh 29.5 gross tons (30,000 kilogrammes) each. They can now roll piles or ingots 3 feet 11 inches (1.20 metre) thick, and changes are now making which will enable them to receive pieces 6 feet $6 \frac{3}{4}$ inches (2 metres) thick. Their housings are 15 feet $)^{5}$ inches (4.7 metres) high, and 14 feet 1 inch (4.30 metres) apart.

The rolls are reversed by a five-gear arrangement, the clutch of which is driven by a special hydraulic cylinder.

The vertical rolls are 20 inches (0.5 metre) in diameter and 4 feet 3 inches (1.3 metre) long.

Arrangement for tipping the upper roll. - The journals of the upper roll rest in spheres within its carriages, so that it is free to tip. The arrangement for tipping it is sketched in Figs. 62 and 63 and shown on a large scale in Fig. 64. The rolls themselves are counterweighted, so that they always press up against the vertical screws shown in Figs. 62 and 63. These, as usual, are driven by worms on an overhead shaft, T T' (Fig. 64), which in turn is driven only when the upper roll is to be raised or lowered, at other times romaining motionless. This shaft is not continuous; its right-hand end, T^{\prime}, is driven, and from this motion may or may not be communicated to the left-hand end, T, at will, by a five-gear reversing arrangement.
H. Ex. 410-vol III-20

Only four of these gears can be seen in the cut. Fig. 64 shows some details of this arrangement. Between T and T' lies the crab Z, driven by T^{\prime}, and thrown into gear with either of two clutches, one at the

Fra.64.-Detail of the tipping gear of Chatillon \& Commentry's plate mill.
right, the other at the left, or held free between them, at will. The pinion at the left is keyed to the shaft T, while the pinion at the right is loose on the shaft T'.
If now the right-hand end, T^{\prime}, of the shaft is to be driven while the left, T, is stationary, so that only the right-hand end of the upper roll is to be raised or lowered, Z is held free between the clutches If, on the other hand, both T and T ' are to be moved in the same direction, so that the upper roll may rise or fall without changing the inclination, Z is pressed against the clutch at the right, turning it, and through it T, in the direction in which T^{\prime} is turning. If, finally, T and T^{\prime} are to be moved simultaneously but in opposite directions, as happens when the inclination of the upper roll is to be changed rapidly, Z is pressed against the clutch at the left, which it forces to turn in the same direction as T ', and which transmits its motion, through the train of gearing shown, to T , which is thus forced to move in the opposite direction.
Arrangement for keeping the spindles parallel, Figs. 65 to 70.The pinion P of the lower roll C is driven by the engine, in turn driving the pinion P^{\prime} of the upper roll C^{\prime} by means of the idlers S and S^{\prime}. The bearings of S are fixed; those of S^{\prime} are free to slide in the groove shown in Figs. 67 and 70.
This groove is the arc of a circle concentric with S, so that S' plays as a satellite around S . The shaft of the upper pinion P^{\prime} is fastened to the shaft of S^{\prime} by means of a link, so that S^{\prime} always remains in gear with Γ^{\prime}, its own weight keeping it ever in gear with S. Thus when the upper roll C^{\prime} and its pinion P^{\prime} are lowered from the posi-
tion shown in Figs. 65 to $64, \mathrm{~S}^{\prime}$ and its bearings slide to the left of the position shown in Fig. 67 till C^{\prime} and P^{\prime} reach the level of S^{\prime}; as they descend farther, S^{\prime} slides to the right till, when C^{\prime} reaches its

Fia. 65.

Fig. ke.

Fig. 67.

Fia. 68.

Fig. 69.

Fig. 0.

Chatillon \& Commentry's plate mill.
lowest position, S' stands as shown in Fig. 70. The pinion housings are of steel, and weigh about 83.7 gross tons (85,000 kilograms).
(27) Five thousand horse-pouer reversing 26-inch blooming and rail train at Valenciennes.-The distinctive feature of this train is that the blooming, roughing, and finishing stands are driven simultaneously and directly by one and the same horizontal reversing engine, without gearing; an arrangement which will hardly commend itself to American mill men, though it would be rash to say that it is not suited to the particular conditions existing at Valenciennes.

Next to the engine stands the two-high blooming stand, next comes the roughing stand, and beyond this the finishing stand. There is no gearing, save to transmit the motion from the lower to the upper
rolls. Driven rollers on either side of each stand feed the piece into and out from the rolls; a manipulator traverses it lengthwise of the train; while an inclined track with loose rollers in front of the finishing stand helps to feed the piece into the rolls by gravity.

We will now take up the different parts in more detail.
The building has an area of 24,220 square feet, and is wholly devoted to this train and its appurtenances.

The engine, which has two cylinders, was especially designed for great power and great speed combined. Its leading dimensions, etc., are as follows:

Diameter of cylinders (1.250 metres), 4 feet $1 \frac{1}{4}$ inches.
Stroke (1.400 metres), 4 feet 7 inches.
Steam pressure (3 to $\overline{6}$ kilograms per square centimetre), 43 to 71 pounds per square inch.

Cut-off, three-fourths stroke.
Maximum revolutions per minute, 150.
Indicated horse-power at 150 revolutions, 4,932.
Piston speed at 150 revolutions, 1,378 feet per minute.
Bearings of cross-head (1 by 0.30 metre), 39 inches by 12 inches.
Journals of shaft (. 425 metre diameter by .7 metre long), 16.6 inches diameter by 27.5 inches long.

Bearings of connecting rods (.425 metre diameter by . 52 metre long), 16.6 inches diameter by 20.5 inches long.

Weight of bed plates, 63 long tons.
Weight of foundation block, about 1,000 tons.
Weight of crank shaft, 62,800 pounds.
Weight of reciprocating parts of each cylinder, 23,000 pounds.
Total weight of engine, 434,000 pounds.
The bearing surfaces are all made large. The valves, which are cylindrical, are governed by two common eccentrics, with an Allen link, which can be fixed at any point, so as to vary the cut-off. The shaft is of steel and is hollow. The two cranks are at right angles. The admission ports have an area one-sixth that of the piston. A single engineer on an elevated platform commands the whole, controlling with levers the admission of steam, the reversing gear, the cut-off, and the manipulating mechanism for manipulating the ingot.

The engine is built to work either with or without condensation; actually it does not condense. The management believes that condensation is disadvantageous for engines of this class. First, it points out that, despite the area of the ports, one-sixth that of the piston, in order to reach a vacuum of 12 pounds per square inch, or fourfifths of an atmosphere, the steam must escape at a speed of 138 feet per second, a greater velocity, it is maintained, than the remaining one-fifth atmosphere can generate. It further points out that the communication with the condenser tends to cool the cylinders, thus diminishing the efficiency of the engine, and that the engine reverses much less quickly if condensing than if noncondensing, the steam actually present on the exhaust side of the piston in the latter case
acting as a cushion to arrest and even reverse the motion of the engine. Finally, the management reports that the actual consumption of steam in rolling at Valenciennes with this noncondensing engine compares favorably with that of other engines doing like work.

The roll train.-The diameter of the blooming rolls is 26.3% inches; that of the finishing rolls, 26 inches. There are eight blooming passes in four grooves, seven roughing and five finishing passes, or altogether twenty passes from 13.3 -inch ingots to rails or billets.

The feed rollers are driven by reversing steam engines.
The traversing piece is driven by hydraulic power, and passes in front of all three stands, passing the piece from stand to stand and from groove to groove.

There are sixteen soaking-pits with auxilliary gas firing, fed by two hydraulic cranes, which also serve a gas-reheating furnace, with a hearth 13 feet long, and with seven doors on each side.
The piece is turned by hand, the turning in front of the blooming rolls being effected by a suspended hook, which one man manages. There are three men before and three behind the train. Altogether there are twenty-eight men and four boys employed between ingots and rails, including the engineers for the engine, the feed-roll engines, the locomotive, and the pumps, and also the shear-men and sawmen, but not the rail-finishers. With this number of men 130 tons of 2 -inch billets can be turned out in twelve hours, with a consumption of 55 pounds of coal in the soaking-pits and of 419 pounds of coal for steam raising per ton of billets, running single turn.

The rolls can be changed in an hour.
Sections weighing from 33 to 200 pounds per yard and pieces up to 200 feet long can be made in this mill.
The output seems triffing enough to American rail-mill engineers, accustomed to outputs of 1,000 tons a day; turning the piece by hand instead of by machinery seems crude enough; finally, the idea of driving the blooming and finishing rolls at the same speed and by the same reversing engine seems a step, backwards, and a long one. If we only roll one piece at a time, i.e., if we do not begin blooming me ingot till the preceding piece has left the finishing pass, our output is small and the friction is excessive, three sets of rolls rumning continuously while only one is working. If we would roll two or three pieces at a time the short bloom has to wait and cool between passes while the 200 -foot billet or rail is passing through the finishing rolls, before we can reverse and enter the bloom for a new pass. Indeed, the two-high reversing mill seems especially unfitted for blonming, for here the piece is so short that we have to reverse at very short intervals. The power used in stopping and starting the engine is heavy in proportion to that used in the useful work of rolling.
It is claimed for the mill that it is especially suited for the existing
conditions. It is called on to turn out very many small orders, and a large proportion of the time is therefore spent in changing rolls. The gross amount of the orders is not sufficient to fully employ a separate blooming mill with a separate engine and engineer. The answer would seem to be, combine with other concerns till your gross orders enable you to keep powerful machinery fully occupied. Have two finishing trains, so that one may run while you are changing rolls in the other.
(28) Fox's machine-flanged plates.-By means of powerful hydraulic presses, the Leeds Forge Company, limited, flanges large marine and other boiler fronts, and locomotive engine and tender frame plates, at a single operation between gigantic dies. Fig. 71 shows an engine frame plate thus flanged. A marine boiler front 13 feet $7 \frac{1}{2}$ inches (4.25 metres) in diameter, of steel about seven-eighths inch thick, with a flange turned around it about $7 \frac{1}{4}$ inches deep, and with three flue-openings flanged about 4 inches deep, is shown at the Exhibition. It is claimed that when the piece leaves the press its flanges are accurately at right angles to its face, and that the piece itself' needs no subsequent straightening.

Fig. $71 .-E n g i n e$ frame plate. flanged by Fox's process
For pressing long pieces two or more hydraulic plungers may press at the same time on different parts of the die.
(29) Fox's patent corrugated boiler ftues and furnaces.-In making these the flue is first welded as a cylinder, and then corrugated while hot, between corrugated rolls. To do this the upper roll of the two rolls which corrugate the flue is withdrawn endwise through the window of one of its housings, the already welded and now red-hot flue is placed immediately above and resting on the lower roll, and the upper roll is rapidly slipped loack into place through the flue, pressed down towards the lower roll, and both rolls are rotated; pinching, rotating, and corrugating the flue between them.

The chief advantages claimed for these corrugated flues and furnaces over plain ones are as follows:

1. Higher efficiency in evaporation, because they may be made much thinner than plain flues without danger of collapsing.
2. More rapid evaporation for given volume, thanks to their larger heating surface. It is also claimed that the increase of heating surface in the furnace itself leads to more thorough transfer of heat from the products of combustion to the water, i. e., better efficiency.
3. The flues and furnaces are compressible lengthwise; hence, the
boiler as a whole is less strained and distorted by the excess of expansion of the furnace and flues over that of the less highly heated parts (e. g., the shell in marine boilers).
4. It is not necessary to have stiffening rings, flanges, etc. These not only tend to burn out, but, heating and hence expanding at a different rate from the undoubled parts, induce internal stress.

It is claimed that direct comparative tests show that these corrugated furnaces offer 4.5 times as great resistance to collapsing pressure as plane-surface flues of like dimensions.
(30) Lafitte's patent flux plates, Fig. "2.-Believing that it is not easy to spread the borax or other flux used in welding uniformly

Fig. 72.-Laflte's flux plates. over the surfaces to be welded, Lafitte uses his flux not in powder but in a thin sheet or wafer, C, Fig. 77. This wafer is given consistency by incorporating within it a very thin wire gauzo netting with large meshes. In other words, ho prepares his welding plates by covering both sides of a thin sheet of wire gauze with molten flux, which fill the meshes as well. The wire, whose volume is triffing, of course unites in welding with the pieces of iron welded.

Many very important establishments are said to use these sheets, which certainly seem simple and convenient. A trial made with one of them for a member of the jury gave excellent results.
(31) Self-skimming foundryladle.Fig. 743 shows a foundry ladle with a partition designed to keep the slag back, so that it may not run into the molds with the metal and injure the castings. The names of thirty-nine establishments which use it, some of them, such as Vickers, Hadfield, and the Steel Company of Scotland, really

Fia. 73.-Self-skimming foundry ladle. eminent, are given. It is a clever adaptation of the so-called syphon tap used in copper and lead smelting to the needs of the iron foundry.

SPECIAL REPORT

0 x
MACHINETOOLS.
CLASS 33.

BY
PROF. .JOIIN H. HARIR.

TABLE OF CONTENTS.

Page.
General remarks 317
Bariquand's miscellaneous tools 318
Machine for fluting bayonets 319
Boney Sons' heavy tools 319
Planer for chamfering plates 319
Dandoy, Maillard \& Co.'s vertical spindle milling machine 320
Drill-press table and vise 320
Frey \& Co.'s combined boring and milling machine 321
Hurrés combined vertical and horizontal milling machine. 321
Machine-for forming cutters 322
Hurtu \& Hautin's precision tools 32:3
Tap-straightening machine 324
Drill-fluting machine 325
Richards \& Co.'s side planer 305
Le Blanc \& Co. © bolt-forging machine 3206
Nut-chamfering machine 326
('. Lomont's exhibit 307
Nury's machine for punching rails etc 327
Panhard \& Lavassor's band saws for sawing metal. 328
Saw sharpener 33:
Circular saws and jig saws for metal 333
Pretot's milling machine 333
Sainte, Kahn \& Co. s emery wheels and grinders 334
Hydraulic punching machine 335
The Alsatian Society's large tools 335
Gear cutter for spiral gears 337
Le Brun's large milling machine. 338
Pulley lathe 338
Slotting machine 389
Steinlen \& Co.'s exhibit 339
Bolt and nut machinery, by Demoor, Belgium 340
I)rill grinder. 342
Fetu, Defize \& Co.'s key-seating machine 342
Special grinding machine for rectifying. 343
Large milling machine 344
American Screw Company's wood-screw machines 345
Brown \& Sharpe's exhibit 345
William Sellers \& Co.'s quick-return planer 347
Sellers's drill grinder 349
Warner \& Swasey's monitor lathe 350
Four-spindle valve-milling machine 351
Greenwood \& Batley's mammoth lathe 352
Hulse \& Co.'s tools. 354
Selig, Sonnenthal \& Co.'s wheel tooth cleaner and other grinding machines. 355
Smith \& Coventry's exhibit 356
Pearn's lightning tapper 357
Oerlikon Machine Works' bevel-gear planer. 357

SPECIAL REPORT ON MACHINE TOOLS.

By Prof. JOHN H. BARR.
(1) The United States exhibits of machine tools at the Paris Exposition of 1889 were not numerous, but were generally conceded to be excellent in workmanship, convenience of manipulation, and general design. All of them would bear comparison with similar displays from other countries, and some of the tools shown by our makers were quite universally acknowledged to excel those of all competitors. The only regret that an American need feel is that many other builders, capable of equally good work, were not represented.

Tributes to American mechanical skill were frequently expressed by both British and Continental engineers, and far more eloquent than words of commendation was the imitation noticeable throughout Machinery Hall.

But more is to be learned from a consideration of the features in which others surpass us than in contemplation of our own excellence, and it has, therefore, been the policy in writing this report to pay more attention to the leading European designs than to the wellknown products of our own manufacturers.

Owing to the cheapness of labor it is not surprising that, in many fields, labor-saving machinery has been less generally applied on the continent of Europe than is common in the United States; yet, in some lines, the European manufacturers have carried the development of such machines very far, and particularly in the application of milling processes to bolt and nut machinery, and the process of sawing to the working of metals.

The American milling machine has made an ineffaceable impression on European practice; but in the use of milling machines for very heavy work, and for the reproduction of peculiar shapes, we can doubtless learn much from the study of the designs brought out in Europe. Several of these designs are treated more fully in the following notices, and it is unnecessary to give specific examples here.

The employment of band saws for metal working is now a wellestablished feature in manufacture abroad, and several establishments in Great Britain and the Continent now meet the demand for sawing machines designed for this kind of work.
Taken as a whole, the exhibits of this class did not present a great deal in the way of novelty.
(2) Bariquand \& Sons, 127 Rue Oberkampf, Paris, made one of the finest and most attractive exhibits in this class. It included drilling machines, milling machines, lathes of various kinds, and several spectal tools, all of the highest order of workmanship and finish. The sensitive drills and other drill presses embrace no features of special interest except the nicety of construction. The latter have automatic feeds, and all have hardened and ground bearings. A combined drilling and tapping machine has automatic stop and return mechanism for the arbor.
A vertical milling machine, Fig. 1, has the spindle held rigidly in its vertical position, securing greater accuracy than could be ex-

Fra. 1--Upright milling machine, by BarFig. 1.- \quad iquand $\&$ Sons, France. pected in the adjustable spindles of the combination type so common in Europe. The table has automatic movements in two directions and the feed mechanism may be instantly disengaged at any point of its travel. In addition to the ordinary vise and dividing head, this machine is fitted with an attachment for dressing circular work (the hubs of cranks, etc.), a special head for holding bolts in facing the heads, and a small table with two motions controlled by a templet for copying work. In this machine the spindle is driven directly by a belt running over guide pulleys; but two larger sizes are made in which a cone and back gears are supplied, a pair of bevel gears communicating motion to the vertical spindle. The back gears are of the twisted form, which is much used in European practice in place of spur gearing.
The horizontal universal milling machine built by these makers is very similar to the Brown \& Sharpe machine.
A small precision lathe for tool work, instrument making, or other light work requiring great accuracy has two lead screws, one of which is reserved for making other lead screws, measuring-screws, or standards, only. This screw is made with great care after the standard metric scale of the Conservatoire des Arts et Métiers. Automatic disengaging mechanism is provided for the feed motion.

A hollow spindle turret-head screw lathe, admitting bars up to

19-16 inches through its spindle, has six tools. The turret mounting has five motions-a transverse motion of the whole, a circular motion, a longitudinal motion, a smaller trausverse motion with micrometer stops, and the rotation of the turret on its center. In addition to the turret there are a screw-cutting slide and a cutting off tool. The back gears are engaged or disengaged by means of a cup friction on the cone, controlled by a hand lever, so that the speed of the spindle can be instantly changed in the ratio of one to six without shifting the belt or stopping the lathe.
(3) One of the most interesting special machine tools seen at the Exposition was the machine for fluting bayonets, etc., by which four converging flutes are cut at once on a taper shank. Four milling cutters placed opposite each other in pairs, and rotating in vertical planes, are connected by splined rods and bevel gearing so that they all approach or recede from the centers together. The blank form, with its axis vertical, is placed in the intersection of the planes of the cutters; and as the cut proceeds, the piece to be cut is given a vertical feed while the cutters are fed toward the center in a ratio corresponding to the taper. The four cuts oppose each other and thus do not tend to spring the piece.
(4) E. \& Ph. Bouhey fils, 43 Avenue Daumesnil, Paris, made one of the largest exhibits of machine tools in the Exposition. It consisted almost entirely of heavy tools; milling machines (both horizontal and vertical), slotters, pulley and gun lathes, shearing machines, planers, drill presses, etc.
A massive radial drill press, built especially for Schneider \& Co., of Creusot, has the following dimensions:

Vertical travel of radial a	Meters. Inches. $1.200=47.23$
Vertical travel of drill spindle.	$0.500=19.68$
Maximum height of spindle above base	$2.3800=93.68$
Minimum height of spindle above base	$0.680=26.76$
Horizontal travel of head on arm.	$1.700=66.91$
Diameter of spindle	$0.100=3.96$

At the base of the column there is a driving cone with five speeds, which transmits the power to a vertical spindle in the interior of the column, whence, by spur and bevel gearing, it is carried to the drill spindle. The column swivels on the base plate; the arm rotates about its own axis on the column through an angle of 60 degrees, and the spindle head swivels on the arm through an angle of 150 degrees. The latter movement is by hand but the others are automatic. The variety and range of movements avoid much trouble in moving and resetting the work.
(5) Machine for planing and chamfering the edges of plates. Length of travel 7 meters (23 feet). Vertical travel of head 0.5 meters (19.7 inches). The plate to be chamfered is held on a flat
bed, but is not clamped down along the edge to be dressed, as is ordinarily done. By any method of clamping the sheet down, the irregularities almost inevitably occurring are only partially taken out; and as the planer tool travels in a straight line, the result is that the edge is unevenly chamfered. In the machine under consideration, the tool is carried by a counterbalanced arm, and two jaws (one above the sheet and the other below it) travel with the tool along the ways. These two jaws follow the irregularities of the plate, and cause the tool on the counterbalance arm to take the same course; consequently, the chamfer is uniform throughout the length of the plate, regardless of irregularities. For planing a vertical face, the arm is clamped firmly to the traveling carriage, and vertical motion takes place only by the regular feed. The machine is then similar in its action to any side planer, the suppression of a long plate clamp permitting work of different kinds to be held on the table.

One other tool of a special nature is worthy of mention, namely, a lathe for turning cannon. Height of centers 605 millimeters (233 inches), distance between centers 7 meters (23 feet), length of bed 10.13 meters (23 feet 23 inches). There are two carriages, and a heavy taper attachment at the back, for giving the taper to the barrel, similar in principle to the Slate, and other familiar attachments, used on our tool lathes.
(6) Dandoy-Mailliard, Lucq \& Co., Maubeuge, northern France, made one of the largest and most varied exhibits of machine tools to be seen in the Exposition, including lathes, planers, shapers, slotters, milling machines, drill presses, punches, shears, and other tools for the machine shop, blacksmith shop, and boiler works. The machines shown were generally strong, heavy, and convenient; but the finish was not of the highest class, the patronage of this firm being mainly from that class of small manufacturers, so numerous on the Continent, who demand a serviceable tool and do not exact the greatest precision and finish. Of the tools shown, few exhibit any great innovation in design' or construction. One of the most noticeable was a large vertical-spindle milling machine with the planer type of bed and table. This seems to be a very serviceable tool for the heaviest of plain work, and represents very well a class of the machines extensively used in Europe for doing large work by the milling process. In this class of machines, more than any other perhaps, have our friends across the water surpassed us.
(7) A novelty in the way of a combined table and vise for a drill press is shown by this firm. A round flat table, with slots, as in the ordinary drill-press table, is split along a diameter, and the two semicircular plates so formed act as jaws of the vise. The inner edges have hardened steel plates, and these jaws swivel; when closed the two jaws can be rotated as a common drill-press table.
(8) Frey \& Co., 23 rue de l'Atlas, Paris, exhibited a large combined milling, boring, and drilling machine. It is built for work on large and heavy pieces which are, from their nature, very difficult to mount on a moving table. The design, therefore, differs materially from the common construction. This tool resembles in a very general way the large boring machine brought out by Sellers \& Co. some years ago, in which the work is secured to a slotted bed plate. and the working head is moved to a suitable position on the plate for operation. In the machine under consideration the work is secured to a solid stationary bed, and the spindle housings are carried on a saddle by two vertical columns. The head may be given rectilinear feeds in any of three directions at right angles: to each other, vertical, transverse, or longitudinal. The former is given to the saddle on the column, the latter two are motions of the column itself on the bed. The spindle carries two tools or "fly cutters" on an arm, or it will take the ordinary forms of milling cutters, a boring bar, or a drill.
In addition to the stationary bed for holding the work, already referred to, there is a circular table, provided with a rotary feed by means of a worm and wheel, thus extending the range of the machine.
Four sizes of this machine are built, as shown by the annexed table:

The above prices given in dollars are only approximate. This machine, as will be readily seen, has a good range. The details are very conveniently arranged and it would be a useful tool for many shops. The workmanship, though fair, would perhaps not meet the most exacting demands.
(9) P. Huré, 8 rue Fontaine au Roi, Paris.--European builders make many forms of milling machines in which the spindle can be used in either a vertical or a horizontal position, and also many milling machines for reproducing from a template, or for making milling cutters in which the teeth follow the contour of the cutter. While III) machines of these types can be as rigid as the standard form of milling machines commonly used in the United States, they are well adapted for certain kinds of light work. One of each class exhibited by Hure (see Fig. 2) will be described, though the variety of H. Ex. 410 -vol iII- 21
such machines is so great that no one style can be considered as representative.
The combined vertical and horizontal machine has a longitudinal travel of 250 millimeters (9.84 inches), a transverse travel of 1 meter (39.36 inches), a vertical travel of 250 millimeters (9.84 inches); the distance from the vertical arbor to bed is 260 millimeters, allowing it to work to the center of a circle 220 millimeters (20.56 inches); weight, 1,300 kilogrammes (2,866 pounds); price, 3,400 francs ($\$ 680$). A strong vertical column terminates in a flat circular disk or plate at about the height of the table. Upon this the head stock, the bottom of which corresponds in shape with the top of the post, stands. A strong bolt passes up through the center of the column and forms a pivot around which the head stock may swivel, and by means of which it can be clamped firmly at any position in a horizontal plane. This head stock carries two cutter spindles, one horizontal and tho
 Fis. . . Milling machine with vertical and on the end of the horizontal cutter horizontal spindess; P. Hure, Frause. spindle from the secondary shaft, and the swinging arm is dropped until the slack in the belt is taken up, in which position the arm is clamped fast to an arc provided for the purpose. The change is readily made and the design probably secures as stiff a tool as any of these convertible machines.
(10) The machine for reproducing or forming cutter teeth to template has a head with a horizontal arbor for carrying the blank. The cutting arlor is horizontal and is on a block which slides freely on the vertical arm of an angle iron. The other arm of this angle iron slides through a horizontal dovetail guide, clamped to the bed of the machine, the two giving the spindle any position, in a plane at right-angles to its axis, within its range. To the back of the arbor block, a long hand lever is attached by a universal joint. The
rear end of this lever is pivoted to the frame, also by a universal joint, and it has a handle at the front. This hand lever is provided with a conical guide roller which can be brought to bear upon the fixed template, serving as a guide. The driving belt runs directly to the countershaft, the latter having a radial balance compensating lever to take up the slack in the belt as the arbor is moved, thus keeping a constant tension on the belt. In operation the workman takes hold of the handle, after having started the machine, and by bearing against the template as he follows its contour with the conical roller its form is copied and reduced. If the cut is too heavy to be taken the first time, a second uniformly deeper cut can be taken by simply sliding the conical roller in the direction of its axis, making a part nearer the apex run on the template. This machine is sold for 1,100 francs ($\$ 220$).
(11) Hurtu \& Hautin, 54 Rue de Saint-Maur, make an exhibit of small tools of a high order. Many other houses had more and much larger tools in their spaces, but few equaled these in refinement of construction.

The small precision lathe, small milling machines, and drill presses are excellent tools for light work of the finest class, and the machine made for straightening taps, drills, reamers, arbors, etc, after hardening, is a simple contrivance that it would seem could be introduced with good results in many shops.

The precision lathe mentioned above is made with a bed to be mounted on a bench. It has a height of centers of 120 millimeters (4.7% inches), or a swing of 9.44 inches, and admits 400 millimeters (15.75 inches) between centers, the bed being 1.1 meters (43 inches) long. This machine is intended for plain work, but great care is taken in every detail to eliminate or reduce to the minimum all sompes of error.

The carriage is weighted instead of being gibbed, and the rest has two motions, transverse and longitudinal. The carriage is attached to the lead screw by a solid nut, the screw lying between the two flat ways of the bed.

The screw is driven from the spindle by a short shaft and gearing. and the automatic feed is stopped by throwing out a clutch. A hand wheel on the screw (at the tail-stock end) serves as a hand feed in place of the ordinary rack feed.
Two types of milling machines, vertical and horizontal spindles, were represented by two sizes each. The smaller size machines have a longitudinal motion of 400 millimeters (15.75 inches), and a transverse motion of 105 millimeters (4.1 inches), while the larger machines have corresponding travels of 700 millimeters (27.55 inches). and 210 millimeters (8.2 inches), respectively. The small machines are mounted on strong iron beinches, either singly or in pairs, the large macinine being of the ordinary pillar form. Movaibe stops
with micrometer adjusting screws are provided to determine the limits of feed in all directions, and the automatic feed motion is pro. vided with disengaging mechanism. The spindles are of hardened steel, afterward ground.
(12) The machine for straightening taps, reamers, arbors, ete., shown by Fig. 3, consists essentially of a short, strong bed, carrying two movable heads with centers, and a bracket or arm overhanging the ways at the middle of the bed.

Fig. 3.-Mdebine for straightening taps, etc., by Hurta \& Houtin, France.
This arm has a vertical, differential screw which can be brought down upon the piece to be straightened. The screw has at its upper end a hand wheel with holes or notches at equal intervals, over which a click plays. The nut has a screw thread of a different pitch on its outer surface, with a worm wheel attached to the top, into which an endless screw gears. The piece to be straightened is placed between the centers (the amount of the distortion having been previously determined); the screw is then lowered until the piece is sprung a little more than enough to straighten it, and a gas jet is applied below it to heat it up. When cool the work is removed and examined, and if not rectified the operation is repeated until the result is satisfactory. For light work the hand wheel and simple screw alone are used, each one-tenth of a millimeter (0.004 inch) motion of the screw (or flexure of the piece) being indicated by the passage of the space between two adjacent notches under the click.

In heavier work, where sufficient force could not easily be applied by the simple screw, the tangent screw is brought into play, an index on the rim of the nut indicating flexure to one-twentieth of a millimeter (0.002 inch). The endless screw and its hand wheel move up and down with the nut, so that it is in gear and available for use at any position. A small block of brass, to fit the flutes of the reamer, tap, or drill being operated upon, may be placed under the end of the screw to avoid any injury to the parts exposed to pressure. Arbors up to 50 millimeters (2 inches) in diameter may be straightened with this machine. An accessory to the machine indicates the amount of distortion in the piece, and can also be used to determine the eccentricity of a piece which is out of round. Two flat guides or ways on the front face of the bed support two movable centers, between which the piece is placed. A small spindle, sliding in a vertical guide, has a foot at its upper end which is held against the work by a light spring, and the lower end of this spindle presses against the horizontal short arm of a bell crank, the longitudinal arm of which is a needle playing in front of a graduated arc. The brackets supporting this spindle, with its attachments, is traversed along the length of the piece; the spring holding the foot against the work, so that the foot moves up and down with the irregularities in the piece under inspection, and the needle indicates these irregularities, its movements being twenty times the actual deformation. For detecting and determining the eccentricity, or the amount of spring, the piece is revolved on its centers by hand, the readings of the needle being noted and the highest points marked, to aid in the straightening process.
In addition to the machines described above, a very complete line of milling-machine cutters, drills, etc., were shown in a great variety of forms, and of fine workmanship.
(13) A machine for fluting small twist drills, in which both flutes are cut at once, is a very well-arranged tool.

Two dovetailed guides on a vertical column carry sliding heads and cutter arbors, one of the cutters of the latter being parallel to each of the two flutes to be cut. One of these cutters works below and the other above the drill, and they are driven by small round belts. By this means the slender drill is relieved of the pressure due to the cut and the two flutes are made, in the line required, at one cut. The sliding heads allow the arbors to be adjusted for different sizes of drills or diameters of cutters. These machines are all intended for a high class of small work, and seem to be admirably adapted for the purpose.
(14) A. Janssens, 10 Rue Alibert, Paris, exhibited several machines, as the agent of George Richards \& Co., of Manchester. Two of these may be montioned: a side planing machine, the design of which is so well known in this country as to require no description; and a forcing machine for mandrels. This latter machine consists
of two upright columns having an adjustable table carried by clamp sleeves sliding on them, by which the table can be secured at any height. A cross-head comnecting the columns at their upper ends has bearings for a horizontal shaft, and a guide for a vertical ram, extending downward from the underside of the shaft. The horizontal shaft has tight and loose pulleys at one end for driving it, a balonce. wheel at the other end, and over the ram an eccentric of short throw which gives to this ram a rapid reciprocating motion of one-oighth inch or less. The pulley, or other piece, in the bore of which the arbor is to be forced, is mounted on the table below the ram. The arbor is entered and the ram, by its gentle taps, forces it down. The ram is terminated by a long screw at its lower end, with a handwheel attached, and by rumning this serew down the arbor can be followed up as it enters the bore. The force of the blow is easily regulated by the amount of feed thus given. The machine will receive a piece 24 inches in diameter. The ram makes from 350 to 400 vibrations per minute. Larger sizes are made also. This machine may be employed for drifting out square holes, forcing pieces made for a driving fit, etc., as well as for the purpose for which it is especially designed.
(15) Jules LeBlanc \& Co., $2 \mathfrak{2}$ Rue du Rendezvous, Paris, displayed a large machine, on the Vincent system, for forging bolt blanks, rivets, etc., which was quite notable. The die is held in an anvilat the base of the machine, between the two uprights which constitute the frame. Above this die is a multiple thread screw of steep pitch, surmounted at its upper end by a horizontal conical friction wheel. A horizontal shaft above this carries two other friction cones, and a small end motion of this shaft causes one or the other of these cones to engage with the cone on the screw ram, by means of which the screw is alternately raised and lowered with considerable rapidity. The lower end of the screw carries the die for forming the head, and the momentum acquired in ruming the screw down is expended in upsetting the head. The action is automatic, the operator only inserting tho stock and removing the finished piece, the machine itself starting it from the dies after the blow. The travel of the screw is easily adjusted, thus eontrolling the force of the blow. The capacity is from twenty to thirty pieces per minute. Five sizes are made for bolts from 6 to 40 millimeters in diameter ($\frac{1}{4}$ of an inch to $1 \frac{9}{16}$ inches) and from 100 to 200 millimeters (t to 10 inches) long. The prices range from 1,000 to 3,500 francs (8200 to 8000). Similar machines for nuts are also made.
(16) A machine shown in this exhibit, for chamfering nuts, is very simple, and seems to be effective. A cone drives a spindle through single gears, and a revolving cutter head on this spindle carries a plug center just large enough to easily enter the hole in the nut. Two cutters inserted in this head from its back face, passing through
its flange and directed toward the axis, terminate in cutting elges at opposite sides of the plug center, the angle of the cutting edges being that of the desired chamfer on the nut. The tail block has a sucket for receiving the nuts, and a hand crank feeds this tail block toward the head stock by means of a rack and pinion. The workman puts the nut in the socket with one hand, and brings the tail Wock up by a turn of the crank; the center enters the nut, holdings it central, and the two revolving cutters chamfer it ahmost instantly. This machine takes nuts up to 35 millimeters (13 inches), and will turn out, it is claimed, thirty per minute. Price, ion francs.
A large circular shearing machine, or more properly seissors, as the action does not partako of the nature of shearing, involves a principle not in ordinary use. A strong frame, not unlike that of an ordinary punching or shearing machine, carries two horizontal shafts, geared together at the back endsand bearing two disks, with edges beveled both ways, at the front ends. The two conical frusta forming the edgess of these disks make an angle of about fol degrees with each other at their junction. The upper shaft has a vertical adjustment. The cutting edges of the two disks are exactiy opposite: (in the same plane), and the action on the sheet passing through is to groove it on bothsides. The sheet can easily be so guided as to follow any desired path, straight or curved: and if grooved deeply mough can be readily broken along the grooves formed.
This machine will cut metal up to 20 millimeters (0. is inch) in thickness. The disks are 510 millimeters (20 inches) in diameter. It will cut to the center of a sheet 1,200 millimeters (47 inches) wide. Its weight is 7,200 kilograms (15,800 pounds). Price, 9,500 francs $(\$ 1,900)$. These makers build many other forms of shearing and punching machines, bolt machines, etc.
(17) C. Lomont, of Albert, Somme, displayed several good tools. few of which, however, are of special interest. A planer wasshown. with proposed attachments for milling and grinding; the former is attached to the planer cross-head, the vertical milling spindle being driven by bevel gearing through a horizontal shaft with a cone at the end. The grinding head carries on a vertical spindle an annmlar grinder, similar to that described in the notice of the display of Ant. Fetu-Defize \& Co. The grinder is driven at a high sperd through frietion cones. The-planer itself differs in no important particular from the ordinary form.
A slotting machine, in which the hear can be set at any angle in a rertical plane by clamping bolts, is a convenient tool, and well made. 1,ut aside from this feature, by which an inclined stroke as well as a vertical one may be obtained, it is of the ordinary type.
(18) E. Nury, Tarnos, has a process for punching plates, rails. or various forms of profile irons, when it is required to have many pieces, with several holes similarly spaced. A box is made to
fit the general contour of the metal to be operated upon and open at the ends. The covering plate to this box is a jig, with holes for spacing and guiding the punches. Below these holes in the jig there are corresponding holes in the box to allow the punches and plugs to pass through. The punches are simply short, slightly hardened. tapered rods, of a cross section agreeing with the holes to be punched (which need not be circular), and in operating, the bar, plate, or mal is put in place, the punches inserted in the jig holes (one punch in each); the whole is then put under a press and the punches are forced through. In addition to the boxes for these special profiles, a "universal" box is supplied for use in certain kinds of more general work.
(19) Panhard \& Levassor, 19 Avenue d' Ivry, Paris, exhibit sereral machines for sawing cold metals. These are of three classes: (a) Ribbon or band saws, (b) Cireular saws, (c) Jig saws, or recip. rocating saws.

The most interesting and important of the machines in this display wre those of the tirst class; consequently these will be considered in fullest detail. It is in this class that Panhard \& Levassor have introduced most largely their special constructions, which are of a type that is prohably not familiarly known in the United States.

Band saws were used as early as 1860 for sawing metals, and this house had a machine specially designed for such work, at the Maritime and Universal Exposition at Havre in 1868; but it was not until six or seven years later that they became adopted as a part of shop equipment, the first large establishment into which the new feature was introduced being the shops of the "Chemin de fer d" Midi."

In 1878 many improvements had been made, and these makers exhibited, at the Exposition of that year, a band saw for cutting iron, capable of sawing metal in various forms of large dimensions. This saw was purchased by the "Compagnie des Chemins de fer de louest," and soon after that another was ordered by the same company.

Since 1 sis improvements have been repeatedly made, and new types have been produced to meet special requirements from time to time.

The machine in itself is quite simple, consisting essentially of a strong frame, carrying two pulleys, on which are stretched the blade of the saw, the general appearance very much resembling an ordinary band saw for wood work. The speed of the pulleys varies with the nature of the metal. A table is supplied for supporting the work, the latter being fed by hand by a carriage driven through a screw and hand wheel or automatically, according to the nature of the work and size of the piece operated on.

The saw blades, in order to be used most efficiently, require special properties both in quality of material and in the manufacture.

Their great hardness prevents giving them much set, and it is therefore necessary to make them thicker at the teeth than at the back. The thickness of the blade is a matter of no little importance, and it varies with the diameter of the carrying pulleys. If the blade is too thin, it can not resist sufficiently the strain brought to bear by feeding the work agrainst it; if, on the other hand, the blade is too thick, the constant bending soon fatigues the metal and it breaks.

A thickness of 1.3 to 1.6 millimeters (0.05 to 0.06 of an inch, or one-twentieth to one-sixteenth of an inch) is advisod for blades running on pulleys of 1 meter diameter (39.5 inches, about); and for pulleys of 1.25 meters (49.25 inches, nearly) a thickness of 1.8 to $2 . \sum$ millimeters (0.07 to 0.08 of an inch) is recommended; the ordinary thicknesses are 1.4 millimeters (0.055 inch) for the first of the above size of wheels, and 2.0 millimeters (. 078 inch) for the second size.

The pitch of the saw teeth is also a matter of importance. The spacing should, so far as possible, vary with the thickness of the work being cut.

For ordinary work the pitch runs from 3 to 6 millimeters (0.12 to 0.24 inch) ; but if the cut is 40,50 , or $6(0)$ contimeters in thicknes: (15.6 to 23.6 inches), the pitch may be 8,10 , or even 15 millimeters ($0.31,0.39$, or 0.59 inches).

Less depends on the breadth of the blade; it should not be too great. If a saw cuts well it will penetrate the metal without the application of excessive force. making it umecessary that it should possess great transverse rigidity; on the other hand, an increase of breadth involves, almost necessarily, an increase of thickness, which implies additional cost in manufacture and diminished durability. For straight cuts, 30 to 35 millimeters (1.18 to 1.38 inches) for the smaller machines, and 40 to 50 millimeters (1.56 to 2 inches) for the larger ones, are convenient widths. For cutting out curved outlines the width of the blade allowable depends on the radius of the curve.

The speed of the saw should vary with the nature of the material, being reduced as the metal is harder and increased for softer metals. These changes of speed, within reasonable limits, should be provided for in designing the tool.

For hard steel a linear speed of 40 to 45 meters (130 to 146 feet) per minute may be used. For soft steel, iron, or hard bronze this speed may be 55 to 60 meters (180 to 197 feet); for ordinary brass or bronze, 70 to 75 meters ($22!9$ to 246 feet) per minute; and for copper or zinc the speed may be much greater. For working these lastmentioned metals, however, machines different from those used with the harder materials would usually be employed.

The sharpening of the saws is of the greatest importance, and little can be expected from a saw poorly sharpened or impromerly kept up. Up to 1883 the saws were filed by hand, an operation which, owing to the hardness and great number of teeth, was very
laborious and expensive. It is now done by a special automatic machine, requiring little attention and costing a triffe only for the emery wheels used.
Besides the saw-sharpening machine exhibited by Panhard \& Levassor, there were a great many others at the Exposition.

DESCRIPTION OF MACHINES.

Band saws.

Model A. N. (shown by Fig. 4).-This model has a frame in one piece, supporting two carrier sheaves each of 1 meter (39.37 inches) diameter, and a table on which the work to be operated upon is placed.
The lower sheave is driven with a slow rotation speed, by means

Fig. A.-Panhard \& Levassor's large band saw for metal; model A. N.
of a gear and pinion. The upper sheave is carried on a tightening block, by means of which the tension of the blade is adjusted, precisely as in an ordinary band saw for wood-working.

The blade when stretched on the sheaves is supported against the thrust of the cut and kept in line by two special guides, one below the table's surface and the other above, carried by an adjustable foot, thus allowing the blade to be backed up close to the cut, where the strain is applied to it.
The part of the table toward the frame (inside) is plane and stationary, while the outer portion has a carriage, movable in two directions at right angles with each other. The longitudinal movement is automatic, and has several variations of speed to suit work of different thicknesses and hardness.

A countershaft is provided, and by means of cones on i t. and on the driving spindle, the saw may be given a speed to correspond to. the nature of the metal.

This machine will saw up to a thickness of 25 centimeters (!.8. inches), and is intended for railroad shops and general machine shops.

Model A N. -This model has the same dimensions as the preceding, but has the plane stationary table only, the work being fed up and directed by hand. It is especially designed for sawing soft metals, as zinc, copper, etc. For this class of work a higher speed of saw is advisable, and the sheaves are driven directly from the line shaft; but it is also adapted for cutting harder materials, and to this end an intermediate arbor is provided for secturing reduced speeds.

Model A U.-This model is similar to the first mentioned, but is much stronger and larger. The carrier sheaves are 1.25 meters (49.1 inches) in diameter, permitting the use of thicker and stronger saws, and consequently adapted for larger work, or capable of doing the same kind of work with increased speed.

In this machine the carriage is placed on an independent bed, making it possible to give it any desired size and range of movement. Ordinarily the longitudinal movement, which is automatic, is 1.0 meter, and the transvere movement is 50 centimeters.

The speed of the saw and the feed of the table may each be changed, by means of cones, to suit the work.

This machine will cut through 60 centimeters (23.4 inches) in thickness. It is built for shops manufacturing large work, as railroad shops, arsenals, etc.

Moc'l A T.-This model has sheaves 1 meter in diametor. It is provided with a large solid table on which the work is placed.
The work may be fed to the cut by hand freely, or be forced up by a hand wheel. This machine is designed mainly to cut shapes, such as angle irons, T and I beams, channel irons, etc. In work of this class the hand feed is very advantageous, the workman being able to proportion the feed to the varying thickness of the work.

For bridge work, naval construction, etc., this model is particularly well adapted.

Modet $A P$.-This is a type differing quite radically from the foregoing in some respects. In this model the large double bed is stationary, carrying between the two parts two horizontal ways, on which the saw frame proper slides. The work is held on the stationary beds, and the saw is fed into the cut.

For cutting up stock to a standard length (as cross-beams or other such material) both ends may be cut at once, the ascending edge of the saw cutting as well as the descending.

In trimming the ends of long, heavy beams or shafts the difficulty of supporting the outer end on a traveling carriage is obviated by this construction.

For advancing the saw into the cut a double series of speeds is provided. One series is used for thick parts of the work, and the faster feed is employed for the thinner parts. The advantage of this in sawing I beams and other profile irons will be apparent.
(20) Automatic machine for sharpening sau's.

Model V S.-As before stated, the sharpening of the saws for cutting metal is a most important element in the efficient working of the machine.

Owing to the great number of teeth in a band saw an automatic sharpening machine has become necessary wherever band saws are extensively used, and many such machines, all of the general type well known in this country, were exhibited at the Paris Exposition. The hardness of the blades used for sawing metal makes the employment of such an auxiliary even more important than in the case of wood-working saws.

The machine built by Panhard \& Levassor uses an emery wheel driven by a belt above, and is composed essentially of a frame, a balance lever carrying the emery wheel, a feed pawl which moves the saw ahead at each stroke of the lever, a clamp for holding the blade, and two sheaves on which the saw is carried. The movement of the emery wheel is controlled by an adjustable angular guide, which determines the form of tooth. For coarse-pitch saws the upper and under sides of the tooth are ground separately, while for fine-tooth saws but one face is ground.

A device is also attached for giving the "set" to the teeth, which attachment may be operated at the same time the grinding is progressing. A clamp closes at each stroke of the lever, and two small alternating hammers, placed on opposite sides of the blade, set the teeth.

It is claimed that one of these machines will keep the blades of five or six machines in order, and that a workman can give it the necessary attention and not interfere with his sawing.

The cost of emery wheels (special make) is small.
(21) Circular saws and jig saws for cold metal.

Cireular saws.

Model FS.-For certain classes of work the circular saw is well adapted, but its range is very limited as compared with the band saw. It is best fitted for such wor'k as "I" beams, channels, etc. The circular saw is less efficient than the band saw in two respects: First, because it will turn out less work in a given time, and second, because the saw is necessarily thicker, requiring greater power to drive it.

This type of machine, as made by Panhard \& Levassor, takes a saw of 50 centimeters (19.68 inches) diameter, and will cut stock up to a thickness of 15 centimeters (5.9 inches). It has a table with two motions. The feed is automatic, and the other motion is given by a hand crank. The latter is very convenient in setting work, and permits, within certain range, taking successive cuts without resetting the stock.

Alternating or jig saw for cold metals.

Model $E T$. Shown in Fig. 5.-This machine is intended for light work, such as cutting out gauges, or ornamontal sheet-metal work.
The blade is stretched by a band rumning over three pulleys, one at the top of the frame, one at the bottom, and a third at the back. The first two give the saw its vertical position and motion, while the third holds the tightening belt back, thus increasing the swing, or space for the work.

The reciprocating movement is obtained in a manner plainly shown in the cut.

A drill may be attached to the arm of the frame which overhangs the table.

In point of speed this machine does not compare with the band saws, but for cutting in the interior of a plate it is, of course, the only method possible.

Fig. 5,-Jig saw for metal; Panhard \& Levassor.
(22) E. Prétot, 11 and 13 Rue des Immeubles Industriels, Paris, displayed a very rigid gang milling machine for finishing the sides of nuts. It is well designed for this work, and it is asserted that one man can attend two of these machines, turning out 1,000 threefourth inch nuts in 10 hours. It has two horizontal spindles (one directly above the other), each carrying three milling cutters. A
low horizontal bed has attacher to it two knees, either of them supporting one end of each spindle by adjustable saddles, the driving gear being at one end of the bed. A slotted table has a motion across the bed, and this table supports on arbors between centers the three strings of nuts to be finished. All of these nut arbors have, at the front end, worm wheels gearing in a long screw, by means of which they may be rotated to give the proper angle between the faces of the nut. The cutter spindles are adjusted so that the distance between cutters equals the diameter of the nuts, which in being passed through have two opposite faces cut at once; nuts for bolts from 8 to 30 millimeters ($\frac{5}{16}$ to $1 \frac{3}{16}$ inches) can be cut on the No. 1 machine, and from 10 to 50 millimeters ($1^{\frac{7}{6}}$ to 2 inches) on the No. 2 machine. Each of the three arbors will hold ten three-fourths inch nuts. Nuts or bolts of two, four, six, eight, or twelve faces can be cut on this machine.

A convertible, horizontal, vertical or inclined spindle milling machine is built by this maker. The column of this machine is surmounted by a quadrant overhanging the table, the are being on the upper and back side. The spindle case is pivoted at the center of the quadrant (its lower forward point), and can be clamped at any position to the quadrant by means of a slot in the latter. The driving belt passes over guide and tightening pulleys which take up the belt, adapting it to different positions of the spindle. The other features of the machine present no peculiarities except that two attachments are provided, one for making teeth on milling cutters by a template, or for doing other similar work, and the other for slotting or mortising. Neither of the attachments are especially well suited to the main machine, however.
(23) Sainte, Kahin \& Co., 10t-106 Rue Oberkampf, Paris, showed a large variety of emery wheels and grinders in machinery hall. Among the former may be mentioned wheels with iron bands set in the flat face or on projecting hubs for giving additional strength, some of the wheels being made in segments.

One of the most notable of the grinding machines was of the pantograph type, familiar in sand-papering machines, made by Sainte, Kahn $\&$ Co. A long, swinging, jointed, horizontal arm carries at its outer extremity an annular emery wheel, rotating in a horizontal plane. A balanced hand lever at the top of the grinding spindle affords means of varying the pressure of the grinder on the work. Motion is transmitted to the wheel by a series of belts, the first of which runs from a horizontal shaft at the bottom of the fiame over two guide pulleys to a horizontal pulley, the shaft of which, with the frame and first section of the arm, form a hinge. A short belt runs from this hinge to the next joint, and' a second short belt from this to the grinder spindle. In one form of the machine the bed is continued under the grinder, and this projecting base has at its extremity a column with a slotted table, adjustable in height.
(24) Sculfort-Malliar \& Meurice, Maubeuge, exhibit a large collection of hand and power tools for punching, shearing, and drilling; and also special machines for the manufacture of wagons, etc.

A large hydraulic, combined punching and shearing machine is made with an automatic valve, for relieving the pressure from above the plunger instantly when the working stroke is completed, giving a quick return. A lever attached to the plunger rod oscillates about a fixed fulcrum. Two set serews are so adjusted that the lever opens the valve at the proper position of the plunger, making eommunication between the cylinder and the reservoir. A counterweight, acting through a lever at the back of the machine, raises the head rapidly. When the head reaches the prearranged limit of its upward travel, the valve is closed and another stroke is made.
(25) Société Alsacienne de Construction Méchaniques, Belfort. The display of large tools by this establishment was very creditable indeed. The workmanship and the designs generally were of a high order. A large gap lathe "Tour en l'air," for facing pulleys, and boring and facing gears, having the following dimensions, was among the many good tools in this collection :

Height of centers 260 millimeters (10.23 inches) or 20.5 inches swing above the bed. Height of centers in gap 800 millimeters (31.5 inches) $=63$ inches swing. Distance between centers, 1 meter $=33.4$ inches. Distance between bed and face plate (width of gap) 600 millimeters (23.61 inches). Diameter of face plate 1 meter (39.37 inches). Weight of lathe 9.850 kilogrammes (6,250 pounds).

The facing rest is carried hy a vertical column, which can be set at the proper distance from-the center and bolted down to the solid base plate. The short bed carries a tool also for turning the shaft, boring and facing the hub, etc.

A large slotting machine, especially well built, is worthy of some notice. The principal dimensions are: Stroke, 600 millimeters (23.6 inches). Longitudinal travel of table, 950 millimeters (37.4 inches). Transverse travel of table, 800 millimeters (31.5 inches). Distance from tool to the vertical column of the frame, 1,200 millimeters (47.25 inches). Weight. 14,500 kilogrammes (32,100 pounds).
The table of this machine has transverse. longitudinal, and circular feed motions, all of which are antomatic and instantly reversible. A special feature is a releasing arrangement by which the tool is held firmly in place during the working stroke, but is allowed to fall back on the upward stroke; thus avoiding rubbing of the cutting edge. This is accomplished by pivoting the tool holder at the upper end and forcing it out against a stop by a wedge from behind. This wedge is attached to a lever which plays up and down with the ram between two adjustable stop pins; these pins throw the lever, thus withdrawing and inserting the wedge at the end of the lower and upper ends of the strokes, respectively. A four-stepped cone, with back gears, gives the usual range of cutting speed.

A large vertical spindle milling machine is a fine example of a type of machine extensively used on the continent, and it would seem that we might with advantage carry this principle into more general practice on large work in the United States.
It is shown in Fig. 10 .
Distance from center of spindle to upright frame, 600 millimeters (23.6 inches); vertical movement of spindle, 520 millimeters (20.5 inches); longitudinal motion of tables, 1000 millimeters (35.4 inches); transverse motion of tables, 1,400 millimeters (55.1 inches); diameter of spindle 110 millimeters (4.33 inches); weight, 7,150 kilogrammes (15,760 pounds).

Fig. 6.- Vertical spindle milling machine by the Socféte Atsacienne.
The head supporting the spindle is gibbed solidly to the frame, and is balanced by counterweights.
A circular table is carried in the center of the main tables, and this has a rotary feed motion. This motion, as well as the other motions of the table and those of the rising and falling head, are so arranged that automatic or hand feeds may be used in any or all at will. The transverse feed can also be released, and a guide substituted, for profile work. This is a principle much employed in European milling machines. The attachment by which it is used on this tool is supplied as an extra, only upon order.
(26) A gear-cutter for cutting spur and twisted gearing up to 1 meter (30.3% inches) in diameter, shown by Fig. τ, was a prominent feature in the exhibit of this company.

It will cut spur gearing with $4 \geqslant 0$ millimeters (16.5 inches) face, or twisted gearing with 200 millimeters (\because., \boldsymbol{r}^{\sim} inches) face. This ma(hine is made with a strong horizontal bod, the large hollow spindle being supported by two bearings, and the cutting head carried by a frame secured to the back side of the main bed. The milling cutter is driven by a shaft placed vertically for spur gearing. on at an angle with the vertical equal to the angle of the teeth, in cutting twisted gearing. In the former class of work the cutter is traversed paralled

Fig. $\boldsymbol{7}$.-Large gear-cutter; by the Sociéte Alsacienne.
to the bed of the machine, the wheel operated upon being held stationary l?uring the cutting of the tooth, and only turned by the amount of the circular pitch in changing the cut from one tooth to the next. This movement of the wheel from tooth to tooth is not rffected by an index plate, but is accomplished by means of a large worm wheel and worm, a train of change gears, and a crank which can be accurately turned by a quarter turn. The large dividing worm wheel is 917 millimeters in diameter (36 inches) and has 1 so teeth. By a suitable train of gearing between the hand crank and the worm almost any desired division can be accurately mate.
In cutting twisted gearing the milling head is not traversed, but the spindle is set at the proper angle and simply revolved in this pusition. The large dividing wheel is still held stationary during. the cutting of the tooth, but a smaller worm wheel of 510 millimeters ($\because 0$ inches) diameter is attached to a spindle, which passes through the center of the larger wheel and carries the gear to be cut. This smaller worm wheel is comected by a train of gearing to a screw, which gives an axial motion to this spindle. The relation between H. Ex. 410-vol III-
this circular motion and the axial motion can be arranged to give the proper resultant helical motion to the work, the large worm wheel, as before, fulfilling the function of the dividing head. This machine has a good range, and it is a strong, well-built machine. suited to a class of work common in European construction of machine tools, namely, twisted gearing. The weight of the machine is 3,930 kilogrammes (8,660 pounds).
(27) Société de Construction de Machines-outils. E. Le Brun. director, 28 Boulevard Richard-Lenoir, Paris, placed on exhibition a tool of quite original design; a vertical-spindle lateral-milling machine. The long horizontal bed resembles that of a large shaping machine, or more nearly the side planer. This bed carries two tables at its front side for supporting the work, and these have both horizontal and vertical slotted faces. On the top face of the bed are two flat ways, upon which slides an arm overhanging the tables. This arm is itself fitted with a horizontal guide, perpendicular to the bed, on which the spindle head is carried. The vertical spindle receives its motion from a shaft rumning lengthwise of the bed through suitable gearing and splined rods. The tables may be set at any height on the bed, or at any position along its length. The cutter has a vertical motion, by hand, to adjust it to the cut, while the head has an automatic movement along the arm (transverse to the bed), and the arm itself has an automatic longitudinal motion along the bed. The transverse movement of the spindle is 800 millimeters (31.5 inches), while the longitudinal movement is 1,800 meters (5 feet 10.8 inches).

It will be seen that this construction permits a range in plain milling far beyond machines of the ordinary type having much greater weight and bulk. While the overhanging arm may lack something of the rigidity to be found in the best American milling machines. the bearings on the flat ways are very broad and the arm is strongly: gibbed to the bed; the tranverse feed may be disengaged by lifting out a half-nut, and a template clamper to the tables for giving the work a desired contour, or for reproducing peculiar forms.
(28) Another machine which embraces some new features in its construction is a pulley lathe, or "tour en l'air," as the French term it. The boring-bar for boring the hubs is supported, fed, and driven from the tail stock. By means of this arrangement the face of the pulley can be turned, and at the same time the hub may be bored, each tool having a suitable cutting speed. The two tool blocks for turning the face are placed one at the front and the other at the back of the lathe. For "crowning" the face the two blocks are connected with suitably formed curved guides or gauges which control the position of the tools in their travel. The cutters are placed at the outer edges of the pulley (one at either edge) in commencing the operation, and as the cut proceeds they approach the center of the
face along the fixed paths, where the two cuts run into each other. The same screw, one-half of which is right-handed and the other half left-handed, controls the feed of the tools.
(29) Of the other tools shown by this establishment but one can be mentioned, namely, a slotting machine with a head capable of being set at anangle to its ordinary vertical position. This displacement is effected through a tangent sorew, and the amount of inclination is indicated by a graduated circle. The table has the three usual motions, transverse, longitudinal, and circular, all of which are automatic. When required, means of reproducing forms by a template, in a maner similar to that used in vertical milling machines, will also be supplied. The sizes range from a stroke of 150 to 700 millimeters (6 to 27.5 inches).
(30) Steinlen \& Co., Muhouse, Alsace, Germany. At the rear of the Palace of Machines there stood one of the largest of the private buildings, which was devoted entirely to the display of machinery built by the Alsatian house of Steinlen \& Co. Besides machine tools, they exhibited dynamos, roller engraving machinery, and steam engines, among the latter being two large "straight-line" engines, built under license of the inventor. Some of their machines are of American origin, a fact that is freely admitted by them. 'Their grinding machines are -after Brown \& Sharpe's models, and they build gear cutters under Eherhardt's patent. Aside from these tools, however, there are many others of highly creditable design and construction, covering nearly all classes of standard machine tools as well as some machines of a special nature. Among these is a large planing machine in which the regular saddles can be replaced by milling heads, converting the machine readily into a strong milling machine, with great range for plain work. Milling is carried out extensively by this house in their own practice, and is applied to a much larger class of work than is usual in this country, by many of the European manufacturers.

A smaller milling machine for producing certain irregular forms. all of the same shape, in large quantities, involves a principle of construction differing from that employed by others. The work for which it is best suited is such as small cams, parts of guns, etc., or other work having a general outline approaching a circle. The spindle is horizontal and has a rising and falling movement. The blank to be cut is mounted on another arbor parallel to the cutter spindle and below it. This work arbor has at one end a template, similar in form to the desired shape; the cutter spindle has a roller, bearing upon the edge of this template; as the work arbor is slowly revolved under the cutter the latter is raised and lowered acoording to the form of the template and the piece is thus given a corresponding form. Several other applications of the milling machine to gunmaking and similar work are made by these builders, but they are, of course, largely special tools.

Many lathes are shown in this building, several being designed especially for boring, with a boring bar operated from the tail stock.

A few tools from the same house were shown in the main machinery building also. The special building not being occupied until late, this display did not show at its best; but, considering workmanship, design, variety, and number of machines exhibited, it was no doult one of the finest sent to Paris this year.
(31) S. \& M. Demoor, 35 Rue Zérézo, Brussels, Belgium, made an exhibit of special nut and bolt machinery, which, on account of the originality and capacity of the tools, was one of the most interesting of any to be seen in Machinery Hall, embracing, as it did, a complete outfit for making bolts, finishod all over with great rapidity from the rough blank. The principle involved in the mashine for cutting threads on bolts is the same as that used and exhibited by J. H. Sternbergh \& Som, in the United States section. The dies are made with the threads cut on their flat sides, instead of on the ends, as usual. The sharpening of the disks after wear is then reduced to the simple process of grinding the end, the form of the thread not being altered. In the system under consideration but three cutters are used in the head, while the Sternbergh machines employ four cutters. A simple movement of a key or lever opens the jaws when the thread is cut, releasing the piece and allowing it to be withdrawn instantly. The system embraces hand die stocks, portable hand machines, and stationary power screw machines, or bolt cutters. The larger machines are made with two parallel heads of two faces each, one face of each being for cutting bolts and the other for tapping nuts. In these machines the release of the bolt at the completion of the threaling is automatic, and the dies are also automatically closed for cutting the next bolt. to the exact size, it is clamed. Alljustment of the dies for changes in the diameter of the bolts, either for pasage from one size to another for which the same die is user, or for compensating for wear of the tap, is easily and quickiy made. Two sizes of machines are made: No. 1, for bolts of 20 millimeters (0.79 inch) and under; price 3,000 francs (8600). No. 2 , for holts of 3 millimeters (1.38 inches) and under: price 4,000 franes (8800). It is stated that this machine has a capacity of 1,000 pieces per hour.

A machine for turning the body of bolts to size, which also faces the under side of the head and dresses the end at the same operation, is made in two sizes, corresponding to those of the bolt cutters described above. They turn bolts of lengths up to 110 millimeters ($4 \frac{1}{2}$ inches) and 200 millimeters (8 inches), respectively; prices 1,000 francs ($\$ 200$) and 1,800 francs ($\$ 360$).
The frame resembles that of a drill press, and a revolving vertical spindle the lower end of which has a socket for receiving the bolt head), which receives a downward feed by hand or automatically, is placed over a table. This table has a hole through its center, in line
with the axis of the spindle, with three madial cutter blarles projecting inwarl. The cutting edges of these bades ate matre parallel, for the straight shank of a bolt, with similar cutting elges at the top for facing the under side of the head, and at the lower end for trimming the end of the bolt if desired. The vertical cutting edges may be made up of two or more separate cutting odges, to give different parts of the bolt different diameters. The operation is as follows: The spindle being in rotation, the operator pieks up a blank, inserts the head in the socket in the end of the spindle, enters its lower end between the stationary cutters, and with theother hand applies the feed, which forces the piece down, the operation being complete at a single stroke of the lever or turn of the whee.

The smaller machine has a capacity of 100 pieces per hour, the larger of so pieces per homr.

The departure from ordinary practice in the machine for shaping the heads of bolts is quite radical. Jt is a double machine and consists of two vertical rams forced downward throngh two boxes, compressing long cojl springs. These boxes each carry two parallel hardened steel jaws with cutting teeth traversing their faces diagonally, and are so spaced that the distance between the opposite cutting edges equals the distance across the finished bolt hearl. A guide block which slides in grooves in the box, parallel to the cutters, has a slot across its upper face at an angle of bo just wide enongh to admit a bolt head, and holding two of its faces parmblel with the eutters. The ram in descending presses down on the top of the bolt. foreing it and the guide block down through the box, and the cutters shave the two faces exposed to their action to form. At the end of the stroke the bolt is dropped into a tray, and the plunger. which is antomatically released, is shot up to its original position by the coil springs. The bolts, of course, have to pass through three times to be finished. For the first passage through the machine a guide block is used with the slot on top large enough to admit a rough head, while for the other two passages, another gride block, with a slot just wirle enough to take in the two faces already finished, is employed. Otherwise the bolt would not be held firmly and the form of the head would not be exactly hexagronal. Other work than shaping bolt heads and nuts may be done on this machine by using suitable guide blocks and properly spacing the cutters. The machine is double, one ram romaining up while the other is descending, thus making the action more continuous. It will take between the jaws 45 millimeters (13 inches), and will turn out about 150 pieces per hour. It is stated that the cutters need sharpening only once in ten days, with continuous work, and that the sharpening is done without drawing the temper. Price 3,000 francs (8000). In all of these machines soap water is used in place of oil on the cutters.

The set of bolt machinery is completed by two sizes of machines for facing and chamfering bolt heads and nuts. The sizes corre-

Fia. S.-Drill grinder; J. M. Demoor, Melgium. spond to the machine for turning bolts. Prices 800 and 1,200 francs ($\$ 160$ and $\$ 2+0$). These machines are double, one end being for muts and the other for bolt heads. No particularly new principle is involved in their design.
(32) A drill grinder exhibited by this firm is shown in Fig. s.
(33) Fetu-Defize \& Co., Liége, Belgium, exhibited a strong mortising or key-seating machine, which is very creditable in design. (See Fig. !.)

A circular slotted table, about $3 ; 3$ inches in diameter, with a rotary feed motion through a tangent screw, is mounted on a square table having two horizontal motions at right angles with each other. Through the center of the circular table a strong tool bar travels vertically.

Fit. 9.-Key-seat slotting machine; Fétu-Defize \mathcal{E} Co., Belgium.
This is actuated by a lever, the fulcrum of which is within the bed of the machine, and the outer end is slotted to receive a crankpin block. The crank pin is attached to a disk driven through a gear and pinion from the cons; and the throw of the crank is varied by clamping the pin nearer to or farther from the center of the disk.

The arrangement is the ordinary quick return motion so often used in shapers. The machine is esperially suited for key-seating. The pulley or gear to be operated upon being clamped to the table, the cutting takes place on tho downward stroke, and the various motions of the table allow the work to be adjusfonk and fer up to the cutter as desired. This tool may, however, be used for other work than key-seating, such as dressing the inmer faces of comertingrod straps, ete. It is an exeeptionally compact and solid marhone, and one which will commend itself for the chass of work within its range.
(34) A series of rectifying or special grimling machines, for finishing work after leasing the planer or other machine tool, estecially adapted to locomotive construction, is built hy the same company, and is worthy of attention. Three models were exhibiterl. Mondel B L 3 is for finishing the bearing surfaces of a link: it is shown by Fig. 10. Two suspension rods of variable length are carried by an adjustable pin above the machine's spindle, and the link is held by the lower ends of these rods.
An adjustable crank canses the rords and the link to oseillate through an are

Fig. 10.- Machine for grinding the slots of locomotive links; Fetu-Defize \& C'o. equal in length to a little more than the actual hearing surface of the link. An iron arbor, carried at the (ond of a rapidly revolving spindle, turns in the slot, its axis being parallel to the rectilinear elements of the link. The fine emery applied to this arbor grinds the surface aceurately. 'lo insure uniform grinding the arhor spindle is given a positive reciprocating end motion, so that the face of the grinder traverses the surface "qerated upon in a direction perpendicular to its rotation.
Model B L t has a similar rotating arbor with reciprocating axial motion; but as this machine is intended for small flat surfaces, the work is fastened to a horizontal traversing table. It is similar in appearance to a plane milling machine, except that the table motion is by a crank and slotted lever, giving more rapid motion and a quick return.
Model B L 5 is for larger flat surfaces and the frame is of the planer type. The platen travels to and fro as in a planer, the reversal being effected in the ordinary manner by stops on the side
operating a belt-shifter. The cross-head carries a vertical spindle. driven he a belt from the countershaft and passing over guilu. pulleys. The lower end of this spindle is furmished with the grinder. which is annular in shape, the flat edge of the ring being the grimeling surface.

Fig. 11.-Large vertical mill'ng machine. Fetu, Defize \& Co.
These three machines give a high finish to work. All of them seem to be very carefully designed and construeted with accuracy.

In addition to those described above there was in this exhibit a very good line of general tools; one large turret lathe, a locomotivewheel lathe, a radial drill press and a large vertical milling machine. All were fine tools, but none. except the last mentioned, differ in any important features from those well known in the United States.
(35) The large miliing machine referred to (see Fig. 11) is similar in type to that built by Sociate Alsaciome and Smith \& Coventry, described as among their exhibits. Provision is made for reproducing by placing a gruide template at the front of the machine, the ordinary serew motion being then disengaged. The diameter of the spindle is 90 millimeters ($3.5 t$ inches); diameter of the slotted
circular table, 850 millimeters (33.5 inches): (lear height above phattom, 370 millimeters (14.55 inches); transverse travel of table, 1.150 meters (45.25 inches); vertical travel of tool, 500 millimeters ($9.8 t$ inches); weight, 5,500 kilograms ($1 \geqslant, 000$ pounds). Price, 5,000 friun's (81.000).
(36) The American Srew Company, Providence. Rhode Isham, exhibited machines for making wood serews by the cold-rolling and swaging process. The principal reguirement in metals to be treated by this process is homogeneousness in tuatity. A publication of the company's states: "All previous attempts to make a sorew of the requisite stiffness, and having throals adapted for engaging in wool, failed of suceess until the Amorican Screw Company developed a principle of forcing laterally the metal displaced by the dies instear of allowing it to move longritudinally, as it alwass did under dies constructed prior to their invention, as such longitudinal movement is directly opposed to the production of a sound deep thread, and hence could only be applied to shallow threads and short lengrths in soft motal. Supplementing their process for entarging the diameter of the thread some four to six sizes larger than the body of the hank, and without which the enlarged diameter of the thread urould hue no practical walue, is their process for producing a correspoonding enlargement of the head hacing a swaged slot and finisherd surface, thus producing, by the combined processes of swaging and rolling, a symmetrically proportioned finished wood screw, one vastly stronger than can be made by the cutting process, and cost ing much less to manufacture than a cut screw of the diameter of the wire from which the swaged and rolled serew is mate.

The following claims are made for this process: (1) Decreased cost and increased selling price; (:) Stronger heal; (3) superior point. emabling it to enter the wool straight; (t) deep, thin thread, having greater hold and not distorting the fibers of the wood; (5) small shank, which avoids splitting the wood; (6) extromely tough material; (7) no weak place in the screw.*
(3i) Brown \& Sharpe Manufacturing Company, Providence, Rhode Island, made one of the best displays of machine tools at the Exposition. It included several of their milling machines (universal and plain and of different sizes and types), a No. $\ddot{\sim}$ vertical chucking machine, a No. 3 universal grinding machine, a No. : surface grinding machine, a No. 3 universal cutter and reamer grinder, an antomatic gear cutter, two serew machines, a universal hand lathe, a tapping machine, a serew-slotting machine, high-speed and verti(al spindle milling attachments, gearing models, milling cutters, sewing-machine parts, samples of castings, specimens of work done

[^32]on their screw machines, milling machines, grinding machines, etc.; also photographs and lithographs of the shops and a few of the smaller specialties of their manufactures.

Fig. 12. - Brown \& Sharie's automatic gear cutter.
These tools were all of the standard design and finish, exactly the regular line of work put on the market by the Brown \& Sharp Company, the character of which is too well known to Americans to need much description beyond mere mention, though a briel' notice of one or two of the tools more recently brought out may be in order.
Their automatic gear-cutting machine is shown by Fig. 12. It is arranged for cutting both spur and bevel gears up to 18 inches in
diameter, 4 inches face, and No. 6 diametal pitch. The indexing is done by worm wheel and worm through change gears. After the cutter is attached to the arbor the wheel blank is mounted on the head, which is lowered, to give the proper depth of at, by means of a screw graduated to real to one one-thousandth of an inch. The cutter passes through the blank, returns with a rapid motion, then the wheel is revolved for the next cut, all of these operations being automatic. The cutter head is adjustable at any angle for cutting hevel wheels, being properly graduated for setting, and the cutter may also be moved laterally from the central position for this class of work.

In cutting spur gears the operator, having placed a blank in position and started the machine, need pay no further attention to it until all the teeth have been cut.
Another machine leserving notice is the chucking machine. The chuck, being horizontal, facilitates the setting of work in many cases. It will take pulleys up to 30 inches in diameter, $14 \frac{1}{2}$ inchaes face, and hub 12 inches long. Holes as large as 4 inches can be bored, and the turned head allows several different operations to be performed rapidly without displacing the work. The chuck table is driven by a five-sterped cone, geared if to 1.

The turret slide has a motion of 21 inches, and an antomatic ad. justable feed motion, with quick return. It is counterbalanced by a weight inside the columm.

The exhibit was generally admitted by those familiar with machine tools to be of the very highest order. The principles and often the actual designs of the machines which the Brown \& Sharpe Comphy have so successiully intronlucen, have been very widely adopted by European builders.

The undeniable traces of their work could be seen throughout Machinery Hall.
(:3s) William Sellers \& Co., 1600 Hamilton street, Philadolphia, Pimnsylvania. Two planing machines of an entirely new design, a vertical drill press. a tool grinder, and a drill grinding machine were sent to the Exposition by Sellers \& Co., and much interest and many fincorable opinions were expressed regarding them. The work of thr tool grinder was greatly admired, and mechanics quite generally considered the planer a decided adrance in the construction of that class of tools.

The following explanation of the new planer was kindly furnished for this report by the makers. The machine being so new, and of general interest, it is given in full:

36 by 36 inch patent spiral-geared planing machine.
The return stroke made in one-eighth of the time required for the cutting stroke. Driven by spiral gearing throughout, thus avoiding the intervention of spur or
bevel wheels and insuring the engagement of not less than four teeth of the rack, simultaneously, with the pinion on the diagonal shaft: thereby imparting to the table a smoothess of motion not obtainable in any other form, and producing work that is smooth and entirely free from the chatter marks observable in that of all other planing machines. This construction also permits the strengthening of the bed in its most vital part, between the uprights, by two large box girders and ome diagonal girder, in the space usually taken up by the spur gearing in other matchines. The cutting stroke is at the rate of 18 feet per minute, the return stroke at the rate of 144 feet per minute-the quickest ever ottained on such a planer withent overrunning the required distance-and the machine will plane to a shoulder with certainty; but either rate can be changed without affecting the other, as, for example, in planing mushally hard material the cotting speed may be reduced by changing the size of the driving pulley, without affecting the rate of the return stroke. The table is of musual stiffness, withone plane and one very flat way, the latter having four bearing surfaces, two to carry the weight and two more to take any extra heavy side thrust. There are improved oiling devices in the ways. all

- thoroughly free from dirt. Thedriving belts are wide, on high-face pulleys, and are not shifted to change the direction of the table movement, the engagement with the driving shaft being effected through friction clutches which are small in diameter but certain in acting, reversing the motion without jar. The clutches are dismgaged from the driving pulley positively by the stops on the planer table, thus making the length of the stroke definite, and avoiding the variations in length inseparable from the methol hitherto employed, of shifting the driving belts from fast to loose pulless. The release of the clutehes starts a train of gearing driven from the slow-ruming pulley which engages the clutch with the opposite pulley and at the same time operates the feed and tool-lifting devices, which operations thus take place while the table is at rest or changing its direction of motion : hence the total stroke of the tool need not in any case exceed the length of the piece th be planerl by more than 3 to 4 inches. The feed may always take place at the end of the back stroke, no matter in which direction the feed is working. The machine can be operated from either side by hand levers which control the table movement and at the same time disengage and arrest the feed at will, so that the table can be rum past the stops as often as required for examination or adjustment of work, and when the planing is resumed the col will show no mark of the feed arrest. The cross-head is umusually massive, inclosing the saddles; the slides being broad and flat, not angular, and fitted with bronze taper shoes to take up the wear. The cross-head is fitted with two saddles. The feed screws and rods to each are separate, so that each can be operated in all respects indejendently, except in the amount of feed, which will be the same for both saddles; but by extending the crank shaft across the machine amd providing an additional erank, rod, and segment, the two saddes can have feeds entirely independent of each other. The feed is adjustable from one whole revolution of the feed sorews down to nothing by an infinite gradation, as there are no teeth in the feed ratchet to limit the changes. The tool holders on the cross-head are fitted with tool lifters, raising looth tools on the back stroke, no matter in what direction or in what angle the planing tool may be feeding. There is a vertical slide rest on each upright, operated by separate feeds, and the tools of these slide rests stand in the same plane with the tools on the cross-head. The vertical slide rests can be lowered below the top of the table when not in use. The cross-head is raised and lowered by power by means of friction wheels that can be held to their work with slight effort, but which stop as soon as the workman releases his hold on the lever, thereby avoiding the accidents arising from hoisting machinery set in motion and then left to work during, the absence of the operator. For power of cut, smoothness of work, quickness of back stroke, length of stroke as compared with the length of work, facility of handling the
table and the feeds from both sides of the machine, ability to stop the feed and restart it without marking the work, great strength and convenience, this machine is preeminent. It is placed paralled with the line shaft to economize room in the shop, but can be placed at any angle to this shaft with facility.
(2) BY 20 IN('H PATENT SPIRAL, (GEARED PLANIN(t MACHINE.

This machine is the same in general principle as the 36 hy 36 inch machineexhibited. The cross-head is of a somewhat different form. The table is not operated from either side, and the tool is not provided with a lifting attachment. nor is the cross-head raised and lowered by power, such features not being required on a machine of this si\%e.
(39) Drill-grimding marlhime.-This machine will grind acourately dither flat or twist drills from one-quarter of an inch up to: inches, all drills being held in the same chuck without the use of bushings. It will grind drills to any included angle of point from 90° to $1330^{\prime \prime}$. The clearance varies, being slightly greater toward the center. The flat face of the stome is the grinding surface, and this stome is fixed on a cast-iron ring which is bolted to a flange on the arbor, diminishing danger of breaking the stone in serewing up. A drill-pointing device is also attached, by means of which the roint is thimed down, reducing the rubbing action of the end and the force required to feed the drill. This feature is especially valuable as the drill beeomes worn down toward the shank and the thickness of the point becomes greater. The nature of the work done by this grinder was shown by the equality of the two shavings turned out from opmosite tips of the drill; both shavings being several inches in lengtl: and almost exactly alike in size and curvature.

The tool-grinding machine, while of quite recent origin, has recuived such notice as to render a lengthy deseription unnecessary. 'lhe following is from the makers:
All ordinary tools used in lathes, plamers, and all other machine tools, the cutting edges of which are hounded by planes, or planes and convex curved surfaces, are gromul to shape from the rough forging with ease and dispatch, irrespective of the position the cutting edges have in relation to the body of the tools.

The grinding wheel, of coarsestructure, but which, from its direction of cut, grinds quickly and grinds fine, is mounted on a box frame, part of which serves as a tank to hold the water used in flooding the tool to keep it cool. This tool can be reversed, fare about, on its spindle to equalize the wear, while it is protected or inclosed in a masive cast-iron cover. A rotary pump forces water to the tool being ground through a system of jointed pipes, the nozzle of discharge being made to hold the samu relation to the tool in motion as at rest. Slide rests, adjustable in angle by moans of graduated ares and verniers, have vertical, horizontal, and rotary motion, moving the tool in all directions in front of the grinding wheel so as to grind several faces at one setting to any angle of clearance or top rake.
The machine is furnished with former plates for grinding all the forms of roughing towls we have found most useful in our practice, and also means to enable new former plates to be originated from a sample tool made by hand or otherwise.

It is also provided with-
11) A chack for circular or round-nose tools, which is also used in connection with former phates furnished to grind curved-face roughing tools, right or left hand, and at any angle.
(2) A holder to be used in grinding the side or base of the shank of tool.
(3) A chuck by means of which any bent tool can be ground on all its faces with. out changing its position in its chuck, with as much ease as the grinding of straight tools.
(4) A chuck to hold splining or key-seating tools in the same manner.
(5) A crane for lifting the heavy wheel cover, changing the wheel on its spindle. or lifting the chuck, etc.
Tables or diagrams showing all the angles and positions of chuck for fifty-six different plain-faced tools; nine different shapes (serin sizes each) of right and left tools, with former plate to be used with each; and a table for circular tools from one-fourth of an inch to $: 4$ inches diameter of circle are also sent with each machine.
(40) Warner \& Swasey, Cleveland, Ohio, exhibited a number of their spēcialties, including screw machines, monitor lathes, sperial tools for valve making, and brass-finishing machinery; and many of these were superior to any similar exhibit.

Fig. 13.-Turret lathe with forming tools; Warner \& Swasey, United States.
The screw machine has a wire feed and the turret can be supplied with a great variety of tools, as a drill, adjustable box tool, hollow mill, die and die holder, reamer, and stop gauge. A great variety of pieces having different shoulders and sizes can be made with rapidity and accuracy by means of the ajustable box tool. In addition to the turret there is a slide for cutting-off tools, etc., provided with two tool posts. Four sizes of the machine are made, with 10 , 12,16 , and 20 inch swings, having holes through the spindle of $\frac{3}{4}, 1$, $1 \ddagger$, and $1 \frac{5}{8}$ inches, respectively.
The forming monitor (see Fig. 13) is of especial interest. The following is quoted from the publication of the makers:

These machines embody a departure from the old system of turning irregular shapes. Their operation is extremely simple and the quality of the work turned out is such that they are rapidly taking the place of all other methods.

The tool slide with its under-cutting forming tool is the most characteristic feature. The tool carriage is drawn forwath by hand by means of a lever rack, causing the formingr tool to pass under the piece at the proper distance below it to turn it off to the right diameter and shape. At the beginning of the return movement of the carriage the tool is depressed slightly by the automatic action of a double eccentric, and its edge is thus prevented from dragging across the finished work as the tool passes back to place. An automatic chuck is provided with these machines, which is worked by a lever shown at the left of the figure. By means of this the pieces to be oporated upon can be placed in position, rieridly gripped in the spindle, finished and removed, without stopping the machine. In working the machine those operations on the piece requiring the use of the tools in the turret are first done, after which the forming tool is drawn under the part to be formed, and the piece thas completed.

The under-cutting tool is a bar, the upper face of which is milled lengthwise so as to give it a cross section, the outline of which exactly corresponds to that of the piece it is desired to produce. In grinding, therefore, it is only necessary to grind off the front end, and the center of the cutting edge remains unchanged.
(41) Four spindle ralve milling machine (see Fig. 14).-The four heads carrying the spindles are supported by two knees, one on each side of the upright spindle which holds the valves to be milled. The knees are adjusted right and left on the bed by means of hand wheels. The upper heads are adjustable vertically to give the required distance between the upper and lower spindles, while the lower heads are adjustable right and left on the knees to insure milling both ends of the valve the same size. Thus each of the four spindles is adjustable separately, so that valves from one-half to $\underset{\sim}{2}$ inches can be milled. The piece to be milled is screwed to its proper position on a rod sliding within the upright spindle and projecting a short distance above it, and is then drawn firmly against the spindle by a large hand wheel below. After milling two sides, a partial revolution of the valve through 60 or 90 degrees is obtained by giving a lever (just above the hand wheel) a forward movement, which mocks the spindle, turns it the proper distance, and locks it ready for milling the next two sides.

By this machine the four parallel faces of the two hexagonal or square parts of the valves can be milled at once. A two-spindle machine is also made, which is similar except that but two opposite faces are milled at one operation.

Double-head key lathe.-This machine is designed for turning keys for cocks from one-eighth to 1 inch, inclusive. It is also especially
adapted for making gas fittings. An automatic feed, adjustable to any desired taper, is provided, which, when once set, will feed across the work, or, if desired, will feed across the work, reverse and feed back, and then stop, taking on its return a chip due to any spring there may have been in the tool during the first cut. Two complete machines are placed on one bed, as one operator can easily attend looth.

These makers also exhibited a case containing many of the finished parts of valves, etc., and some accessories used in this class of work.

Fig. 14.--Four spindle valve milling machine; Warner \& Swasey.
Their methods and designs are now so familiar in the United States that further mention, though merited, is not necessary.
J. H. Sternbergh \& Son, Reading, Pa., exhibited an excellent boltmilling and screw-threading machine which has been referred to aloove.
(42) Greenwood \& Batley, Albion Works, Leeds, England. These builders have made many large tools for the arsenals and other Government institutions. They do not confine themselves exclusively to machine tools, but this line of work is the most important of their productions. The grandest single machine in this class at the Exposition was, without doubt, the large lathe just huilt for Schneider \&
(b., of Creasot, by Gremwond \& Bathey. It is intombed for homan
 (100 tons) or more. It is chamed hat this lather can easily (with ther

It is more than to loot long wor all, amd ocerphis almos lam

 kindly fornished be the builders for this report:

Abstract

 of the lathe Whilst the othersare sliding. or olte sathlle maty besliding a taper of 1 of the ingot whilst turning the centerportionof the ingot or preparinge erete for the amd lowse head stocks. The saddles are eadh fitted with a rest for ramk-luming.

The boring bed is fitted with a boring sathle having a self-acting traver of $\because 1$ motion in either direetion, driven he ofen amd coss belte from the man statting in the factory. Some idea may be fomed nf the size of this lathe when we say the driving head stock and gearing weighs :3t tons, the driving spindle abom if tome: carh of the saddes weighs about es tons, and the total weighs of the lathe with combtershaft about $3: 30$ tons net.

Each carrage is fumished with ham wherls for reversingorsmp ping both feeds. The feed monhanism eonsists of pods and berol gearing, with positive clutchas. The bevel gears are in pars, with a double clutch between the two, so that by shifting the rlutel - Hevo the feed is first stopped and then (if continned) reversed. A matchet lever is provided for moving up or feding by hamd. Thar serew and rod feeds of the front carriage aro duplicated at ran of the bed for driving the back variages. All feeds are positive but a cup liction chatch (driven directly from the coonter shaft be an imbependent belt.), is used for the quick return motions.

A shaft runs down the center of the bed to give feed motion to the boring attachment. To avoid removing the pedestal and caps as the boring proceeds, a beveled pinion is placed between eath patir of the bearings of this feed shaft.

Not the least remarkable thing in comection with this tool is the H. Ex. +10-vol $\mathrm{IH}-: ~: ~ 3 ~$
shortness of the time taken in its resign and amstruction. A comsideration of the following statemont eomeressome inleat the fariai ties possessed be this house for turning out large work.

 April. 1sst, it was shippel to Paris, the whald comstrudion havin. taken lase than six months.

This lathe is to be used at the (remset Works in turning amblome ing large ingots for heary gins and smilar puposes.
(imemwond \& Batley hatre build during the past fion or six rame
 plying such establishments: the Wowlwich Arsemal: W. G. Ame
 Shefliold: Thomas Firth \& Sons. Shedield: 'Taylor Bros. \& (\%..
 (Ghatiors de la Mintitmame: F. Kruph) Essen: Arsemal of Alexan-
 senal of Keallateg. China, and also many others.
(4:) Hulse \& Co. Manchustor. make ome of the leating exhibits in the English section. The following desmiption of four of the. most noticeable of their tonk waskindly furnished by the makers:

Improwd double borizontal slot-drilling machine for cutting cotter holes in connecting rols, keywass in shafts, ate. The machime hat two drilling head sterlsand these operate at both sides of the work simultanomsty and are providen with
 ing heal storks is aljustable to any required position on the stide bedthy rack amb pinion, and is then commeted with crank disks, which latter is actuater by ellip. tical gear for giving uniformity of traverse. For holding commeding roxls, shatiand other round objects a coneentric vise is provident tomether with a movald. head stock. the latter acting as a "steady" for the werhanging ends mearest har drills. Work of other deseriptions may be belted to a growed table pataed abons the hed, the vise and morable head stock being at the time removed.

Patont rertical milling and drilling machine for milling and driling great vari-. ties of straight and emrvilinear work. such as levers, cramks, comne ting rod ems.
 ing the stud-holes. It has a rising and falling spindte carried hy and rotating within a hollow sumare vertical slide which rises and falls along with the spindte. so that the main bearing of the spindle is closin to the colter in all positions. The spindle has a self-acting feed action similar to that in rertical drilling machine. The shape and size of the spindle slide are surh that the cutter can operate on surfaces of work which could not be got at he a cutter if an ordinary slidu. were employed. The table for carrying the work consists of longitudinal and transerse slides, surmounted by a rotary slide which can be removed so as to allow the work to be fixed the uppermost of the other two slides when desirable. Einh slide has an independent, variable, self-acting feed action which can be readily ap. plied, reversed, or suspended, as required. The lubrieant is contained in a cistern on the standard of the machine, and a centrifugal pump is provided for de'verine a constant supply of it to the cutter, the suphus lubricant Howing back into the gistern. The machine admits work up to 36 inches in diancter and 16 inches in:
height when the rotary slite is in position: when this stith is removed, however, objects up to 是 inches in height can be operated om.
Cniveral cutter grinding machine: sperially construted for grinding to a keen cutting edge the teeth of face and enge milling cutters, paralled or taper remers with straight or spimal flutes, and other similar cutters aftor they are hardened and tempered. The grinding is effected be a high-sued emery whel, the work being
 system has sereral adrantages over ofge-grindiage as. for example, that the grinding of the work into wasy forms is avoded, and that, in grimbing renters having finely pitched teeth emery wheels of comparatively hage diameter may the anphered. At the outer ent of the epindle of the mathine is a secomb emery whed for gemmal grinding purposes, an adjustable. T rest heing powided for sumperting the work.
A i-font radial drilling and boring machine stands on a base phate. ter-growsed throushout its upper surface. The matial arm is carried he a vertieal shade wheh is ratised and lowered on the upright frame antomatically be serew, of feet being admitten umber the spindle when in its highest position.
The spind arm is traversed along the arm in cither direction be a quick-theaded serew and hamd whels, one upon the slide itself and the other al the end of the arm. for comvenience in woking. The spindte is rotated ty a long rewolving tube wibh hard gum-metal adjustable hearings above and helow, amd has a variahbe selfacting feed motion by serew with adjustable mut for taking up end play. Single geang is provided for hrilling and treble for boring: and these in comjunction with a four-speeded cone pulley. give cight changes of apeed.

In addition to the abown machines. Hulse \& (6 , showed sereral othor eroel tools. with independent serew amd rod feeds, driven by separate trains: of change ereats. The sliding rest has a special merhanism for drawing the tool back from the work and advancing it agall to its former place without moving the eross-fed serew. This is aceomplished be a short, rapid-piteh serew amd a short thomb Lever at the front of the rest.

A hollow spindle lathe for turning serews and finishing up studs out of a long har, taking stock up to $1 \frac{1}{2}$ inches in diameter. The bur is passed thromg the spimble and gripped hy an ecentrice chuck while being worked. Immediately the article is finished and cut off. the har is fed along for the next piece. There is no tatl stock, as the work is not placed butween centers. The sliding rest has both sorew and rack feeds, and carries a capstan head with 6 tonls and a threating apparatus. The hed is formed with a trough for catching the lubricant, and sleeves for extra tools.

A rertieal drilling and boring machine takes work. up to 36 inches in diameter and + feet high above thr base plate. It has a rariahle self-acting serew-feed motion, with an adjustable nut for taking up the wear. The work may be fastenel either to a radial tahlo having a vertical movement and provided with both vertical and horizontal slotted surfaces, or it may be attached directly to the bed plate.
(4t) Selig, Sonnenthal \& Co., sf Queen Victoria street, and Lambeth Hill, London, E. C., exhibited both as makers and agents. One
of the most nosel mathenes was the " whereteoth rleaner." The
 hibitors:

For cleaning the terth of ast sume whels by mems of an emere whed: makime
 ings, thus rmabling the wheels to rom smosthly and in full gear to the botom of
 quantity of eastooth whels. The machine. as shown, is all solf-ateting in the pick. and maty be regulated in the stroke and the pieking motions for pitchafrom one-righth of an inch to i! inches. and will almit wherls up to fe inches in diameter.

The frame of the mathine is a spare vertical column with a faring hase and an wrehanging am at the top which carbies the emery whed in a vertical phane. One side of the frame is provided with a broad vertical grade upom which a sliding carriage may the champer at any dexired height. This carriage has horizontal dove tail guides in which at ram travels back amd forth, the gean to be colt being fixel to a shatt on this ram, with its teeth elements paralled bo the travel. A eountershaft at the base of the machine drives the emory wheel hy a belt at a high sperel; and theough bevel geanims. a vertical splinedshaft and a crank of variable longth the ram is givan at stoke of a little mone than the face of the gear. 'The shatt to which the gear is attached is turmed antomatieally through an angh. equal to the pited angle. The operation is, first, to set the wheed to be cut on the supporting shatt, then to arljust the sliding earrian so that the emery whee will grind to the proper depth, the splimed shatt driving the rank at any height within the range of the machine. Now, upen bringing the center of a tooth space in the plane of the renter of the emery whee the machine is rearly to start. A set of emery wheels, having the edges formed to correspond to the spaces of different pitched wheels as mearly as possible. are used with this machine. It is not to be expected that this mathine will take the place of a gear cutter for the higher classes of work. or even that it will make wheek " equal in appearance (o 'ut wheels," but it no doubt may be a very useful tool in fitting up the rougher class of work, where cast gearing is commonly usel. removing lamps or irregularities that would interfere with smooth ruming. The tool weighs about 1,350 pounds, and the list price is £50 (8200). A rack-eutting attachment is furnished as an extra at an additional cost of ahout sts.
(45) Smith \& Coventry, Ordsal Lane, Manchester, England. The display mado by this company was prominent among the English machine-tool exhibits. The firm build first-class heavy machine tools, and also make small tools, such as twist drills, reamers, ete. A heavy vertical-spindle milling machino is buitt in five sizes, the largest of which weighs about 15 , 100 pounds, will work to the center
of a 2 -inch circle and anmite work up to fo! indhes muler the mill. It has a lomgitudinal motion of :3n inches, a tanserse motion of fu inches, and a circular feed, all of which arr amtomatic. The spindle.

 the larger machines the hamdes and herers for fore motions. dis-
 forndmotion is through friction disko. promitting emsiderable range.
 a wrighted herer at the biek of the mathine king the guide rollere up to the trmplate.
 lathe.-The smather sizes are math without back grars, but the larger lathes have them. The capstan mothas a self-acting lecul, he ferd nut, remuiring a pressum to hold it in gear. springing out instantly when this preswer is mieved. Thu suindur is a ase-hardened wrought iom, and is. powident with a coned chuck for eripping the stock. The chasing apparatus is attacherl th the back of the carriage and ran be realily swom into prsition for cutting. by a berer
A comsideratho variety of lathemel halders is made be Smith \& Coventry (1) lo used in phace of the ordinary solid forged tomel. Ther alsor manufacture twist drills extumively.
(4i) An aceessory to the drilling aml tapping mardines shown he thi homsen is Fearns" Lightning Tapper." The cout. Fig. 15, shows clearly the anstruction of this devire.
The top is driven through the flange elutech while workine reqularly: but. in case of the bottoming of the tap or of its binding from ans caluse, the coil springs yidh and the spindle turns without driving the tap.
(ti) Maschinenfabrik. (1erlikm. Zurich, sent to

Fig. 15.-Pearn's tapping fixture: rxhibited by Smith N Coventry, England the Expesition two rear cutters. ambracing some origimal and interreting foatures.

A machine for planing bevel getars up to 360 millimeters in diametre (1 t. \because inches). shown in Fig. lis has a pillar frame which carries therutting tool. This much of the machine very strongly resembles an whinary shaper. The tool hock has right and left horizontal and vertical motions. but these are only used for aljustment. and in "peration the tool moves back and forth in the same line: two strong brackets project from the front of the bed (one on either side), and
bearings on their extromitios (at the level with the peint of the cutter) support the trumions of the cradle on which the wheel is fixal. This cradle consists of two toothed segments (emmected horizontally), at the centers of which tho trmmions are lixed, swinging in vertical planes just within the two supporting brackets. The teeth on the rims of these segments engage with two pinions which. he the rotation, swing the sectors on their centers. The plate or wel (onnnecting the two segments, below the level of the cutting tool. is finnished with a strong armor, the axis of which intersects that of the

Fig. 16.-Machine for planing the teeth of bevel gears: by the Oerlikon Machine Works.
trumions half way between the latter. On this arbor the whee to be cut is placed, so that its converging conical elements pass through this common print in the two axes. It is evident that if the cradlo is now moved upward till the outer and upper elements of the whed are horizontal it will comede with the path of the tool ; then il. as the crade is fed up farther, the arbor is turned properly in its bearings in the web, carrying the wheel with it, the cutter will shape out tho tooth. To attain such a result a tooth model, which is an enlargement of the desired tooth form, is attached to the arbor below or back of the wheel. A blade or rule, secured to the frame, bears: against this template, and a spiral spring stretched from the arbor to the cradle insures the contact of this blade and template. Now,
as the planing proceeds the feed motion turns sightity at each stroke the pinions engaging the toothed sectors: the cradle thas swings upward, feeding the wheel toward the tool and at the same time the contant between the template and bade gives the wheel the proper circular movement on its axis; spacing mechanism is attached to the cradle. by means; of which the wheed is tumed through the piteh angle when a new rut is to be begun. Fn cutting gears from sold banks, a straight cot is tirst male through the center of the space, and the sides of the tooth are dressed to the template afterwards. In this tirst operation the template is, of course, not used; and in the subsequent cuts (or in dressing a cast gear) the guding blade is always placed on the opposite side of the tomplate from the cutting tool. It will be seen from the foregoing that teeth of any desired form can be cut with this machine, and it will be further noted that with wheels of a given angle of pitch cone and the same number of teeth one template only is required. The spatiing mechanism does not work automatically, but the other operattions are automatic.
A harge gearentting machine for spur or bevel geans in iron or wool. from 400 to 4000 milimeters in diameter (15.75 to $15 i .5$ inches), was placed near the one deseribed above. It consists of a strong head for supporting the arbor on which the gear is fixed, provided, of course, with spacing mechanism. This mechanism is a large wheel and worm, connected with the actuating crank through change gears. 'The general principle of the machine, as arranged for cutting spur gears, is similar to that of the Caleasom, or other familiar forms of such machines, the cutter in this class of work leing a milling tool. The head carrying the milling spindle moves parallel to the axis of the wheel on a firm base plate. Another base plate is a quadrant, and the head may be champed at the proper angle on it. The teeth in this class of work are planed out by a [owl directed toward the center of the pitch cone. The departure from ordinary practice is in having two radial arms (which can apmoach and separate like shears) pivoted to the conter: each carries a sliding tool block and is guided by a suitable template, so that two cuts are taken simultaneously, one on each of the opposite faces of the tooth. These two tools cut toward each other, one being at the smaller end of the tooth when the other is at the larger ent. A long rod rums parallel to these radial guides, to which stopsare fixed, and the feed to the tools is given by striking these stops at each stroke. While the design and construction of this entire machine is noteworthy, it does not differ essentially from the forms well known in the United States except in the feature of the double cut.
Other good tools were shown in this exhibit, among which may be named a universal milling machine. It is, however, of the type most common in America, and needs no further description.

ix

MACIILSERY FOR KNITJING AND EMBROIDERING， CLASS
 a

－T．M．Mよにないい。
$=-\cdots+\cdots$

CONTENTS.

Pagr
I. KNittiva machives memhmitel :36.)
11. ART OF KNITTING RY MACHANER :36
111. EMBRODDERIN: MACHNE: 110:3

MACHINERY FOR K.XITTING :INI) B:MBROIDERING.

13. J. M. MERROWV.

I. KNITTING MACHINES EXHIBITED.

 Hall. and comvionty displayed for publie inspedion. hut the ditformt exhbits were in many instances willely separated.
 provided with suitable belt combections. amd were nsually foum in川ramion.

Fxedlent displats of the pronlucts of the machines were mate in some cases, while in other instaneres the exhibits af the aticles ar fabries produced were not all that could be desibed, especially when the protucts were such that further oprotatons would be reguired to form useful articles from them.

Following. is a list with a gemeral deseription of the primeipal exhibits. eommoneing with the Fremelt: me attempt being madre tw arrange them in the ordere of ather thein exeellence or importaner.
F.-M.-A. Argellier, al Bonlevard des Batignolles, Paris. a mannfacturer of knitted speceialties to measure. exhibited me hand machine, illustating the operation of producing various articles of admirable perfection.
A. Bonamy, of St. Just-en-Chatusée (()ise). exhilited several mat fhines in opration, among which werrantomatic mathines for knittimg fashioned sonksor stockings, and ammmatio circular rihmathines with lateh neodles.
Emamuel Buxtorf, of Troves mado an athactive exhibit of latmo direnlan machines with spring needles, sommof which prorluced pheh fabrie, by which is meant a fabric with ond fare covered with pros firting lows of a supplomental threat. which are subsequently hasherl or mapped, thus forming knitted phash.

A rir ular knitting maxhine adapted to produce a fabric in two colors, antomatically knitting intricate designs of patterns, was an attractive object in this display. Two movahle thread grides were actuated by electromagnets, controlled by a slowly revolving eylin-
der upon which was delineated in miniature the desired pattern. An endless chain provided with pointers moved so as to carry the pointers in contact with the pattern cylinder in a direction parallel with its axis-of rotation. The pointers, which acted as electric comductors, were so disposed along the moving chain that at all times one pointer was in contact with the pattern cylinder. The pattern or design was drawn or painted upon the metallic pattern cylinder with a liquid which, when dried, formed an insulator, and as the pointers traversed the surface of the pattern cylinder the electric circuit was closed or open according to the pattern, and the threal guides correspondingly actuated to carry the threads.

The design or pattern in the falbric depends upon the relative positions of two threads, of contrasting shades or color, at the moment the loops or stitches are formed.
The patterns upon the fabric included elaborate designs, such as words, sentences, portraits, and outline views of the Eiffel tower.

The operation of the machine appeared to be perfect within its very low limit of speed.
H. Dégageux, 12 Rue St. Aventin, Troyes (Aube), displayed larga circular knitting machines with spring needlos, for knitting stripes and plush fabrics.
F.-L. Lemaire, 21 Ruedes Coutures, Puteaux (Seine), exhibited a varicty of straight knitting machines in operation. The most remarkable machine in this collection was an automatic fashioning machine of finesauge and containing about thirty needles to the inch. This machine was designed to produce fine fashioned silk goods, and was clamed by the maker to have been of the finest gange of any machine: of that class ever built.
The operation of machines of such fine gauge is said to be feasible when skilled operatives are employed and when silk of suitable quality: and size is used.
One straight knitting machine in this exhibit was provided with a so-called embroidery attachment, which consisted of a set of several extra thread carriers disposed at desired distances apart and operated in such a manner that each carried into a single needle a thread of a material or color different from body of the fabric.

Another knitting machine for producing fashioned socks in stripes was provided with a system of thread carriers and devices automatically controlled for actuating the guide carrying the desired color at the proper time, so as to produce stripes of one or more courses of each color, and at the same time allow the machine to produce fabric at every reciprocation.

An automatic fashioning machine of Cotton's type with some minor improvements was also exhibited.
C. Terrot, of Dijon (Côte-d'Or), France, and Cannstadt, Germany, displayed a line of interesting machines in operation. In thisexhibit
was to be seen aspring needle circular knitting machine of extremely fine gauge, about thirty-four needles to the inch, which. was claimed by the makers to have been the finest gauge machine of its class up to that time constructed.

A large circular Jersey striping machine in this collection contained ingenious features. .

In operating this machine to produce striped fabric, six threads of different colors or shades were employed, and by means of pattern mechanism the desired thread was introduced into the needles alter a suitable number of courses of the next previous color had been finisherl. When a new thread or yarn was to be introduced it was tied to the thread which was ruming to the noodles and the latter thread severed directly back of the knot.

The knot which united the threads was formed by a mechanical knot-tying apparatus which operated while the machine continued to knit, and the knots were tied with such precision that they all appeared upon the back of the fabric very nearly in a vertical line, as the fabric passed downward, from the needles.

If the fabric should be cut longitudinally along this line of knots, no single knot need appear further than about one-fourth of an inch from the edge.

A circular rib knitting machine of fine gauge, about 18 inches in diameter, with two sets of spring needles, was a noticeable object in this exhibit. In this machine was employed a set of horizontal needles arranged barlially much after the mamore of spring needles in a circular machine for knitting plain fabric: and also an additional set of vertically disposed spring' needles cast in " leads" and reciprocated vertically and laterally in the operation of knitting.
M. Grammot and H. Sirodot, of Troyes, France, made an exhibit of plain circular knitting machines provided with spring needles.

Hantz-Nass, of Rechesy (Territory of Belfort). France, hat on exhibition and in operation several straight hand-knitting machines arlapter to knit plain or rib fabric.

Edouard Dubied \& Co., of Couvet (Neuchâtel), Switzerland, had on exhibition several straight knitting machines, some of which were in operation by power while others were designed to be operated by hand.

One of the power rib machines was provided with an electric apparatus for stopping the machine if the thread should break or if it should fail to unwind from the spool or cop with sufficient ease. A provision was also made in the electric apparatus for stopping the operation of the machine when a sufficient number of courses have been finished.

Another rib machine was provided with a Jacquard mechanism designed to produce fancy patterns.
D. Haenens-Gathier, of Gand, Belgitm, exhibited an assortment of straight hand machines.

The Harrison Patent Knitting Machine Company, of Manchester, Engrand, had in operation several hand and power kinitting machines. For the most part their exhibit consisted in flat machines particularly alapted for producing ribgoods. Some of the flat machines were, however, adapted to knit tubular work as well as flat plain and flat rib work.

One machino was provided with a series of extrathead carriers so arranged that each carrier should wind a supplemental thread of a contrasting color or shade around a single needle, at each course, to form longitudinal stripes upon the face of the fabric.

This exhibit contained a small cireular machine for knitting plain seamless socks and stocking's. The machine was provided with a set of inside needles with cams for operating them for producing rib, tops for socks.

The Paget Company, of Loughborough, England, had in operation a straight warp knitting machine, an antomatic fashioning knitting machine for knitting stockings, and a looping or "turningoff" machine.

The warp knifting machine (called also a warp weaver by the builders) contained several features not common to machines of this class. The machine exhibited was a straight machine of 18 gauge, - . !., twelve needles to the inch, and contained 1,008 spring needles. The warp threads wero carried to the needles by means of a seriess of troughs formed from pieces of thin sheet steel of suitable form folded together, instead of the usual form of "guides." This style of thread guide facilitates the process of introducing a new warp, as the threads composing the new warp are clamped into a holder adapted to the purpose before the new beam of warp is placed in position in the machine, after which the warp threads can be introduced simultaneously into their proper guides with great facility by properly manipulating the holder containing them.

By this means the labor of "drawing in" a warp as well as a considerable stoppage of the machine is saved.

The machine was also provided with means for adjusting the length of the stitch to a greater degree than is common in this class of machines, either by hand or automatically.

The greatest length of stitches for which the machine exhibited could be adjusted was seven thirty-seconds of an inch.

A series of hooks attached to an operative bar was employed to assist in forming and controlling the stitches or loops. The máchine was provided with an apparatus for forming a fringe at either or both ends of an article while being knitted.

Garments or portions of garments can, in a degree, be "shaped" upon this machine by means of an automatic mechanism to govern the length of the loops or stitches, gradually increasing or diminishing their length. By increasing the length of the loops the fabric is
increased in width as well as in length, which, within narrow limits, cam be accomplished without materially changing the chanacter of the fatiric. and is feasible to a greater degree in warp knitting than in the ordinary knitting.
Varions acesessories to knitting and other analogoms machinery were exhibited by Émile Brochon, of Troves (Aube): Carom \& Co.
 of Romilly on Seme (Aubr). France: and Tatham \& Ellis, of Ikston. Derbshime Englamd.
The various displays included needles of a variety of forms, sinkers. jank, maillew teeth, narrowing points, loop wheds, and innmorable minuta tempered and polished pieces in common use in this.rlass of machincry.
It is to be regretted that the builders of knitting machinery in the United states did not see fit to make a display, though it seeme prob)ahle that they could have gained little direct benefit had they dome so, as the various Europan buiders appeared to be prepared to supply the demand for the variedies of knitting machinery at the present time in use or recfuired in their respective countries.

II. ART OF KNITTING BY MACHINERY.

In making comparisons of the varied types and forms of knitting machines displayed, with each other and with machines of the same

Fig. 1. - Section of phan knit fabric.
class made in the United States, and also comparing them with similar machinery in common use at the time of the World's Fair at Paris (1578), an outline of the art of knitting will first be given.
A knitted fabric in its simplest form consists of only one thread repeatedly looped, each loop extending through another loop previously formed.

Fig. 1 represents a section of such fabric composed of loops of considerable length for the size of the thread, to illustrate the course of the thread and the relations of the loops to each other.

$$
\text { H. Ex. } 410-\mathrm{VOL} \text { III- } 24
$$

Fabric of this kind is not alike on both sides and is sadid to have a "right" and "wrong" side which are but little alike in appeanance.
In producing such fabric, either by hand knitting or by automatie machinery, each loop is held or supported upon a mede or amalogoms device matil the thread, doubled upon itself, is drawn through said loop, thus forming a new loop which in turn is retained by the needle for future operations, while the old loon), which is "cast off" from the needle, becomes a portion of the fabric.
The art of crocheting is closely allied to that of knitting and tha. fabrics, produced by both processes are in many particulars almost identical.
In șimple crocheting, however, the end of the fabric is finished or "bound off" as the operation of erocheting progressess, and when each loop or set of loops has been completed only one loop is retainch upon the single needle or hook employed, whereas in knitting all of the loops along the entire end of fabric in process are retained upon one or many needles or equivalent devices.
The art of crocheting, as the name implies, consists in forming fablices by the use of a hook or hookied needle.
In crocheting by hand much skill is requited to properly manipulate the needle to draw and form the loops as the hook of the neellh. is liable to engage a loop while passing through it, and, moreover, it is necessary to retain at least a single lop upon the needle at all times.
In ordinary simple crocheting by ham mothing is needed to retain the last scrices of loops while the operation of crocheting progressers. for the reason that each loop, or set of loops is at once finished and bound to the fabric and becomes a completed jortion thereof.
Knitted or interlooped fabrics in their normal comdition inherently possess much clasticity, longitudinally and laterally, as well a diagomally, and in this respect there is a marked difference bet wern knitted and woven fabrics.
Simple woven fabrics are essentially composed of a seriesof'thradr. called the "warp," extending lengthwise of the web of cloth, sul), stantially parallel to each other. together with a "weft" or " filling " thread repeatedly crossing the wapp threads at right anglespassing over one warp thead, under a second, over a third, and in lik: manner across the whole number of warp threads in one direction, and alternating in a similat manner in the opposite direction; as illustrater in Fig. d. 2.
Woven fabrics possess little elasticity either longitudinally or laterally excepting that which is due to the construction of the threads or to the material of which they are composed, though diagonally, or hias, a loosely woven fabric can be considerably clongated, and possesses to some extent the property of renewing its original form.

Knitted fabric composed of interlooped thread together with a
weft thread incorporated into the boely of the fabric, but not interlooped, is a kind of combination of a knitted and woven fabric pos-

Fig. 2.-Section of plain woven fabric.
sessing little of the elasticity of the former though much resembling it in general appearance. One variety of such fabric is illustrated by Fig. 3.

Figi.3. ..section of weft-thread knit fabric.
Fig. \pm illustrates a fabric in which the weft threads are occasionally interlooped with the loops forming the body of the fabric. Such fabric, like plain knitted fabric, is not alike on both sides.

Fig. 4.-Section of knit fabric with weft thread interlooped (face side).

Fig. it represents the back or wrong side of the fabric illustrated in Fig. 4.

Fiti, is.-Section of knit fabric with weft thread interlooned (wrong side).
Fig. 6 represents a section of lonsely knitted wapp fabrio whirh is compesed of omly warp therals ath hoing interlopped with itneighbor. The process of prohucing such fabric will he briefly explated in the deseription of wapp knitting-machines.

Fif. fi.-Section of warp-knit fabric.

Ribbed fabric known as "one and one rib," called also" Derby rib" after the locality in England where it first became popular. is (moused of loops formed alternately on either side of the fabric. amd, unlike plain knitted fabric, has substantially the same appearante on either side. "Cardigan rib" fabric is much thicker and wide than "Derby rib" when formed from thread or yarn of the same size, though much resembling it in general appearance, and is also alike on both sides.

Fig. f illustrates the disposition of the threads in a section of this fabric represented as loose or open to better illustrate it.

Half Cardigan rib fabric, a kind of combination of Derby rib and Cardigan rib, is somewhat thicker and wider than the former while it is less so than Cardigan rib. Advantage is taken of the various properties of kited fabrics to form shaped garments, various ma-

Fila. '.-. Section of ('ardigath rib).
chines having been devised to form different portions of a garment with the required stitches or fabrics to effect the desired changes in width and thickness.

Various other effects are produced by numerous modifications and complications of knitting, but the fundamental principle of interlooping is always present.

The most common departures from the simple process will be again briefly mentioned in connection with the descriptions of various machines designed for producing such results automatically.
In the well-known process of ordinary hand knitting straight needles are employed, and these are usually formed from straight. plain pieces of round steel wire, tempered and polished and of suithe size, the character of the fabric depending largely upon size of the needles relatively to the size of thread or yarn employed, as the loons or stitches of each course are retained upon these straight ned les until they are cast off in forming a subsequent course.

The operations of hand knitting and crocheting have been imitated to a considerable degree in knitting machinery, and even in the moderr improved machines much similarity still exists.

The needles usually employed for looping the thread, in knitting machines, bear a marked resemblance to the crochet hook as used by hand, and the operation of forming the loops or stitches is practically the same as in erocheting and in hand knitting, though knitting machines possess a separate needle for each loop or stitch of the . entire series, but each needle also performs the function of retaining the loops in a manner not far removed from the corresponding fuaction of the straight neefles used in hand knitting.
In one varioty of knitting-machine needles the hook is extembed to a considerablo distance and is sufficiently delicate to permit of lowing sprung or closed against the body or "shank" of the needle to prevent it from engaging the loop as it passes, thus allowing the ioop upon the needle to be shed off as a new loop is drawn through it. Needles of this class are termed "spring" needles, but are also known as "barbed," or as "bearded" needles, and are illustrated in Fig. s.

Fig. 8.-Spring needle.
Such needles were employed by William Lee, near Nottingham, England, in the year 1589, in the first knitting machine ever comstructed, and the needles of this type in common use at the present time are in all essential respects substantially identical.

Another varioty of nedles much used in machines is provided with a hinged or swinging lateh which protects the hook and prirmits the loop upon the needle to be shed off as a new loop is heing formed. Needles of this variety are known as "antomatic-latel." needles, or simply "latch" needles, and aro illustrated in Fig. !.

Fig. !. - Latch meedie.
The "latch" needle is believed to have been invented in the United States, and has proved to be an important factor in the knitting industry.

Fig. 10 is a copy of the drawings forming a portion of the specification of a United States patent to J. Hilbert, of Providence, Rhorle Island, dated January 9, 18t9, and well illustrates the action of this variety of needles.

The, levelopment of knitting machinery in which latch needles are employed has been aceomplished almost entirely in the United States, though such machinery has to a considerable degree been imitated in other countries.

Other needles have occasionally been employed in knitting mat chines with some success, but are now seldom seen.

Fig. 11 illustrates a variety of knitting machine in which the oleration closely resembles tho process of hand knitting.
Kuitting needles are not employed in this machine, the loops being individually retained upen the separate peints of pins. The loops are formed by a special looping device, and when anew loon is formed it is placed upon one of the points in lien of the old or previous loop, which is cast off.
Knitting machinery may naturally be divided into two principal classes, vi\%, straight and circular; these two prine ipal chasses, how-

Firi. 10. ... Showing the artion of the lateh nemde.
aver, haveso many elements in common that they can not be entirely separated in considering them.

The function of all such machines is to produce knitted fabrice which, as has been stated, is essentially a looped fabric formen by repeatedly interlooping one or more threads together.

The two principal classes of needles, viz, automatic latel needles and spring needles, are employed in either the straight or cireular machines, and in some instances the two kinds of needles are used fointly in the same machine.

For many years knitting machines were operated exchusively by hand, and the art of operating hand machines became a trade.

Straight machines were used exclusively up to a comparatively re. cent date, and the art of hand-machine knitting was carried to such a degree of perfection that, notwithstanding the marvelous im. provements in machinery and its adaptation to be operated by power. hand-machine knitting is yet in vogue as an auxiliary in many large manufactories, while thousands of hand machines are in use among the smaller manufacturers and in families.
It is worthy of note that the hand machines in common use at the: present time are as a rule of modern design and construction, and little resemble the machines in general use two decades ago.
In designing machines to operate hy power the hand machine operations were first imitated quite closely, commencing with the simpler

Fic. 11.-htraight k.ifting machine with loop retaining points.
and easier movements. One by one the more complicated operations were automatically produced, when the machines began to assume improved forms, departing widely from the earlier knitting machines, which were constructed with heary wooden frames, from which fact probably originated the term "knitting frames" so often applied to this day to knitting machinery, even though the similarity is in many cases difficult to detect.
Spring needles were for a long time employed almost or quite exclusively in knitting machines, and perhaps still predominate, being adapted to produce fabric from finer yarn or thread, at the same time being less expensive and possessing other advantages, particularly in machines of fine gauge.

In the earlier hand machines the thread was carried over the needle by hand, but, later, mechanical thread carriers came into use,
and at a comparatively recent date machines have been constructed with several thread-arriers, bearing threads of varying shades or (ohors, and aded upon by atomatie mechanism to carre the desired threads at the proper time to produce stripes in colors laterally aross ther falmic.

In staight mathines in which spring needles are employed the nerelles are usually secured to a har, which in some varieties of mat chines remains stationary in the machine, while in other forms of madines the needle har is reciprocated and correspondingly carries the needles to perform a part of the required operations of knitting.

In mathanes employing lateh needles the latter are, with rare exerptions, operatively supported in grooves and reciprocated sucerssively by means of cams to form the loops constituting the fabric. This phan has offored almost mimited opportunites to inventors, and numberless contrivances have been originated to facilitate the operation of knitting well known fabries and so produce varieties and effects before manown.

Ribknitting machines contain two separate sets of needless, operating to draw loops or stitches in opposite directions; producing a fabric of greater thickness and elasticity which was used for many years principally for elastic cuffs dpon gaments; but in recent years ribbed fabrics have been employed in a wide range.

One variety of straight latch-needle knitting machines is provided with two seprarate sets of needles supported in separate needle beds at an angle with eachother in one phane and with their edges adjacent and parallel, with cams for actuating the neodles of both sets together to form ribbed fabric: with slight changes or adjustments these are adapted for knitting flat plain fabric by operating one set of needles and knitting alternately in opposite directions; or the same machine may with equally simple changes be adjusted to form phain tubular fabric by alternately knitting, in a given direction, with cone set of needles supported in one of the needle beds, and in the "川mosite direction with the needles in the adjacent or companion nowlle bed.

Fig. 12 is an illustration of a hame machine of this variety.
Almost any knitted article, plain or rib. flat or tubular, straight or fashioned, and of any size within the limits of the particular machine used, may be mate upon machines of this kind.

An immense number of machines of this type are in use, and probahly a larger number of improvements have been applied to this species of machines than to any other, and an almost infinite variety of effects can now boobtained hy the employment of the multifarious monlifications and attachments now in common use.

While the machine illustrated in Fig. 12 is designed to be operated by hand, other forms of machines of this class adapted to be operated by power have come into general use.

Fig. 13 represents a power machine of this class.
Jacquard or analogous mechanism has been applied to knitting machines of this class to control the action of the needles wherehe certain needles may be thrown into or out of action at premeditated times. Upon some of this class of machines complete stockings ol th. "seamless" variety may be mado. In some of those machines the. two opposite sets of needles act jointly once for the first course, aml then the action of the nedles included in one set is discontinumb: the needles of the companion set are then operated. but in wradually deerasing numbers for a time, and afterward in cradually in-

Fin. 1:-The Lamh tintling mathint.
creasing numbers until all are again in use. This operation forms the tor, and then the needles of both sets are alternately bromght intn action to knit tubular fabric which forms the foot of the stocking.

At the proper time the operation of one set of needles is again tiscontinued, while the companion set at the opposite side of the machine continues to operate to knit the heel of the stocking in tle sume manner as the toe was formed.

When the heel is finished the machine again foroceeds to knit tubular work, as before, for the leg of the stocking.

In some machines a supplemental thread is introluced at the proper time to increase the thickness and firmness of the heel, and the stitches are sometimes gradually lengthed while knitting the leg of the stocking to somewhat enlarge or "shape" it.

These operations are entirely automatic, and the stocking is droped from the machine complete with the exception of the top, which in the better grades requires some sort of finish.

Fig. 14 represents a machine of this type provided with a speries , H. Jaequard or pattorn mechanism for partially eomtrolling the act ion of the needles.

Fig. 13.--Lamb power Cadigan jacket knitting machine.
The operation of knitting "seamless" stockings will again be mentioned in connection with circular-knitting machines.

In operating knitting machinery it is common to form wide fabric, to be afterwards cut, and formed into garments by sewing the various
pieces together; but the most expensive articles are "fashioned" in the operation of knitting, by transferring loops from needles at the. colge of the fabric to other needles beyond and outside of the fabri. to "widen," and to other needles nearer the middle of the fabric to

"narrow," in which cases the number of needles actually employed in knitting varies according to the width of the fabric.

Fahric knitted in this manner though varying in width retains its characteristic thickness and elasticity.

Fig. 1i represents a piece of narrowed or fashioned knitted fal)ric showing wales or rows of stitches merged together along the lines of " narrowing " of " fashioning."

The successive operations of namowing are illustrated in Figs. 15, 1i. $1 \mathrm{~s}, 19$, and $\%$.

Fic. 15.
Fig. : 1 shows two neenle beds or supports of a knitting machine. showing a portion of one set of needles in positions to take the threat or yarn, and other needles in position to receive the tramsferring points.

In Fig 16, the latch needles are represented as each retaining a low and each extending ontward from its support to the same distimce. The transferring points, supported in a holder, are phaced upon the needles and extend into small recesses in the needles near their hooks. The needles, together with the narrowing points, are caused to recerle collectively from the positions shown in Fig. 16, 10 those shown in Fig. 17, when the loops before retained hy the needles are now held upon the narrowing points, which are then
raised to the positions shown in Fig. 18, afterward being moved laterally one space to positions directly over the needles as shown in Fi . 1!. The needles we then collectively caused to move forward on outward in their supports, when their hooks pass through the loops held over and in front of them by the narrowing points, which ar. afterwards carried away from the needles, when the stitches are r-tained by the needles-as shown in Fig. 20, one stitch being upon each needle excepting the outside one, from which the loop was removed and was not returned to it; but it will be observed that there are two loops upon one of the needles which, when a subsequent course iJnit, will cause a double loop at that point in the fabric which hat bech narrowed one "needle" as it is technically called.

Fig. :i.
Several courses are afterwards knit without employing the outsidn needle and the operation of narowing is again performed, and in like maner the fabric is "fashioned" to the desired width.

The operation of widening is analogous to narowing, the transferred loops being carpied in the opposite direction and instead of leaving two loops upon one of the needles a nedle is left without a loop and a hole would appear in the fabric at that point if a loop previonsly made were not "picked up" and put on to the needle.

These operations of narrowing and widening may be performed by hand and are so done to a considerable extent, but they are all performed with ease and precision, even to picking up a loop and placing it upon the unoccupiod needle, by means of atomatic devices contained in modern fashioning machines.

The operation of transferring the loops in fashioning is substantially the same upon spring needles as upon lateh needles.

Figs. 22. 23. and of illustrate machines provided with automatic fashioning mechanism.

Fif. W3.-The Aiken full-fashoned footrer The Abel Marhine Company.

Fla. :4.-"Saxony Machine." (Full fashioning.) (The Abel Machine Company.)

Fig. 25 is an illustration of a knitting machine with two banks of latel needles and provided with automatic fashioning apparatus.

A high degree of excellence has been attained in the design and construction of knitting machinery for producing fashioned articles.

Fig. 25.-Straight rib-knitting machine with fashioning mechanism.
Some of the fashioning machines are of magnificent proportions and in many instances are adapted for producing automatically a large number of like articles at one and the same time. Fig. 26 is an illustration of such a machine.

In machines of this variety many threads are employed, and the fashioning as well as the knitting progresses simultaneously at many points along the machine. To the casual observer such machinery appears intricate and complicated, but it is worthy of note that operations apparently so delicate, and results so difficult to acquire, yet so desirable, are now attained with facility and economy upon modern machines of this class.

Warp knitting is, with rare exceptions, done upon straight machines, which are commonly called warp frames, and in the majority of such machines spring needles are employed.

In warp-knitting machines the fabric is formed from a number of parallel threads, each of which is interlooped with an adjacent thread by means of a needle for each thread and an extra needle for the whole number of threads.

Ordinarily, each thread of the warp is interlooped or enchained with the adjacent thread alternately at each side, forming a series of chains, each loop of which is interlooped with its immediate

Fig. 27.-The Paget warp-knitting machine. (Front view.)
neighbor at either side, excepting at the edge or selvage, where the outside thread is only enchained and interlooped with the contiguous thread on one side.

In fabric made upon warp-knitting machines the enchained threads extend longitudinally with the fabric in a zigzag manner, instead of laterally, as in fabric knit in the ordinary manner.

Figs. 27 and 28 illustrate the Paget warp-knitting machine, which
was exhibited in operation at the Universal Exposition at Paris in 1889 and has been described briefly herein above.
Machines of this class are usually massive, and are sometimes 18 or 20 feet in length, containing in some instances over 4,000 needles.
Two separate sets of warp threads are often employed in such machines, which are then provided with two independent thread-guide bars to carry the threads to the needles.

Fic. 28.-The Paget warp-knitting machine. (Rear view.)
A great variety of effects may be produced by numerous modifications of the simple warp frame, and many machines are now in use, particularly in England.
In the ordinary method of plain knitting a thread is carried to each needle of a series, and when more than one thread is employed each thread is carried to all the needles of the series, and as a con-
sequence the loops forming the fabric are arranged in straight lines, instead of zigzag lines, lengthwise of the fabric.
In lengthening the loons, when arranged in a zigzag maner, the width of the fabric will be increased to a greater proportionate degree than when loops arranged in straight lines are correspondingly lengthened. For this reason the method of "shaping," by gradually increasing or diminishing the length of the loops or stitches, appears to be open to less objection in warp knitting than in ordinary plain knitting.

Fig. :3...Spring-npedle circular knitting machine. (J. S. Crane \& Co.)
Warp knitting is sometimes called warp weaving, but it is not clear upon what basis the appellation is founded.

Circular knitting machines, although of later origin than straight machines, are yet of no less importance.
In circular knitting machines the operation of knitting is generally continuous in one direction, though there are important exceptions, which will be noted. The more simple forms are adapted to produce plain fabric, and contain a single set of needles arranged in a circle vertically or radially, supported by a ring or cylinder.

When spring needles are employed, as the needles are not generally reciprocated. but remain stationary, or revolve collectively. various devices are employed to carry the threads iinto the hooks of the needles, to change the positions of the loops upon the needles in the process of forming loops, and to shed off the low ps when new

Fia. 30.-Circular knitting machine. (C. Terrot's.)
Fig. 29 is an illustration of a spring-needle circular machine for knitting plain fabric. It will be observed that this is a double machine and, in fact, is composed of two separate sets of knitting devices upon a single table.
This machine represents a type quite common in the United States and in England, but seldom seen upon the continent. Machines of
this class are used in the manufacture of plain underwear, one of the most important branches of the knitting industry.

Fig. 30 represents a type of machines largely used on the Continent for knitting plain fabric.

Knitted plush fabric is largely made upon machines of the type represented in Figs. 29 and 30 .

Fig. 31.--Circular rib machine with spring needles. (C'. Terrot's.)
For producing such fabric an extra thread, usually of larger size and different material from that used in knitting the body of the fabric, is introduced in such a manner as to be knitted into the body
of the fabric at occasional points suitably distant, thus forming myriads of loops from this supplemental thread upon the back of the fabric.

These loops are afterwards napped or brushed until they are destroyed, and the fiber of the material from which the loops were made then forms a "pile," much resembling woven plush.

Machines for knitting rib fabric are provided with an additional set of needles supporter by a separate ring or cylinder arranged at an angle with the needles of the principal set.

Latch needles are almost universally employed in circular rib knitting machines, though spring needles have been used successfully. Fig. 31 illustrates a rib machine provided with two sets of spring needles and is designed for the production of fabric of the finer grauges.

Fig. Be. -The Hepworth knitting machiue.
When latch needles are used in circular machines they are usually supported in grooves and adapted to reciprocate, practically as in straight machines, and in one type of machines the grooved support in which the needles are held remains stationary, while the needles are reciprocated by cams carried by a revolving ring or cylinder; but in another type the needle supports, together with the needles, revolve, and at the same time the needles also have a reciprocating motion imparted to them as they are carried past stationary cams supported upon a suitable ring or cylinder.

While some of the smaller varieties of machines are designed to knit with one thread only, the majority of circular machines are adapted to employ several threads. and in some instances the number employed is great. reaching as high as sixty or above. Advantage is taken of such conditions to produce fabric in stripes, by employing threads of varying colors and shades to form the desirable combinations within the limits of the number of threads used.

Fig. 33.-The Nye \& Tredick circular rib-cuff machine.
Fig. 32 represents a circular knitting machine employing a large number of threads in the production of knit fabric in stripes of many colors.

Small circular machines with two sets of needles, adapted to knit rib fabric, are extensively employed in making elastic cuffs and rib tops for socks. These machines are provided with automatic devices
to form a welt or "binding off," which is brought about ly throwing one set of needles out of operation while retaining their loops and knitting a small number of courses with the other set of needles as though to produce plain fitbric, afterwards continuing the rib knitting as before. Various modifications of this operation are in use in the different machines.
Similar machines with either one or more sets of needles are extensively employed to produce respectively plain and ribbed tubular fathic for use in making the less expensive grates of hose, stockings, and socks.
Fig. 33 is a representation of one type of machine of this class.
Modified forms of machines of this class are used in the manufacture of leggins and similar articles. Such machines are provided with automatie devices for changing the character of the knitting. producing Cardigan rib, half Cardigan rib, or Derby ril) at the proper time to form or shape the knitted article as desired.
Fig. 34 represents a type of automatic circular rib-knitting machinery in which the needle supports of both sets of needles, together with the eloth-winding apparatus, revolve, while the spools and the needle-reciprocating cams remain stationary.
Fig. 35 represents a type of automatie circular rib knitting machinery in which the supports for the spowls and needle-operating cams revolve, while the needles and fabric-winding apparatus do not.
Machines of the types represented by the two preceding figures are constructed to perform the operations of knitting simultaneonsly with many threads at several points around the circle of needles, and antomatic devices are introduced to automatically modify the action of the needles, or certain of them, to produce various kinds of fabric and to control the length of the loops.
In this way such machines will produce Derhy rib, half Cardigan rib, or Cardigan rib, and automatically change from one variety to another while in operation. By a suitable arrangement of the needles many styles of rib fabric, such as "two and one," "two and two," ete., may be made. By "two and one" rib is meant that two loops are formed in one direction or upon one side of the fabric and one loop upon the other side, and in like manner successively as the kinitting progresses.
The combinations thus attainable are practically unlimited, and the useful effects are still further multiplied when threads of various bues or materials are employed. By the several means alluded to the character of the fabric is greatly altered in appearance as well as in width, and in this manner by the selection of suitable combinations the fabric is shaped to a very dasirable degree to form entiregarments, or portions thereof, as desired. Machinery of this class, though of recent development, has instituted a new and important. branch of the knitting industry in the United States.

Fig. 34. -Nye S Tredick automatic circular rib-knitting machine.

Fig. 35.-The Heginbothom automatic circular rib-knitting machine.

A great number of small circular machines have formerly been used in families for knitting "seamless" socks, but in later years such machines have also been used extensively by manufacturers, many hundreds being sometimes operated by a single management.

Fig. 36 is an illustration of this type of machines.

Fig. 30.-The Tuttle kuitting machine. (The Lamb Co.)
The machine illustrated in Fig. 36 is provided with an extra needle cylinder, which is used when knitting rib fabric but can be moved out of operative position (as shown in the engraving) when knitting plain fabric.

Seamless socks with rib tops are marle upon machines of this type, and great numbers of similar machines are now in use in factories as well as in families upon such work.

In factories, howerer, it is more common to first knit the rib tops upon a machine designed for the purpose, and afterwards "run" them onto the needles of a machine of the same type ats shown in Fig. 3:, but one not provided with the extra set of needles for knitting rib work, as they would not then be needed.
In "rumning" on the rib topss or cuffs the loops at one end are individually placed upon the needles in the machine, which then proceeds to knit plain work, and no blemish appears at the juncture of the rib and plain fabric.

The" seamless "sock or stocking was invented in the United States; and though for many years this invention made comparatively slow progress in gaining a market, this variety has now become a standard article both in the United States and in Euroje, and the volume of its production and trade has reached important proportions.

The operation of knitting this variety of stocking upon circular machines is in general terms the same as that deseribed in connection with straight machines, although it is customary to commence the knitting at the top instead of at the toe, and to leave an opening across one side of the toe to be afterwards closed by hand or by means of suitable machinery arlapted for the purpose.

In knitting seamless socks or stockings upon circular machines, the required portions of the machines are caused to rotate continuously while knitting the tubular portions forming the leg and foot of the stocking. When forming the heel, the action of a portion of the needles (approximating one-half of the whole number) is discontinued, and the knitting is continued alternately in oppositedirections while the number of needles in operation is gradually decreased until the narrowest part is reached; then the number of needles acting is gradually increased until the heel is finished, after which the whole number of needles in the machine is brought into action again and rotary knitting is continued until the tubular portion of the foot is finished, when the toe is formed in the same general manner as the heel was made. While the heel or toe is being knit, the loops upon the inactive needles are retained by them until they are again brought into opeiation.

This method is a species of fashioning by first " narrowing," not by transferring loops, but by employing a diminishing series of needles, followed by "widening" by employing an increasing series of needles.

The sock can be made complete by commencing at the toe instead of the top, but the operation is more laborious when accomplished upon circular machines if the opening at the toe is closed or knit together upon the machine.

Fig. 37 is an illustration of a portion of a seamless sock, showing the form of the heel and toe.

Fig. 38 illustrates an automatic circular machine for knitting seamless hosiery.

Machines of this type are provided with suitable mechanism for knitting continuously in one direction, or alternately in either direction, and devices for throwing certain of the needles out of and into action at the proper times.

As it is desirable to make the heel of a sock heavier than other portions, an extra thread is introduced, which somotimes necessitates a lengthening of the loops, which changes have a tendency to increase the size of the heel, which otherwise would naturally be somewhat smaller than desirable.

Fiti. sí,-Seamless stocking.
All of these apparently intricate operations are accomplished automatically; and the stocking, if a plain one, is thus entirely made in one machine, with the exception of an opening at the toe, which is afterwards seamed together loop by loop.

When it is desired to produce socks with cuffs or rib tops upon such machines the ribbed pieces are first knit upon a separate machine, and the stitches at one end of these ribbed pieces are placed upon the needles in the machines before commencing to knit the socks.

Fig. 39 is a representation of one form of seaming or looping machine.

Machines of this class are provided with points upon which are placed the loops at the ends of two separate pieces or at both ends of a single piece to be sewed together loop by loop by means of looping or sewing devices, in the machine, which operate to carry a thread through each pair of loops, which are held or carried into proper posi-

Fig. 38.-The National Automatic Knitter for seamless hosiery. (Walter P. McClure.)
H. Ex. 410-vol ili-26
tion by the loop-supportmg points. The seam thus produced is almost invisible, and this class of machinery is in general use.

Weft thread knitting machines contain devices for introducing a supplemental thread into the fabric between the loops alternately upon either side, without being interlooped either upon itself or with the loops forming the main body of the fabric, or interlooped only at occasional points. By this means the fabric is reënforced or strengthened and its elasticity greatly reduced.

Fig. 39.-The Lamb Machine Company's looper.
In knitting machines a certain tension is required upon the fabric or upon the loops on the needles. In small hand machines the required tension is commonly produced by means of weights, though in many cases the fabric is grasped by the hand of the operator and the required tension given by muscular effort. Mechanical devices are, however, generally employed in power machines to accomplish
this important function, and the jlan in most common use is to pass the fabric between rolls which are driven either intermittently or continuously at the proper speed to exert the necessary strain upon the fabric. In some machines, however, each stitch is individually acted upon by a holder or tension device, in which cases no stress is needed upon the fabric.
During the last ten years much progress has been made in the improvement of nearly all kinds of knitting machinery in common ase, and along some lines the improvement has been very marked. Types of machines which had already reached a high degree of perfection at that time have since been improved in details and construction.
Great advances have been made in rib machinery, both straight and circular, for making "shaped" fabric and other tasteful and useful products. "Seamless" socks and stockings have increased in favor as they have been improved in style and decreased in cost, and the machinery for producing such goods has met with notable changes and improvements.
The knitting industry has been emabled to reach its present high state of excellence, not entirely through improvements in the art itself, but, in no small degree, through the progress made in the other arts upon which knitting is to some extent dependent.

Improvements in the construction of knitting machinery, in carding, in spinning, in dyeing, in the manufacture of worsted, cotton, and silk adapted to knitting purposes, in the various accessory machines, such as sewing machines and machines for finishing and ornamenting knit goods-in all of these and in many other lines, the improvements which have followed in rapid succession have lent their aid to accelerate the advancement of this, one of the youngest of the arts.
The use of improved machinery has greatly facilitated the production of knit goods, and in consequen e of the attractive appearance, the increased utility, and the decreased cost of such goods, the volume of production and trade have reached stupendous proportions, raising this branch to an important position among the foremost industries of the world.

III. EMBROIDERING MACHINES.

Class 55 contained embroidery machines, a number of which were exhibited in operation.
This class of machinery may naturally be divided into two principal varieties or systems; viz, the short thread, and the continuous thread.
The short-thread machines usually contain a large number of needles bluntly pointel at either end, with an eye in the middle, to which a short thread is secured, the threads for each needle being of the same length. Each needle is held by a pair of automatically
acting fingers supported upon a straight bar forming a portion of a carriage mounted upon small wheels and adapted to travel to and fro laterally upon level tracks. A second carriage of the same sort, provided with the same kind of mechanical fingers, travels upon similar tracks upon the same level in the machine, upon the opposite side.

A frame adapted to support a piece of fabric under tension in a vertical position is suspended in the mächine between the two traveling carriages. The frame supporting the fabric is nicely balanced and under the control of a pantograph in any direction edgewise, but is prevented from moving laterally, in a direction at right angles with the surface of the fabric, by suitable means.

The needles project somewhat more than half their length towards the fabric as they are held by the mechanical fingers.
In operating such machines one of the carriages is brought near to the frame, when the needles pierce the fabric and project upon the opposite side. The mechanical fingers mounted upon the other carriage are at this time open, or somewhat separated, and in such a position that the point of each needle passes between two of the fingers, which then close and grasp the needles; the carriage bearing the fingers is now caused to travel the requisite distance away from the fabric, but not, however, until the fingers at the opposite side of the fabric have opened to allow the needles to be drawn through the fabric, each carrying its thread. The fabric is then moved a short distance in the proper direction and the carriage bearing the needles is again brought near the fabric at another point. when the needles pierce the fabric and are grasped by the mechanical fingers waiting at the opposite side. This carriage, bearing the needles, then retires to a distance equal to the length of the thread, drawing each thread with sufficient tension to lay the thread evenly upon the fabric. The threads are in this manner passed through the fabric alternately in either direction. Each needle works a separate figure, and all the figures are the same in design but sometimes vary in color.
The pantograph is provided with a pointer which is held by the hand of the operator at the proper point upon a diagram each time the needles are passed through the fabric.
The diagram is usually made six times the width and length of the figure to be worked upon the fabric, in order that small errors in the location of the pointer of the pantograph will not be noticeable in the figure upon the fabric.
The operator holds the pointer of the pantograph against the diagram with one hand and operates the carriages with the other hand by means of a crank. It will be observed that the carriages travel a shorter distance at each successive operation, as some of the thread is taken up to form the design upon the fabric.
Short-thread multiple-needle embroidery machines were exhibited
by the following Swiss houses, viz: Beninger Brothers, of Uwgl (St. Gall) ; Otto Tritscheller, of Arbon (Thurgovie); Wiesendanger \& Co., of Bruggen, near St. Gall.
All of the machines were well constructed and contained recent improvements, but the machine exhibited by Wiesendanger \& Co. was particularly notable.
This machine was provided with an automatic apparatus for operating the carriages, and contained devices for governing the length of travel of the carriage and the tension upon the threads. It was claimed that by means of such automatic mechanism much larger machines could be employed and the speed somewhat increased, while the labor of the operator is considerably decreased.
Continuous-thread embroidery machines are more closely allied to ordinary sewing machines, and some varieties are but little removed, while other varieties, employing many needles, more closely resemble the short-thread machines in form and mode of operation. Contin-uous-thread embroidery machines usually operate to form stitches with two threads, one of which is carried by an eye-pointed needle while the other is carried in a shuttle. In some varieties of contin-uous-thread machines the fabric is automatically carried to and fro laterally and longitudinally, while in other machines the sewing apparatus is automatically carried in either direction laterally in relation to the fabric, while the latter is slowly advanced, either continuously or intermittently.
The embroidery machines more closely related to ordinary sewing machines were classified with the latter in the official catalogue of the Exposition.
F. Saurer \& Son, of Arbon, Switzerland, exhibited several machines in operation. These machines were modeled after the style of the short-thread machines, but operated with two continuous threads.
Some of the machines in this collection were provided with pattern cams for automatically controlling the position of the fabric while the needles and shuttles operated to work the designs.

This house also exhibited an automatic needle-threading machine, designed expressly to thread the needles used in short-thread embroidery machines.

The thread, which was wound upon a spool, was grasped by a hook which passed through the eye of the needle and drew the thread back through the eye, when a knot was formed automatically and the thread severed at a suitable distance from the needle. Another needle was then automatically brought into position and held while the hook again passed through its eye, to draw the thread through as before. It was claimed that this machine would thread 30,000 needles per day of ten hours.
Embroidery machines of the short-thread type, although now used quite extensively in the United States, are for the most part, if not entirely, imported from Switzerland.

SPECIAL REPORT
 (IN
 BRICK AND TLLES,
 ANI

MACHINERY FOR THEIR MANUFACTURE. CLASS 57.

BY
H. D. WOODS, C. E.

TABLE OF CONTENTS.

Page.

1. Different forms of tiles 411
2. Chimney-flue tiles. 413
3. Grinding and mixing mills 414
4. Hand presses. 414
i. Small power presses. 418
5. Tile presses with revolving mold drums 419
6. Triple-pressure tile presses. 421
7. Revolving-table brick presses 423
8. Continuous foreing machines for solid and hollow brick 423
9. Vertical forcing machines for hollow brick and drain pipes 430
10. Small drain-pipe machines 431

Pidge liles.

(ildied irenn serste firume inserted in tiliner.

Glazed tile . Hooded tile.

SPECIAL REPORT ON BRICK AND TILES MACHINERY.

By H. D. WOODS, C. E.

(1) There are a large number of exhibits of both bricks and tiles of all kinds, especially in the French sections; there are, however, but few exhibitors of machinery for the manufacture of these articles or the preparation of the clay used in their manufacture.

The tile and brick-making machinery is for the most part located in Machinery Hall, and in the French section. Most of the machines are of the ordinary type, and have been in use for some years. Improvements have been made in some of the working parts, to diminish the amount of power necessary to run the machines, and in the presses new combinations have been introduced for giving the pressure by repeated action instead of by one only, so as to allow the air to escape and to obtain a more homogeneous product.

The use of hollow brick for masonry work has been much extended, especially in France. The same may be said of tiles for roof covering. In fact, all over the Continent the use of tile roofs is very prevalent, and as a rule they give good satisfaction, both in warm and cold regions. But where there are sudden changes of temperature a better class of tile must be used than in warm, dry climetes. The improvements in the mode of preparing the clay and pressing the tiles have had perhaps as much to do with their increased use as have the improvements in the shape of the tiles themselves. In many regions, usually in rural districts where the manufacture is carried on, ordinary clay, only slightly moistened, is worked up and pressed into tiles. The product thus obtained contains many air spaces, and in cold weather the water that the tile absorbs caluses an exfoliation of the surfaces which soon destroys them completely.

For first-class tiles grood materials must be selected and well mixed. It is seldom that suitable clay can be found, clay that does not need dosing with sand or other ingredients in order to form a grood material for tiles. The mixtures, besides being carefully measured out, should be thoroughly ground together with plenty of water. Of course this addition of water causes the clay tile or brick to air dry
more slowly, and more heat is required for baking, as there is more steam produced; but the product obtained is much more compact and homogeneous, and being less porous, is loss affected by atmospheric changes. If well made the tiles will last for yours on a roof of sufficient pitch. They form a good protection agrainst hoat, require less woight of framing than slate, and have a picturesque appearance. For sheds, storehouses, and similar structures, all that is needed to sustain them is a light frame with slats to which the tiles are hung. and if exposed to high winds they can be made fast by nailing from beneath. To obtain tighter roofs a plain boarding is laid under the tiles. If all dampness is to be kept out, tar paper or roofing felt may be laid on the boarding before the cleats for holding the tiles are nailed on. For the better class of dwellings there may be a coat of plastering put on the under side of the boarding, or if the tilos are laid on an iron frame roof the spaces between the rafters may be filled with concrete or plaster and the tiles put outside. Special forms of tiles are used for the ridge and for the gable ends and eaves of the roof, so as to keop the wind from starting up the first courses.

The simplest, and perhaps oldest form of tiles was that of slates or shingles, simply plain slabs of clay burnt in kilns or furnaces. They were held to the roof frame or boarding either by nails passing through perforations prepared for them, as with slates, or olse by means of a projection on the under side, which caught on cleats set at regular intervals corresponding to each row of tiles. The projections frequently have a hole by which the tile is made fast, either by a nail driven into the cleat or a wire twisted around it.

Later the Dutch form of tile, still used somewhat in that country, had an extended use. These are co-shape in section, the sides lapping over each other and sometimes plastered together, the different rows lapping on like slates, and the tiles thus forming a series of gutters down the slope of the roof for rain water.

But ins the manufacture of tilos improved, apparatus was designed for stamping out the clay so that a series of grooves of different forms might be made, according to the judgment and taste of the designer, and the tiles were then made with joints which interlocked both laterally and on the rake of the roof. This form of tile is the one most used at the present time. Some tiles have a more or less perfect lock joint; having one or more ribs fitting into corresponding grooves near the lateral edges of the adjacent tiles, while the top and bottom joints are made in a similar way, and the rows set so as to make the lateral joints alternate. It is in order to cover the joint at the intersection of the lateral and the top and bottom joints that the variously shaped ridges are made, while these also add an ornamental feature.

Where it is desired to have light let in through the roof, either pressed-glass tiles are used, or clay tiles so formed that a pane of

Panis exposition or 1889-vol. 3.

> liororiu!, lile.

glass can be inserted, or in some cases a certain number of tiles are omitted and a special metal frame for containing a sash is provided, the edge of the frame being shaped so as to form a lock joint with the tiles. When simply vent holes are required, a special form of tile, having a semicircular, hood-shaped opening, is introduced in places, and these can be screened if need be.

All these tiles are held by projections on the bottom, which hook onto cleats, and may be nailed or wired to them.
(See Pl. I, showing different forms of pressed tiles.)
Where it is important to make a roof which will keep out heat and cold as much as possible, a filling of hollow brick beneath the covering of tiles is frequently used. Mr. Perriere Aine exhibits a new form of hollow tile, which gives an air space below the surface. These may be set on a frame of \perp irons, and thus form an even, finished surface on the inside when this is desirable, and a special saddle-shaped covering piece, either of metal or tiling, is used to cover the lateral joints. These hollow tiles are also used beneath the covering tile, in the place of hollow brick; see Pl. in. They are made in the ordinary continuously acting brick machines.
(2) Another product, made of the same material as the hollow bricks and tiles, is much used in France, called chimney wagons; that is, sectional chimney flues. These are usually made in a vertical forcing press, in sections about a foot long. The inside is smooth with rounded corners, and the outside is fluted or corrugated to receive plaster. The joints are very short bell and spigot joints, obtained simply by trimming the end, while green from the machine, to a depth of one-half or three-fourths of an inch. They are made of different widths to suit brick walls, are inserted when the wall is going up, and form the complete thickness of the wall, or sometimes even project as breasts. The plastering is applied directly to the outside of these tiles the same as to the brick or stone wall (very little furring or lathing is used in brick buildings in France).
These "wagons" are also made slanting for use in drawing in the chimney breasts.
The ordinary kinds are usually made with solid walls having a thickness of about one or one and a half inches; but with improved machines they are also made with hollow walls having air cells about one-half or three-fourths inch wide running lengthwise. These give much more safety where open fires are used, when the flues get very hot and are thus liable to set fire to or injure hangings, mirrors, pistures, etc., hung on the walls. Such fires are, however, rare except where wood fires are much resorted to, as the inner surfaces of these flues are much smoother than those of brickwork, and soot is less liable to accumulate if there is no creosote to run down the surface and cause it to adhere.
A new form of these "wagons" is shown in the Exposition by Mr.

Vistor Duprat; these have lateral wings, so to speak, that form lock joints between the several flues and toothing with the brickwork, thus giving a much better bond between the different flues and the main wall.
These are made on the vertical press, and alternate sections of the edges are afterward cut out while the clay is in the green state. This form is also made with hollow channels on one, two, three, or four sides for air spaces, giving more security from fire; it is usual, where there are several flues together, to omit the air spaces, or cells, on the sides which separate the adjacent flues.

Fig. 1.-Duprat's interlocking chimney-flue tiles.

MACHINES.

(3) The preliminary work of grinding the clay is done either by borse power, in a Chillian mill with large grinding wheels revolving in a tub, or by steam power between cylindrical rollers. See Fig. 2. This grinding to be well done should be done several times over with less space each time between the cylinders.
When the clay has been well worked so as to be plastic and homogeneous it is ready for the molding process.
The vertical mixing machine generally in use is similar to that used for mixing concrete and mortar, only it is possibly a little heavier, and has rotating cutting arms to cut up the clay as it is thrown in in lumps (Fig. 3).
(4) For tiles that are made on presses, that is, for molded or machine tiles, the clay is placed on the mold in the form of flat slabs about the size of the tile and a little thicker. These are prepared either on a regular brick drawing machine, cut off to the proper length, or else, with an expert workman, the slat may be taken directly from one of the vertical mixing machines. In this case the lower sliding door is lifted far enough to let out a quantity of mate-
rial of the proper thickness, and the workman cuts off the slab to the proper length by eye. The prepared slab is then placed on the bottom mold, ready to receive the pressure from the top mold.

Fia. 2.-Pinette's cylinder mill for grinding clay.

Fig. 3.-Boulet's mixing mill.

In small works various forms of hand presses are used, the simplest being a striking press, consisting of a vertical screw with a large fly-wheel, which is revolved by hand and brings the matrix down on the clay, which is spread on a mold having the imprint of the bottom of the tile, or on one which is of the size of the brick to be made. This general form of press is used also for light power machines, in which case there are usually two sets of molds and an operative on each side of the machine; one is filling his mold while the other is pressing; then, as the first operative withdraws his mold from the press and removes the brick or tile from the mold, the second operative pushes his mold under the press (see Figs. 4 and 5).

Fig. 4.-Boulet \& Co.'s hand serew press.

Fia 5.-Power screw press driven by friction disks.

Another form of hand press is worked by a lever. This form is usually set on truck wheels so as to be moved about as required, and has a platform attached on which the operator stands, and which forms a means of holding the press steady while the lever is being worked. The machine is small and comparatively light, and the tendency of the blow given on pushing down the lever would be to upset the machine if it were not for the projecting platform. These are made to work with one or two molds, as the other style is. The different makes of these machines differ in the method of applying the pressure; some use a cam motion, others employ levers and eccentrics.
This style of machine is exhibited by E. Delahaye, and also by Joly \& Foucart. In the latter (Fig. 6) the pressure is obtained by a cam; with this form four to five hundred pieces may be made per hour.
In operating this machine, the mold being in place, the operator gives a sudden downward motion to the lever; this gives the pressure and the lever returns by recoil. With all these hand machines several successive blows may be given if desired.
J. Ollagnier also exhibits this style of presses (Fig. $\hat{\text { r }}$), with lever motion which draws down the upper cap.

Fia. b.-Toly \& Foucart's lever pross.
This form of press is made of large size for tile work. with the lower mold on a sliding frame so that it may be withdrawnand then inverted in order to dump, the pressed tile out of the mold.

Fig. 7.-Ollagnier's lever press.
For all tile presses there need to be two molds, one for the upper and one for the lower surface of the tile. These are made of cast iron, with some sort of lining giving a smooth finish and allowing H. Ex. 410 -vol $\mathrm{III}-\mathrm{C} 7$
the pressed clay to drop out easily. The best lining has been found to be plaster of Paris. The molds are made in such a way that when closed they leave a little more space than the thickness of the finishind tile, to allow for shrinkage in haking. The surplus clay is, of course. pressed out over the edges, and that is one of the advantages of a

double or triple pressure; it allows the surplus clay to find its way out better, and consequently the molds come together more accurately.
(5) The same principle is used sometimes with power attachment for tile presses. Such a machine, manufactured by Schmerber Brothers, Tagolsheim, is shown in Fig. \&.

Such presses are usually marle so as to be worked either by hand or power. but to run this kind of machine bey hand reduires two men, one to turn the machine and another to temd the press, whereas in the small lever machine the same man can work the lever and attend to the molds.

Joly \& Foucart exhibit a small power machine on this principle, in which the pressure is applied by eams, made in such form that the pressure is appled three distinct times at cach revolution of the driving shaft (see Fig. 9).

The slide carrying the under mold may be single, as shown in the figure, or may be double, having a mold at each emd, so that two operatives can use the same press; this is usually the arrangement when the press is run by power. When the bottom mold is withdrawn and is turned over by means of the handle h. being pivoted

on the spindles. the tile drops wut upon a board on which the operative receives it. and on which it is taken, on a wheelbarrow, to the air-chrying sheds.

With one man at the press this machine will make from two to three hundred tiles per hour. The power used is about one-half of a horse-power, and the pressure obtaned is 30 tons, applied three times with progressive force and sudden release.

These machines are noat and strongly built, giving very goon results.
(6) Massive power presses are not nsed much for making pressed brick, butare very generally used for machine-made tiles.

These consist of a frame formed of two heavy uprights united top and bottom and supporting the bearings of the different shafts.

The principal feature of the machine is a rotary pentagonal drum on which five molds for the bottom side of the tile are made fast.

This drum is revolved dither les mems of a pawland rateher, of has the friction of a belt ading on a palley on the drum axhe. It turns

 the drum is hede for a time by mens of a bult on locking deviee.
Abere this pertion of the machine is the stide or satecarrying the mold for the top of the tila: this slidesupand how between the sid. peste of the machine and gives the persisure on the erlinder belnw. The main differene in the different mathones exhibited is in the mothon of giving this sliding motion and presure to the top mond.
Mr. (: Pinete exhibits a fine pecimen of this kimb of press, shown in Fig . 10 .

Fuc. 10.- Pinetters mutomatic tile press.
The drum B, on which are phand the fise bettom molds, is turned by means of the ratchot whel R. having five teeth and the sumber
 the opmesite ond of the drum shaft is adisk, H, having five celindriral hohs into which the boht ldens. moderimpulse of a spimai eprime. at the moment when a mold ramelnes its upper horizontal position.
 raised be a cam on the main crank shatt. A. the hearings of which
 cortically. stomdied hy gudes on the stambards. It receives its motion from the crank (' en shatt A. la crank-pin turning in : bork which works in the shoted arss-heal K, to which the gate I) is attiohthed.

Ater the pressure has bext appled to the tile the bolt I is mised, the pawl f turns the drum B one-fifth of a revolution to bring the mext mold in position, amd the bolt 1 drops adid holds it. These madhones will produce about dive homded tiles per home
(i) Messes. Bouled ('o. of P'aris, rehibit quitrat mmber of mat chines for working elay. Bosiles the wrdinary mixers and brick mathone they have different forms of hatme mathines for pressing bles or hrieks. similar to those deseribed.

Their molded-tile mathine is: :hown in Fig. 11.

The lothors eorrespond to the samm parts ats in Fig. 10. In this

 mathane and drives the cam shaft A theogh the sear (i. 'Phebolt I is worked he a (am Lamd dropse in slots indisk H. 'Thr motion is
 pawl. the belt slipping on the pulley R when the drum stands still. In the mathine exhibited, however. the mospment is ber ratrat and fatw on the emd of the drum shaft, similar fothat in limedtris mat "hime.
I. Chambrettr-Pellon exhihits a • ['niversal Molding Press." which rives f wo separate and comserotive pmessures. with a slight
release after ath to allow the clay to axpand and hot wat the rexess of imprisumed air. It is shemon in Fig. 1 ?

This prese differs from the others exhibited in the fact that the part to which the top mold for the tile is attached is fised in position. and it is the fentagrabl drum carryige the five bottom molds that

The pentagomal drom B has stiding bearings and is raised he means of two cams, ((\therefore on the matn shaft A. Two weighted lewers. L L. phaced on tep of the (ap, I) help to hatance the weight of the
 for producing the presume so that there is a slight lowering of the drum between the two pressures. Then the drum comes dewn to

Fic. 1.. Antomatic tile press by J. Chamhrette- Bellon. Bi\%e. Franed.
its lowest pesition, and a wheed with one oog engages a comrequonding cavit! in a disk on the arbor of cylimer B and revolves it one-tifth of a rewolntion. when the drom is again rased by the cams $C^{\prime}($. while at the same dime one operative remoses the pressed tile from one side and the other aperative applies a fresh slath of day to the other side. The whole machine is robost and not liable to be deranged. The working paris. arbor A. gears (A, E, ate. are all chaed in by sheot-metal guards.

The regular power brick machimes are either proses for compressing the clay in molds, or he so-called drawing machines, propery forcing machines, which thrust forth a continuous prismatic mass of the clay, which is cut into lengths to form brick.
(s) Messrs. Boulet \& (6. exhibit one of the presses (Fig. 13) ; it has a pewolving tahle. 'T. provided with sets of apenings or molds for the bidk. This is revolved hy momsot a batehet and pawl. When the modd comes moder the press P this is driven down be meats of a amm and gives the persure. Then the table turns through ome-
 fose pushes 0 , the bottom of the mold, and lifts the brick out on -an suffare of the table, from which it is pushed off upon another :able he an antomatio arm. N. amd the mold is ready for another Ame of clay.
This makhine will makr ahout bight humhed or one homsamd Brivk fre hour, and takes two or threr horse jower to drive it, Whemling on the stimess of the chay. The mathine is served by

Fics, 13. \rightarrow Bonlet \mathcal{N} ('o.s antomatio briek press.
there ment two to chatere the molds with elay and one for take off -herbick as they are delivered. The machime weighes some if toms.

I simila st yle is ako mate for makimg tikes.
(: \because) The foreing mathines for bricks consist essentially of a frame-
 An Polls that grimd up the chay and also act as feed rolls. Below harse is a chamber with an oproning at one and. to which different faming phate are atachod for fomingend or hollow bricks. tiles, Amintiles. de. These plates are stod bexes some 3 or 4 inches derpe

 whinh are short rods held at one end he thin rib: ${ }^{\text {Whe whel wes }}$ - be wider jmere end of the box. These ribs cut therongh the ray, hat as the box becomes smaller beyomb them. the day frins together
agrain berom the ribs. The bexes are lwited on lis mans as a flange tw ine fromt and of the ehamber bulow the exlinders.
There are varons methols her which the clay is forem thement the phate and this is where the principal difference aremes in the difforent mathines. This opreation is performen ather by manson a pistom moving horzontally: on ly a set of screws turning in han (hamber. or be the ampursion produred by the foed rolls than-

Fig: 11. Forming phatr for hollow of proforatorl hriok
selver which whimes the rlay tobre crowded out he the anly wathe presented, which is through the draw pate.
 be used, on which the clay is received as it haves the draw phate. This ennsists of a frame arreing a sot of small rollers covered with rheth we hather on which ihe hoty of elay slides along. To this frame is attached a lover with wires set the right distance apart, les
 for the different artieles being prolured. These tahles also vary in form with different makers. The frame of tha table is ather sat
 gets to the embl before the attemdant cuts it off. With sume the

frame carreing the rollere rums on castoms an mile set on trip of a fixal frame.
 the piston marhime of this make (Fig. Es) there are nu feed mollbelow the hopper.

When the chamber has bern filled the piston is moved forward be means of a cog whed. atol the peror is applied by arm eneat. This will give three or four humbed pieces per hoter. The same

 him.
The erlimher machine of this maker will deliver one thmemm!

 manhes: See Fig. 1i, whirh shows the mathine making four mos an hollow brick with: cells in curh.

 the mathine is started the movalde pate (' of the table is set me

 her 小ens his the day is still advameme. As sem as the operaten han manded the bricks. he pushers back the part ('and the fond
 randy for andmer cout.

This is a stomg. simple mathine easily taken apart for cheming. ame will deliver shats down to 1 inch in thickness perfertly well. wh hollow slabs $1 \mid$ inches. for patitions.

Bonlet \& (\%, whibit a machane. shown in Fig. IB. with fwo
 rellers forer the clay out through the draw phate.
 shatt. The table of this machinm is similar that of Pinethes. The mathine will make seven hamberl to whe thousam bricks per

 hos helt B on which is thrown clay abready wetted, or else dry day

 - Whatyor. ate.
to whirh the water is added in the mixar. The brick marhine ('isert fust helow themixerand fed from it. The larger size of has marhine

Thes atso exhibit a single serew mathine of the form shown in Fis. 19.

 thousamal hriak per hour with if hose-power. They aks make har larger size.

The same thm aho exhibits a perial helivery tahle (Fix. :3) for making phan that rowt tiles. As the elay eomes from har haw phate it passes botworn two latere rollers. F. F. coverol with kid. whan
 carries a reces into which a !nopertion of the lower evlinder f tit:
ar it cames arman it foreres the clay inte the reeces amm thas forms the propection or hook om the tile. Just heymel the menes in erlin-

 :lir- lites of the proper lemeth.

Fig. © I Iny $\&$ Foncart's forrime press.

 fomms of draw plates for hollow brick. tiles. fane briek. ete. 'lhe is one for making a combgated lap-joint tilo having a luge at mix fond for secoring it in place. In worder to ohtain the projecting lus.

Which is on the mper emb of the maler side. the tile as it romb
 pat of which is removed he hand with a :pecial towl. lating ont
 of cutting table, shown in Fig. ?: The recoiving table of this
fam is built in a lithe different form: the rollore carmage (is sed on Prownd asters ruming om rals. set on top of the fixed table A.
 P. Lulow the tablo. that brings it hatek into flater atter use.

Mr. .I. Ollagniow exhihits a small hand-gower briek machine (Fis.
 bew lo tive hmmbed brick may be math per hour. It is at pistom

（10）The machines for manufacturing ehimmey－flue tiles or＂was－ ons＂${ }^{\text {so }}$ much used here，and hrain pipes with heel foints，are similar in their working th the brick machimes，only they are set up remtical． They are really vertical forcing machines．and are either contin unasly fed．by mollers．we else operated by monasof a piston，in whel wase there mast be pates in the work in order to reload the chan－ bur．Soveral exhibits of these machines are mate．

Boulet \＆Co．make both piston and relinder marhines．In botl． rases the operator is on the floor below that on which the mathate is．set．

One of their piston machines hats（wor erlinders used attermate： with the same piston：whe is being thed while the other is mate presume：it is called a erevolver machine on this acoombt．So ドふ。

 the floore that it is pushed down as the raty doseronds．A Aidita

 that on the horizontal mathines．
 rylinder which is charged at the side through dowis．

This firm also makes machines where the pressure is produced by the artion of the feed evlinders. thus making a continums mathine; (Fix. : It. It takes 3 to thoms-power to run it.

Mossis. Joly \& Foucart exhibit a continuons machine (Fig. 刃心) , where the whole machine is on ond frame. set on the flowr. where the "prator stands so that he can see and attend to all the parts.

The feed is from the side. through the hopper H. which is fittad with a frame, F , to receive an endless belt bringing the day up from

Fut . Wi. - Bumber surtical tile mathine with foreing rollers
the fows. 'Thar brick are cot off be means of the slide frame s. car-
 \therefore that when the material should be cut off the belt is thrown oft and the forl and pressure motion stopped immediately. This matdhan hate a fowertul serew that formes the day through the draw ! ! 1 t.

(11) The firm of J. ('hamberte-Bedlon, whihits a pistom machine. workel he hand, for making small huh piper mf tor inches: see

Fig. 29. The piston forees the material upward instead of downward. The draw phate portion D is hinged so as to be removel fon filling in the clay. It will make fifteen to twenty pieces of pine per hour up to 40 inches long.

 ounly acting tile machine.

SPECIAL REPORT
$0 \times$

RAILWAY PLANT.
 CLASS 61.

BY

PIR()IF. I.ENVIN M. HAUP「.

CONTENTS.

Pare.I. INSTALILATIONII. Description of typleal exhibrfs.French exhibits of rolling stock4.38
Western Railway Company 438
General data relative to engines 488
Express locomotive No. 9.51 with conpled drivers and bogie 441
Tender with two axles 41%
Carriage with a sleeping apartment 442
Mixed carriage for light trains 444
Special devices and apparatus 445
Acetate of soda heaters 446
Heaters with interior flues 446
Thermosiphon heaters 447
Uncoupling device 448
Molding by machinery 448
Paris, Lyons \& Mediterrauean Company 450
The Woolf engine 45
Compagnie des Chemins de Fer du Nord 459
Compagnie des Chemins de Fer du Sud 461
Société Anonyme International 462
Compagnie Internationale des Wagons Lits 462
Suciété General de Chemins de Fer Economique 463
Companie Bône-Guelma (Algerie-Tunise) 463
Special motors 464
Lecomotive without fire 464
Compagrie des Omnibus et Tramwars de Lyons 466
Société des Anciens Etablissements Cail 466
Belgian Railway plant 467
Grand Central Railway 467
Mixed carriage for first and second class passengers 468
Twenty-ton gondola with movable sides. 469
Brolgian State Railways 4 (i)
Tank locomotive made by La Société anonyme "La metallurgique" of Brussels 472
La Société anonyme des ateliers de Construction de la Meuse of Liege $47: 3$
Usine Ragheno at Malines. 473
English rolling stock 474
London, Brighton and South Coast Railway Company 474
South Eastern Railway Company 475
North London Railway Company 476
london and Northwestern Railway Company 477
Midland Kailway Company 481
II．Description of typical exhibits－Continued． Pakr．
Switzerland 44
Société Suisse of Winterthür 43
Société des Chemins de Fer de la Mediterranée of Milan 4.4
Societé Italienne des Chemins de Fur Meridionaux of Florence 44
Miani Silvestri et Cie of Milan
M．Cyriaque Melson of Turin 444
United States 4
Baldwin engines
P＇ennsylvania Railroad（company 49：
Strong locomotive 49
II．K．Porter \＆Co．，locomotive． 46
Special engines and appliancess is
Decauville Railway and appliances im
Engine for high speed 清
Speed regulator ；！！！
Iron Car Company＇s exhibit 洲？
Compressed－air motors ： 14
III．The permanent way．
Webl tir． 湤
Belgian iron tie ing
Rail joints and fastenings 2）
Bridge joint in
The Otis joint M
Hoffmeier sustem ？
Wooden cross ties 4）
Other metallic ties 勝
Paulet system 别
Sandberg system 叓
Magnat system 析
Portable railways 3
Abt system for steep inclines 苑
Hydratic railway（Chemin de Fer（ilissant） 餳
Metropolitan Railway of Paris 5
Miscellaneons． 3
IV．Block sienals．
Simplex railway patents symbicate 游
Compagnie du mind 報
Leshors system 䄽
Compagnie de l＇Ouest 虽
Train staff system（Webb and Thompson） 湾
V．Elecotric motors．Sprague Electric Railway \＆Motor Company影
Thomson－Houston International Electric Company 5
VL．American road machines．
American Road Machine Company of Kennett Square，Pennsylvania．， 为
Fleming Manufacturing Company，Fort Wayne，Indiana 童
Vulcan Road Machine Company，Media，Pemnsyl大̈ania 洛
Miscellaneous exhibits． \％
Deduction 解
Acknowledgments H
Table of general data relating tolocomotives 細
Table of general data relating to railway carriages do． 娟

REPORT ON THE RAILINAY PLAYT.

By Prof, LEEWIS M. HAUPT.

I.-The Instalhation.

Under Class 61, in the sixth group, are included the various appliances for the construction, equipment, management, and operation of railways from distant quarters of the globe.
-They are conspicuously displayed in the western angle of the "palace" or machinery hall, where they cover more than 3 acres of space, and include such articles as-

Springs, buffers, brakes, ete.
Permanent way: Rails, chairs, fish phates, crossings, switches, turntables buffers, water cranes and water tanks, optical and acoustic signals.
Varions kinds of safety apparatus and block systems.
Fixerl appliances for tramways.
Rolling stock: Passenger cars, construction cars, freight cars, cattle cars, locomotives, tenders.
Self-moving carriages and road engines.
Special machines and tools for shops of maintenance, repair, and construction.
Appliances and machines for inclined planes and self-acting plames; models of engines, systems of traction, and apparatus relating to railways.
Rolling stock for tramways of various kinds.
Monlels. plans, and drawings for depots, stations, car houses, and other buildings necessary for the working of railroads.
The exhibits are not arranged ingroups according to subjects, but aposer to be assigned indiseriminately according to territorial dirisions, some miscellameons models of this class being in detached buildings on in other portions of the Exhibition. The plant represents: unt only the present forms of construction, but is to some extent historical, illustrating the develoment of railroms and their
appliances from the days of Trevethick, Watt, and Stephenson to those of modern constructors innumerable.

It is not our intention, however, to devote any space to the history, which is an oft-told tale, but rather to direct attention to some of the more prominent features of this truly excellent.display as they have been presented to meet the requirements of transportation in the civilized countries of the world.

The principal nations represented are: France, with her 158 exhibits; the Colonies, Algeria, with 4 exhibits; Austria-Hungary, 2 ; Belgium, 37; Spain, 2; the United States, $2(1$; Bolivia, 2; Chile, 1 ; Great Britain, 19; Italy, 4; Norway, 1; Brazil, 3; Roumania, 1; Russia, 2; Switzerland, 8; and Holland, 1; giving a total of 265.

II. -Description of Typical Exhibits.

FRENCH EXHIBITS OF ROLLING STOCK.

Amongst the most important of the French exhibits may be mentioned those of the Administration des Chemins de fer de l'État; Société des Anciens Établissements Cail; Compagnie de FivesLille; Compagnie des Chemins de fer de Bône à Guelma; de l'Est; du Midi et du Canal Latéral à la Garonne; du Nord; de l'Ouest; de Paris a Lyon et a la Méditerranée; de Paris a Orléans; with numerous manufacturers and special exhibitors, including the railway statistics by the minister of public works, in the Trocadero.

The Western Railuay C'ompany (Compagnie des Chemins de fer de l'Ouest), M. F. Clerault, chief engineer, make a representative display of modern rolling stock as used in France, which they have fully presented in a special monograph entitled "Notice sur les Objets présentés à l'Exposition Universelle de 1889."

This exhibit embraces locomotives, carriages, special vans and apparatras, models, and designs as follows: Express locomotive. No. 62:3, with three axles, two being coupled; another, No. 951, with two coupled drivers and bogie truck; a tank engine with two axles, sleeping cars, mixed carriages for light trains, experimental van with dynamometer, etc.

In addition to the above there are sixty-three special exhibits of brakes, couplings, apparatus for heating and lighting, and various mechanisms, forming a very instructive display.

This company was the first in France to construct locomotives with coupled drivers. The type introduced in 1855 , with wheels of 6.26 feet diameter, was in use without material dange until 1874.

Since then greater power has been obtained by extending the fire box over the rear axle, increasing the diameter of the drivers to 6.7 feet, and enlarging the cylinders and smokestack. Seventy-one of these machines are now in service.

The general construction of the engine is shown in Figs. 1 and 2, from which it appears that the cylinders are inside with valves above. The forward drivers have crank axles, but the connecting rods are outside. The total wheel base is 16.5 feet.

Fig. 1.-Elevation.

Fifi. 2.-Plan.
Express passenger engine No. 623.
The principal dimensions and weights are given in the accompanying table.

The total length of engine, without tender, between buffers, is 26.9 feet.

Gomeral iluta redutioe to engines.

Experss locomotive No. 95l with compled drivers and bogie.

Another style of engine shown by this company was specially designed for the heavy traffic on certain parts of their lines.

Its characteristic foatures are well illustrated in Figs. 3 and t. The use of the bogie truck has been found in practice to increase the stability of the machine as well as to preserve the track. The

Fic. 3.-Bogie engine No. 9n1, Western Ralrond, France.
mechanism is modified accordingly. The cylinders, valves, and connections are well inside the frame, excepting the connecting-rod for the drivers.

The lateral play of the bogie is about x inches. It is controlled by a spring of which the initial tension is 3,080 pounds, and the masticity 1 inch per ton. The axis of the pintle is supported 2 inches to the rear of the center so that the tracking of the bogie is facilitated on curves.

The total weight of the ongine is los. 160 permods, and the length hetween huffers for engine only is 33.39 feet. (The remaning data aregiven in the precerling table.)

The load is distributed equally over the drivers by means of two longitudinal balance beams connected with the springs.

The draw bar between the engine and tender has no springs but adjusts itself by means of the oblique buffers, known as the system of E. Roy and introduced by this company in 1884. The buffers are of cast iron; those on the engine have a spherical surface, the center of which is at the coupling pin; those of the tender are plane and inclined at an angle of about 50 degrees. This arrangement eliminates the oscillations on tangents and adapts itself to curves with good results.
The feed water is supplied by two of Friedman's injectors.
The brake consists of four cast shoes placed between the drivers and actuated by two vertical, pneumatic cylinders operating upon the cams.
Tender with two axles. - The capacity of the tank is 370 cubic feet.
This quantity enables the engine to draw trains of fifteen carriages, without stopping, from Paris to Rouen ($8+$ miles). It has been designed with the view of securing the maximum load compatible with only two axles.

The air brake has eight cast shoes operated through triangular connections as on the carriages. A footboard extending the length of the tender permits communication to be made with the engine driver.

The weight of empty tender is	. pounds.	26, 690
The weight of tools.	.do..	1.300
The weight of water	do	23, 1010
The weight of fuel	.do	6, 6010
Total weight ready for service.	do.	57. 6.40
Weight on each wheel.	.do.	14.41)
Wheel base.	feet	968
Diameter of wheels (tires 2.6 inches thick)	do.	3.74
Total length of engine and tender	.do.	49.95
Total weight of engine and tender (in uss.)	- prounds	162, 800

Carriage with a sleeping compartment.
(Figs. 5 and 6.)
The car shown in these figures contains three compartments for first-class passengers, two for day travel, with space far eight persons each, and one for night travel, with beds for four adults. The middle compartment, which is 8.5 by io feet, contains, beside the three movable couches, a toilet closet. The dimensions are adapted to the wheel base (14.43 feet), which in turn is limiter by the turntables of
the main line. Whilst there are seats for five there are but four full length beds; three of these are placed parallel to the axis of the train and are folded down by a bascule movement. The fourth bed is made by a leaf prolonged under the lavatory table so as to permit

Fig. 5. Saloon sleeper. Western Railroad, France.
the traveler to extend his full length across the car. This couch is sufficiently large for two children. There are also pillows, folding chairs, ottomans, an articulated table, and other appointments. For the use of invalids the doors are made double, so that when necessary both may be opened to admit a bed, litter, or rolling chair. In

Fio. G. - Plan.
all the compartments the floor is covered with a thick felt packing to deaden the vibrations. Commmication between the carriages is effected by means of the outer footboard and handrail.
The fournal boxes have a transverse and longitudinal play of about one-third of an inch.

There are eight cast-iron brake shoes operated by compressed air. The general dimensions are given in the following table:

Dimensions and neights.

	Sialom slereper.	Mixel car.
Maximum lemgth of car ledy feet .	124.93	83.42
Maximum breadth of car body (la	8.85	8.85
Maximmm height (Howe to ceiling at center) ...do	6. 3)	6.54)
Total mumber of passengers	21	2 3
Letugth from ont to out of butfers. feett	22.94	2r.z
Length of springs between points of support . . du.	7.21	5.05
Flexibility per ton ($2,2+0$ jemuds)	0.42	0.16
Axte journal, diameter inches	3.94	3.12
dxat journal, longth do	\cdots	6, 24.
Axhe berly, diameter at emnterd	5.0	4.44
Whtets. outer diampterfeet	3 38	3.38
Mean weight of an axle. momatedpenmds.	2.30	1. 20×0
Number of axles	$:$	2
Itistamer betwern axtesftet	11.43	12.3:
Weight empty (including brake)pounds	233, 100	20,440
	1,100	sor
Conit of longth per prassugher freet	1.33	0.97

Mi.red curriage for light trains.

This carriage is designed to transport first and second class passengers and to provide a large baggage compartment, so that by the addition of a single thind-class carriage it may constitute a train of sufficient capacity for secondary or branch lines.

The principal dimemsions are stated in the foregoing table.

Fio. i.--Mixplearrige. Western Railroad, France.

Fici, 8.-Plan.

SPECIAL DEVICES AND APPARATUS.

The most direct methol of determining the resistances of trains is by means of the dynamometer, and with this end in view this company has fitted up a car with instruments designed-
(1) To measure and record the power.
(: (i) To measure and record total work.
(3) To register the speed by means of a special trochometer.
(4) The determination of the number of revolutions of the wheek.
(5) The registration of time every ton secomeds by means of an electric clock.
(6) The marking of the kilometers or any other important distances on the route.

These three last elements are indispensable for vorifying the results furnished by the other instruments.
(7) The analyses of the gas used in combustion.*

The Western Railway Company of France also use the Westinghouse compressed-air brake, and have placed in each compartment a button or ring by which the train may be stopped by any passenger, but the unnecessary use of it is accompanied by a severe penalty. In the course of its experiments as to the best mode of coupling the air brakes the company have tried no less than nine different systems since $18 \mathrm{~s}: 3$, and are still trying new methots. These are desoribed in a pamphlet issued by the company.

Since 1876 an improved method of oiling pistons, werentriess, and axles has been in use and has been extemded rapidly. It consists of capillary tubes in which the oil drawn in by the movement of the piece is projected into a sort of hasin, from whence it is fed to the part to be lubricated through a small opening.

A new antomatie greaser is alsw used for the valves. It was introduced in 1sisu.

Since Jamary, 18\%s, mineral oils ohtamod from Russian amd American petroleum have been in sucoessfal use for lubriatoon with food results. Samples are on exhibition.

* The description of these instruments is omitted for want of nopace.

Escape nozzles have been designed by this company, which are so successful as to have led to their general application. These are so fixed as to increase the useful offect of the apparatus. (See Figs. 9 and 10.) An annular tuyere containing a large number of holes induces a suction through the ring. A central opening distributes the draft more uniformly amongst the different layers of the tubes and facilitates their cleaning.
To prevent waste of fuel from the energetic draft a brick arched deflector is placed in the fire box immediately below the tube plate, whereby a more perfect combustion is effected. It has been in use since 1884 with very good results. The mean life of the arch is seven months.
Acetate of soda heaters. - By this mode of heating (Ancelin system) the crystallized acetate of soda, freed from tarry matter and containing four equivalents of water, is substituted for the warm water. This salt by reason of the latent heat necessary for fusion contains

Figs. 0 and 10.-Fscape nozale.
for an equal volume, and between the same limits of temperature, four times more useful heat than does water. These heaters, tried by the company in November 1879, on an express train from Paris to Remnes, have since been introduced in all the express and omnibus lines of Havre and Dieppe, and also in the trains of the line to Versailles; 2,100 of the acetate heaters were in use during the winter of 1588--89.
Heaters with interior flues.- These heaters were intended to dispense with the maintenance of the hot-water boxes in the carriages by placing below the floor a fixed heater fed by water warmed from a Hame of fire at the end of the box (F'ig. 11). In each heater there is a horizontal flue in the form of an $工$ which carries off the products of combustion (Fig. 13). The firebox consists of a cage of perforated sheet metal in which the ignited fuel is placed. The liquid employed is a mixture of glycerin and water which freezes only at $2^{\circ} \mathrm{F}$. The temperature may be maintained at 50° for eight to mine hours without adding fuel, which may be done by trainmen without disturbing the occupants of the carriage.

Fia. 11.-Fire box.

Fig. 12.-Vertical vection.

Fra. 13.-Plan.
Heater with interior Hues.
Thermosyphon heaters. - Another form of heater consists of a firebox, H (Fig. 14), in the form of a cylinder of sheet-iron pierced with holes and placed under one of the outer traverses of the carriage. A

Fia. 14.-Thermosybun brater
helical tube containing the water to be warmed surrounds the cylinder and extends by branches along the sill of the carriage, establishing a circulation with the several compartments. It will warm two compartments for abont five hours without replenishing the fuel, which is charcoal.

Fig. 15.-Uncoupling afevice Flevation.
Tendeur à déclenchement (uncoupling device). When it is desired to drop passengers at a station without stopping the express trains a special carriage is placed in front of the cars to be detached, which are at the rear of the train. At the preceding station a "guard" mucouples the safety chains and just before reaching the proper point a train hand closes the valves of the air brakes of both carriages

and separates the hose couplings, and finally at the right moment he operns, by means of a pawl, the outer cheek and allows the hook of the preceding carriage to estape. A special reservoir furnishes pwer for the brakes of the detached portion of the train. (For details, wee Fig. 16.)

Molding by mowhery. - For a long time machine-molding has been substituted for hand work with better results and less cest.

The tool consists of a pair of machines, one of which makes the top, the other the bottom of the mold. The two flasks containing the pieces to be cast are assembled on a centering machine ready for use. By this means a eroat rariety of forms are turned out at the foundry in a very short times and in excellent condition.
The exhibit also embraces an axle which has made a mileage of f91, $3: 3 s^{\prime}$ miles without signs of firacture, and a cast-steel driving-wheel tire of ens.a:3 miles. The latter was in use eight years, from 1 ssis to January, Iss?, in which time its original thickness of 80 millimeters ($2 .: 3$ inches) was reduced an per cent. The proof test for tires in wosis consisted of a breaking stress of 10.5 ort pounds per square inch, with an elongration of 15 per cent at the point of rupture and four bhows from a ram of 1 ton falling from a height of 32.8 feet. The result of these severe tests has been to incrase the life of the tire about to per cent.

Fig. Mif--Balance beam.
A chronographic register is also used to show the irregularities of the tran movement and various other important elements. From the rerister submitted it would seem that at high sueds the oseillations are considerable.
On engine No. fol there is also shown a tranverse balance beam for rpmalizing the load on the joumals of the forward driver. It comsists of an articulated beam resting on disks, as seen in Fig. 17. Another form of transverse balance is also shown on engine No. 6:3. The remainder of the exhibit consists of charts, designs, and photoLaphs illust ratins the developments made by the eompany from la;i. when the engines weighed only !n tons, to the present time.

Is the water used on this routecontains lime and other ingredients prolucing incrustations, the company have reconse to a disincrustant makle by boiling together low parts by weight of a wash of catustic - "la at tas Bamme, eoo parts of powdered guebracho wood, amd in parts of water, which is allowed to settle, and alter recanting H1. "lan liguid the residue is again mixed with water, boiled, and de-
H. Ex. flo-vol $111-2 ?$
canted. The operation is repeated until the material is exhansted. This should give about: tous of liguid, showing $11^{\text {g }}$ by Bammes hydromoter. It has been in use for ten years. This company oper. ated 2, 694 miles of raihoad (ommary, 1ss9). The ammal tain mileage was ? 0 , tit. 200 miles at the same date.
It has in actual service-
Lacomotives..................... 1.369
Passenger carriages. :3. זи!
Special wagons......... 1 , 1 :
Freight wagons. 1 , 20:

Valued at $533,058,600$, with nearly $\mathrm{S} 2,000,000$ worth of tools ant machinery at the various shops and depots.

THE PARIS, LYONS AND MEDITERRANEAN (OMPANI.
This company made an extensive display, embracing two locomos. tives, $\mathrm{C}-1$ and No. 4301, one sleeping car, threr day erachos, and

Fifi, 1s,-Patis, Lyons and Medteramean Company sengine (' -1 .
various sperial formes of whichonly a few pieces can be doscribed in letail.

- The locomotive (-1 (Fig. IS), desiremed for high spert. hat only been in servicesince the begiming of the year 1889.

It is a compound engine with foureylnders. twointoror operating the forward drivers and two exterior on the rad drivers. In addition to the drivers it has one lealiner and one trabing axle.

The general design of this engine is shown by the diagram.

The principal dimensions and weights are：

		No．（ $\cdot 1$.	No． 4301.
derizthof yrate．．．．．．．．．．．．．．．．	．．Peret	7.50	2．03
Breallit of grate	．do．．．	3， 31	3． 2
Sufface zrate．	stuate fore	25． 15	㠰． 66
Nitmber of tubes．		10\％．	24.
1．ansth of tubes．	．feret	13．	13.81
lutrpior diameter of tuhes	．．．inches：．	1.3	1.75
lutroing surface tubes	．spuate feet．	1．151．15\％	1，6\％\％．
Siblace of fire box．	do．	$1 \because 4 .!$	117.8
Pont henting surface	．do．	1．984．11	1．694．8
lumerior diameter of boilere．	．Pert．	4．13	4.92
Thinkness of boiler（sterd）．	．．．inchess．	11． 5.7	0.5%
Ruiler pressare	is per sq．in．	913． 3	213.03
Wattre catadity with leved 4 inches below crown	．．cubic teret．	131． 11	183.09
Hithmetr of admission eglimber．	．．fert．	1.01	1．18
Hismeter of expansion evlinder	．th．．．	1.19	1． 27
Stroke of pistons		9．10	2．13
Ximulne of axtes		1	4
Sumburs compled．		\because	4
Hi－tamee hetween extremes．	feret．	19．\because	13． $3 \times$
liatherter of drivers．	．din．	6． 510	4．13
Hamelel of heraring wherls．	．．．．do．	4． 26	．．．．
W．abht an rails per axde（in swrober			
Firct．	．．．jermuds．	$\cdots 1010$	2x． 799
curond．	do．．．	32． 5 B	2！，59\％
Third	（l）．	3S．ath	35，178
Funrth．	－ 16.	$23.1(6)$	32．0．5
Total weight	． 110.	11% ． 10	12：5，6：3
Potal weight empty	du	10ヶ． 4 ¢	$113,193$
Tractive power ．．．	do．	9，ins．	$\cdots 3$
	．．．．．do．．．	9，116．09	17，597．04
Pambers－			
1 apacity of tank	muhir fret．	515く．0：3	$2 \cdot 2.04$
Wiotht of furl	－pormis．	（ti，fik）．	$11 . \mathrm{kk})$
Wherel hase．．	－fort．	11．1．5	\therefore St
；inmmer whatas．	do．．．	3.93	3．93
litut．	prourts．	24．	23．14：3
\therefore S．．．01l	．．dro．．．	2\％${ }^{2}$	2．）． $7(\mathrm{k})$
Thirl．	．160．．．－	3i． 114	．．．．．．
Tutal．	la．	（6）（1）$)^{1}$	万， 4 H：
$\because 14:$ with fixtures	110．．．	33，5（k）	N，吅：

 Lent carriage contains eight first－elass compartments and appox－ Gates the the saloon cars in use in the United States．As will he －．．．n from the drawing（Fig．l9），the capacity is limited in ronse－ Asene wh the imability to inerease the width，and hence es per cent －ha sats are sumpadred for the interior passageway．The com－ ： 0 ment fature is retamed in the end sections，whilst the rentre is A．into a saloon．The water elosets at the emis ane aeressibla to －pasingere．The heaters are reached by the tran hamb fom the formo．

These cars are musually large, being 73.37 feet in length from wit to out of buffers, !.s feet in width, and s.e9 in height of body. As these dimensions give a scant clearane the windows are grarded by irom bars. The car will seat forty-seven passengers and one porter. or forty-eight persons.

On either side of the coach there are two doors, placed near the midhle. with steps which are operated antomatically. These. with the end platforms, give four entrances and exits. By thus dispensing with the former exterior foothoards more space is grined for air and circulation inside.

The car body is supported upon two bogie trucks, each having but two axles (four wheels), and is fumished with Chevalier and Rey suring draw-bar: a compressed-air brake: a system of heating from two stoves with heat siphons, each supplying one-half the carriage With a circulation of hot water: electric bells. to call the combluctor: double sash, and an interior doorknob to open the doors without having to lower the sash and reach out, as at present.

The frame is iron. covered with wood.

Principal dimensions and weights.

Diameter of wheels.	feet.	3.98
Weight of an axle mounted.	. . . pormels. .	-. 61.8
Length, out to out (over all).	fect.	73.3\%
Lenerth of body end to end (outside).	do.	6.5.019
Length of body, emb to rma (inside)	do.	64.35
Interior width	.do. .	9
Exterior width	do.	! 10
Flowr pate.	siquare feert	\%94.4
Height at center of ends.	feret.	$\therefore .84$
Cubice contents.	. ${ }^{\text {cublic feet. }}$	1.1 .11
Number of first-rlass seats.	45	
Number of porters	1	14
Weright empty	. jommis.	ix.1io?
Weight equipped with water. eoal. ete.	(d).	*1. $31: 1$
Weight with forty-seven passengers and hagage timated at 10.4 pommes	ther being es....pounds.	- 2 S
Total.	de.	M, 4in
Dead hom per passenger	do.	1.7:\%
Inad loat per gassenger without roal and water.	Ila.	1.40\%
Ratione lise to dead load.		1:1:
Floser space per person.	quare feet.	10.7
Volume per persom.	cubic fert	4ri. 4
Gar length per jersom.	. freet	1. $\%$

Another first elass carriage. No. A. 20.3 (Fig. 20), is shown in whirh the passenger way is placed next to the car body for wach half lenerth and is comected by a transerses aisle. The three soats are thas made adjacent, giving six to mach of the eight sections, or forty-

- Wirht in all. Each eompartment is closed by an inside door'. 'The \because andal appontments remain as in car No. A. Pe: but the dimen-
 Tha weight of No. 203 filled with passengers is 90, so3 pounds.

The doad lomh. with fuel and water per passenger, is 1,738 poumds. Ratio of live to dead load, $1: 11 . \therefore$.
still a third form is shown in Figs. : 1 amd $2:$, in which the through aish is omitted, and the compartments are comected, two and two. he a short passage-way contaning foilet rooms and stoves. One paid of the eight sections is fittel up with movable couches which can bus lowered for the night and converted into beds, three in each compartment. The remaining six compartments will seat seven persons rath, making the full number forty-eight. 'This car has, conse. guntly, eight doors on each side and the continuons font board for extermal passage of " guatds."
The outside width of car body is: 9 feet: inches, and the length. win all, is it feet. It is mounted, like the others, on two bogie tracks of four wheels ach, spaced $4!3$ feet apart.

A faw of the more important data are given in the general table mating to cars.

A car devoted exclusively to sleeping raloons (Fig. ?3) is also on ©hihition. It comtains but three compartments, with toilets and there beds in each, giving a total of only nine passengers. It is man shorter than the others, being only 31.3 feet long. and is supfuntrol on three axles. with a wheel base of 19.35 feet. Its frame is of iron I-heams and chanmel hars. The wheels are a little smaller, lu-ing only 3.0 feet diameter.

These cars are the most capacions, but at the same time the most whensive both on account of the long wheel-base and great ratio of drallol live load.

- mother typical coach for first-class day passengress, well finished, i. momed on an iron frome resting mon three axles. It is fur-ni-hed with an atumatia air-brake. which operates on the four end whens: four lamps electric call bell, small windows looking into mothboring compartments, and eomtains soats for thirtetwo persons, with their hand higrage.

The seventh and last coriage ombraced in this representative tain is rat for thirl-rlass passengers exelnsivels. There is mo provision mane for second-class, and the heavior hagenge is carried in separate valle.
This car hat a maximum caparity of fifty personss and is the
 forn. bromgt very low, being but 1 to 3 , and if theonly objod were ...nnomy at any cost. it wonld be a mondel: but were this rat fall in

feet of air per passenger. The remaining data of inportance are given in the genemal table.

The Paris, Lyons and Mediterranem Railway Company have also an extensive display illustrative of the material employed on the way :and for construction. It inclutes pieces of boiler-plate riveted by hedrablic press, ecoentrics, gas-lamps, air-hakes, valves, tubes, Gommal boxes, and tools of varioms kimels.
(If sperial mathins there is one for making briquettes, one for morulating the speed of mining buckets or skips, a drop testing marhane another for testing axles and tires by flexure and by compression, an hedranlie dymamometer registering up sis tons. a chenoforhometar and varions others.

THE: WOOHF EN(iINE.
Amongst locomotives the Woolf angine exhibited ley the Compagnim des ('hemin de Fer du Nord is one of the most novel and interating as representing the latest devolopments in motors in France. It is of the gualruple celinder, domble-expansion type having the relimbers plated tambem. two on ather side. It has fomm axles with rompled drivers ach t.e: foet in diamoter. The gemeral plevation of the emoine is shown in lig. : t :men the sertion of the right-hand

Tha opemation of stemm admission and exhatust in this loeromotive is: as lollows: When the hain is hering starter high-pressurestean
 whet cover. whence it passes down thongh the matin valve, as indirated be the arow, and into the low-pressure eytinder. Therefore in starting all cylmers com he used with high-phessure steam if desired.

Whan operating with domble expansion the steam is admitted intothe stam chest at B. as shown by the exterior pipes on the side Wevation; thence it passes through the port (' into the passage I) and into the high-pressure eylinder. When the stemm has been expanded in the high-presume erlimer it is exhansted, as shown by the arow at F , through the passage F and through the large port into valve (a. and also through the ansiliary port in the valve. as shown be the arows into the passage H. and thence into the lowpessure eylimber. Alter locing expanded in the low-pressume relinHer it is exhansted, as shown he the arow at In the nsual manner thengh the exhatust nozales. Therexhatust pipes are imbependent of
 :ayze. This is stated to be am improvement over a former constructom. which comsisted in making one common pipe answer thr phe prese of both exhansts.

It was necessary to use the domble port value in commedion with

[^33]the large cylinder in order to admit the larger volume of low-pressure
 found almost impossible to sufficiently increase the ports of the low.

pressure eylimder and thas omit the ansiliary port without increasinge beyond areasomable bimt. the ports of the ligh-pmesure crlinder: It will be noticed that the ports as now math are rematrably laree. In a design of valve intembed forman and govern steam almisimes into both low and high pressure evlinders the prote must hecesi-
rily he large. This valve is made of gun-metal bronze and balanced
 hinh-pressure stem past the packing rings is almitted into the lowmessure cylinder. It is stated that this adve. in spite of its complication, has been rumning a long time with very little wear.
The details of the construction of the pistons are worthy of mote. wwing to their extreme lightness. The high-pressure piston is forged whe rod and made of steel. The low-pressure piston head, also of forsed steel, is riveted and keyed to the rods; great attention hats hen paid to the reduction of the weight of the reciprocating parts tw a minimum.

Foo. 25.--The Woolf angine, section of cylimatrs.
In order to prevent serinus disaster to this expensive machinery in "asess of the breaking of the romecting red the length of the hish-pressure piston row has been arranged so that the eross head will strike the back celinder head at J before the piston reaches the from cond of the cylinder. and for the same reason the spaces betwin the high-pressure pistom and the front evinder heme, when the pistom is at the end of the stroke. is less than the distance betwinn the how-pressure piston and the front eylinder head of the low-pnesure cylimber when in the same pesition.
A rey ingenions eylinder cond is usen with this boromotive. which oprotes with stean presure from the rab he operning the rate in the cab. The pressure of stemm admitted to the pipe leanins to the cylinder coeks operne the evinder conk and drains the colimber The device is very simple and dows away with an im-
 har whes are in this design, bolten to the barred of the celimere
This company have also displayed an experse lecomotive with
bogie truck; a compound locomotive for mixed trains; various carriages for day, night, passenger, and freight service c coss-ties, rails. switches, semaphores, and sigmals; electrical apparatus for posulating switches, and many other elements incidental to the operation of an extensive railway system.

The Compuguie du Miali have two engines; one first-chass sherpit: one first-chass compartment carriage with commmaicatmg toilut: one second and one third class concha: ome mail car: onc phat form war: also the usual elements of the rowlbed, bridges, aml station dexims, making an excellent display.

The I'aris and OMeans ('ompum! show a passengor appres hare motive with tender: also an engine and trmar designed for haty grades; varions forms of carriages, vans, and froight cars thantables; sigmal tools, etc.

The express ongine has some suecial fatures. Hoboiler is of a peculiar form, being provided with two domes, one over the fire hex and the other over the forward end of the cylinder. These domes are commected by a horizontal extermal pipe which passis though the sand box. The fire box crown is mate up of U-shaped matos. the flanges of which form ribs. They were designed by M. Pohne cean. Insteal of the ordinary firebrick areh it has the Tembink water box which is in gemeral use on this line. Besside the ordinary tire dom there is a smatler one at a higher level. The injectors foed into a pair of chack boxes grouped under the boiler, and umber than is placel a casting whencé pipes lead to the mud collectome phand under the forme and rear embs of the barmel.

The locomotives exhibited by the Chemins de Fer de l'Etat com-
 service. 'The first is a compound engine of tho Mallet system with ontside cylinders and inside valve gear. and is operatod by a boile pressure of only 108 pounds per square inch.

The passenger engine (:gol) has four axles, the whents of the contral pairs being coupled: of these, the lembing pair is fitted with a steam samd jet to increase the allhesion.

The special foature of thisengme is the valve gear which is known as the Bommefond system. 'The motion of opening the stam vabus is obtained from a cam carried upon a return crank on the drivinu axle, this gear being fitted with reversing link: the valves are elowel by a trip gear which detaches the valoe spindles from the opening gear.

As the trip gear is actuated from the corss, herad it wives perfery even cut-offs for bothends of the stroke, but it is not a commendahan frature for locomotive engines.*

[^34]The ('ompatmie des Chemins de Fer du Vord operate about 2.叉:2t miles of lines, covering nine departments and including a tributary ["pulation of abont $5,000,000$ people. Their exhibit includes the apparatus used in the services of operation, of material, and tras:inn. and of the way.
Of the material used for traction theme are fifty-one locomotives for express trains having two afles cotipled and a forward bogie rey similar to the American tyer, which have bend doing excellent arvice sime lasis. They are so satisfactory that a mow but more
 The most important changes are an incrome of the boiler pressure to Sif.: pounds per sfuare inch, and an enlargement of fire box. boiler,
 than formerly.

The three-cylinder compound angine (No. 3101) hat han in servire since August. Lssi. It has three coupled axhes and omu leading "pony" truck. Its pecular features are the high boiler pressure, which is placed at 1 g9 pounds, and the system of distribution of the high-pressure cylinder which is placed on the same line and bet ween the two outside eylinders, which are low pressure.

In conseguence of its high tractioe power and great adhesion, this engine is equivalent to one with four coupled axles.

In 1888 atrial was made of small locomotives with capstans for hamding trains in stations, which proved so satisfarfory that since -hen thirty-four machines have been built for regular server and the nse of horses superseded. The manemvers are effectod by means of a steel wire cable attached to the car and womd up) on the capsstan, and the expense is said to be but lis to ? per ene of that by lomsers.
The Crampton locomotive is axtensivoly used by this company. Its characteristics are three axles, two of which have outside bearbigs, while the motor axle has inside foumal bearings and wheels of a diameter of f feet 10 inches. The eylinders are placed on the flanks of the beiler and the center of gravify is vor much lower than usual. Sixty of these engines have been delivered to the company by Hm . J. F. (ail at Cie, Ancion miablissement. But only twenty-sis ame now in service.
 the Sociate Alsacieme, having fond wheres couphed, with a leating lugie fruck. Two erlinders are inside and two out. It represents a chass of which the company have one handred and three mathines.

Tho principal data are as follows:

Diameter of middle and rear wheels.	fret. .	6, $\times 1$
Wiameter of high-pressure colimber.	inches. .	$1: 1$
Diamoter of low-pressure erlinder.	. 10.	15
Stroke of terth pistoms	fret.	?
Weight of enmine cmpty	tons. .	34.-
Weight of rmatur in service.	dro.	\%is\%
Lsaftul weight for athesion.	.do.	2i.i

 pese of relieving the suburban trathe of the regular trains. Durins the year ksis there were raming each day 330 thamway tratus. pop.
 geographical sections. representing a total length of las milós and

The tram coach exhibited in the gallery of Machinery Hall is rna of the new tope designed for the light-tran servier. It is intenderl to fulfill the conditions of (1) the least weight per passinger carried: (:) ready ingress and egress and easy aceess for the conductor of the arr: (3) to permit the conductor to circulate readily amongst the mas. sengers to examine tickets, to amonnce the names of stations befome reaching them, and for the passenger toprepare for exit, to apporarh the dooss, and to descend rapidly: (4) to have a carriage of lato capacity in which the number of places offered for math class correspomds sensibly to the number actually occupied, in about the proportions of 10 to 1^{2} per cent of first class, 20 to per cent of secoml class. and the rest of thied class; (b) to give to each class a different access, so armaged that all passengers can enter or leave the car at any point of the line without assistance from the conductor: (ii) te arrange the cars so that when required it is possible to reserve a compartment for pastal service or baggage; (i) to give to it, motwithstanding its large dimensions, a flexibility which will emable it 1 . furn rumbes of ege to 3 se fect radins.

These recuirements are met by the car designed hy M. Bricogme and alopted by the Compagniodu Nomal. It is mombedon six axles. which are composed of there articulated trucks. 'The car contains
 compatment. and weighs when empty only ef toms. The body is ix.i fed home and is divided by a central passage. reached by three platforms, one at either end and one at the midhle.

It is divided into there parts for tovelers. At ome emel is a secondchass compartment containing twenty places following it, one for twelve places of the first class and arain one of the thime class for sevents. The compartments are separated by glase doots. There ar. thintern lanterns. ten inside aml three on the phaterms. The benly and frame are alsu ationhated. Thereare many other interest-
ingexhibits by this company, but we can oniy note the sleeper for sixtern personts, weighing empty 27.0 af 6 pounds, (length but 32 feet over all): and the phatform car No. $31,3: 3$, which presents some novel feamares. The latter is designed to carry long sheet-metal or commoroial irons, and consists of a platform 49. $\begin{gathered}\text { feet, resting upon two trucksof }\end{gathered}$ four wheels each. The trucks are connected by a coupling bolster and move around the center pintles. 'They are built of U iroms and rest upon four springs of 1 meter in length (3. os fect.) Tho dead load when empty is 37,180 pounds. the live load 50,000 pounds, and the total loat, on rails 92,180 , giving a loal per whee of $11.5: 3$ f"mols. Ratio of dead to live load, 1 to 1.5.

The Compregnie des Chemin de Fer du Sud exhibited a locomotive and car. The engine is adapted to lines of light trafie in the south of France, in the departments of Var and on the Maritime Alps. It approaches a type already used in the United States for similar traffic. The distance between the coupled axles is only t feet 3 inches, and the total wheel base is but 16.1 feet. To give the locomotive sufficient steadiness on tangents without diminishing its Hexibility on curves the Roy radial axle boxes of the leading wheel are fitted up with properly graduated abutment blocks.
The greatest speed is 24 miles an hour and the average 15 to 1%. The cylinders are $1+5$ inches in diameter, with a stroke of ? \because inches, giving a theoretical tractive power $\left(\frac{\mathrm{Pl}^{2} \mathrm{~L}}{\mathrm{D}}\right)$ of $14, \mathrm{~S}_{2}$ pounds. Empty the weight is 56,100 pounds. Ready for service, with tools and persommel, it weighs 73,810 pounds, distributed as follows: On learler, 16,060; on motor axle, 21,780 ; on coupled axle, 21,010 , and on trailing axle, 14.960. Although the weight on the drivers appears small, it is claimed that in this latitude and climate, instead of the usual limit of one-seventh for adhesion, the results obtained here are about onefourth, giving in consequence greater tractive power.

The engine is furnished with a steam sand ejector and draws without difficulty its usual harl of 75 tons over every part of the system. The train consists of a light van, mixed carriage, and four loaded wagons capable of carrying 10 tons each.

These machines are constructed by the Sociatr Alsadiembe de Constructions Méchanique, at Belfort.

The carriage on exhibition is fitted with first and secomf clats compartments, supported on two bogie trucks. It contains in all fortysix places, fifteen of the first and thirty-one of the serond class. 'The length of the frame is 37 feet. A plationm is placed at either Pad for the seperate use of ach compartment. The body is supprited upon two four-wheeled trucks placed 19. gs feet apart firom ronter to center of pintles. The total weight is eo. $7 \cdot \frac{t}{}$ pounds, giving foo pounds of dead load per place. The weight when hanled is - omputerlat 27,7 on. The average weight of a passenger is therefore lis pounds.

The same type of carriage applied only to second-class passengers contains seats for fifty-six persons, giving a dead load of 30% pounds per passenger, which is thought by the managoment to be a result not attained by any other class of material. The carriage was huilt in the shops of the Sociéte de la Buire, at Jyons.
other pieces of rolling stock comprise a dumping-wagon and a plation'm car.

These warens are built an a metal frame, designed to turn shapp curves. They have wiven entire satisfaction. The floor spaces are 14. 76 by eforf feet, The tare of the first wagon is 8.93% pounds: that of the second is s,oftpomme The ratio of dead to live loads is as 1 to 3.46 and 2.7 , respectively.

The Soriété Anom!me Intermationale have on exhibition one first and one third class carriage built for the State Railroad of Belgium. and one second-chass carriage for the Natiomal Society of Railroads,

The first two are designod to carry forty and eighty passengers. respectively, and are 38 and to foet long. Each car is mounted on three axles. the middle one of which has a lateral play to permit free movement on curves. The wheel hase is 11.0 feet from center tomd axles. They aro furnished with Westinghouse brakes and ave designed to fulfill all the requirements of a convenient and safe car. The remaining car is for a narrow gatuge of 1 meter (3.28 feet) and is designed to carry twenty-four passengers. The interior is finished in teak and pitch pine, with veneers, while the body is in teak and oak.

The Compugnie Internatiomale des Wagons Lits exhibits a highly finished vestibule train modeled largely after the American parlor cars. It consists of four conches with end platforms and vestibules. having a total length of 800 feet. The types shown in this train are: (1) A dining car, off. ${ }^{\text {a }}$ feet long, for thinty-six persons; (e) a chairsaloon car, 60, 11 feot long, for twenty-six persons; (3) a sleeping-ar. 5â fret long, for cighteron persons, and last, a smokor and baggage van, 46.7 feet long, for ton persons; making a total capacity of ninety passengers, or $2 . f+$ linurar feet per capitum.

These cars are finished in the highest style of art, beantifully carved, and handsomely upholstered with elaborate deoorations. They are designod not only to remove the discomforts of traveling, but to make it aluxury. The dining car contans a kitchon, with all aceessories, an olfice. a large and a small saloon: the first for twenty four persons. Who may smoke: the second for twelve who do not; also wator closets and toilets, accessible from the platform.

The chate conch is divided into two saloms, the one containing eight places, with four arm-chairs fived in the comers, and the other of eighteen places, with fouteen revolving and four fixed rhairs. A closet at the end is providen for small baggage or "luggage." and t wo cabimets with lavatories for ladies and grontemen, placed at one ond, complete the appointments.

The sleeper is divided urintoseven compartments, with a passageWay along one sideof the cat, and is provided withatoiletand water Wont at either emd. The beds are phaced traversely, some of the sutions contaning omle two, others four.

Ail the carriages have fixed and movable windows; those of the patamant open at the (op), thase of the saloon at the bottom, while Hamer of the sleaper altermate top and bottom.
These coaches are remankable for their steadiness and the case with which they bun wer curves even at asped of from at to tio miles and ham. They are supported on bogie trucks phaed at about 26 to to find apart. The cars are lit by electricity fed by accumulators.

Th Sorieté Générale des Chemins de Fer Écomomiques presents a large display embracing designs for varous milway lines of general amil lomal interest, stations, installations. and plant. Of the latter there are one locomotive, three passenger and one freight car.

The locomotive is mounted on three-coupled axles and an indepombent trailing axle fumished with Roy's malial boxes. In consequence of its short, rigid wheel base (7.3 f feet) it is able to turn 'asily curves having a radius of only 3 bes feet. Its tractive fore is about f(o) tons, and on a straight line the speed is $21 . i$ miles per homia (3a kilometers) on a grade of el ber cent. It is able to dats a train of a tons at a speed of 2.4 miles per hour. The eylinders are $1: 3.0$ by 18 inches, boiler is $3.2 s$ feet diameter, pressure $14 *$ prmals, surface of grate 10.76 feet, total heating surface $8.40 . \therefore$ feet, aml the total weight in service, with fuel and water, so tons. The

Tha than of cars consists of one third-chass carriage one for first and serond chass, and one for all three classes, with a compartment for hatgige and arrabsed for the free cireulation of the train mator when in motion. The bodies rest on bogio trucks with cember pintles. Thu deawbars and buffers are phacer centrally one wir the other. These cars are about 31 feet long amd woigh ? 1.20 pmanks, or for pounds per person. The thime class aceomodates fimbexix passengers.
 rolling stock, eross-ties in wood and iron, a remeral what wh their lines. photographs, technical reports, and an album of aromal statistices.

Therolling stock embraces a mixod ramiaro momated on bogios. wiht internal Z passage ways: for stambard gatge. The brely having

 Als: with ten sats mah, amd one cabinet and toild. givimes a cat patity of forty-nine persons.
(ommmacation is ohtainol by means of two salleriow extending
half the length of the carriage but on opposito sides, eomered hy a transverse passage in the middle. At each emd is an inclosed phatform which permits of passing from one car to the next. It weighs, with brakes ready for service, $31,15 t$ pounds, giving a dead load of 6;35 pounds per passenger. 'This form of carriage has heren in use lop three yours, and is highly appreciated by the traveling publie.

The lateral gallery permits passengers to dirculate froely from end to end of the train, while it at the same time preserves the isulation and privacy of the compartment amd almits of a complete amd ready inspection of the thain by the eompanyos amployes. It was introduced for the first time in France by M. H. Desgrange in lso, on the line from Treport to Gamaches, and since, in 1syb, on the line to Royan. In these cases the passage was on one side only. By the present arrangement the load is more evenly distributed.

The material for narrow-gruage (1 metor) roml axhibited by this same company consists of a tank locomotive with three coupled drivers, of which the following are the dimensions:

Breadth of grate .do. . . 2.00
Area. .square feret. . 9.84
Height of roof of fire hox. .do. . . 3. 48
Heating surface, fire box. .lo. . . 64. 64
Heating surface of tubes. .lo. . . . 643. 56
Total. 10. . . 718.20
Mean diameter of boiler. fert. . 3. 34

Diameter of cylinder....... .. 1.45
Stroke of cylinder $1 . i$
Diameter of whecels... 6
Wheel base .do. . . s. s.

Weight of water .la. . . 7 , 900)

Weight, total . 1 (it. (ivi)
This company has sixty-seven locomotives of different types.
There is also shown a baggage van 20.33 feet long by 8.8 wide, containing a mail eompartment, water-closet for passengers. and a mixed bogie carriage $36 .+$ feet long and capable of seating fwentro four tirst-class and eight second-class passengers. It contains: a saloon with rhairs for twelve and has a central passage for the fres circulation of travelers. Its weight when empty is 17.820 pounds. giving a dead load of or 4 pounds per passemger.

SPECIAL MOTORS.

Amongst the special forms of motors found in the French departmont may be mentioned the engine of Messers. Franca \& Lamm. (See Fig. 26.)

The Continental Company for operating locomotives without fire, and of which M. Leon E. Franeq is the director, exhibit one of their locomotives. It differs from the ordinary type in having no fire box, but in place thereof a simple cylindrical reservoir surmounted by a dome subjected to a pressure of $\geqslant 13$ pounds per square inch and filled to three-quarters of its eapacity with water. It is in this body of water, reheated by means of the steam furnished from a stationary generator under a pressure of 20.6 pounds, that the energy is storen for operating the machine.
The charge of heat to the magazine is complete when there is an equilibrium of pressure between the generator and the reservoir. Thus charged the machine can furnish an amount of power for traction which depends upon the quantity of water heated to $392^{\circ} \mathrm{F}$. This

Fia. 23. ...Fireless locomotive.
water supplies the steam for the cylinders at a pressure varying from 28 to 71 pounds per square inch, according to ciremomstances, by means of a particular form of pressure regulator.
These machines of Franca \& Lamm have been in successful operation for eight years in the Indies, Netherlands, France, England, Austria, and the United States.
They operate with great regularity and to great advantage. It is claimed that they have saved $\$ 1,400$ a month in the operation of the tramways between Lille and Roudaix, France, 6.6 miles. Their cost is about one-half that of the locomotives with fire boxes, which they have supplanted, and they possess numerous advantages over the smoke and steam generating machines, which have gained for the inventor the cross of the legion of honor. The address of the (empany is No. 15 avenue Kleber, Paris.
H. Ex. 410-vol iII-30

Another of these hot-water engines is exhibited by the Compurgnie des Ommibus et Tromurays dia Lyoms. It is a neatly finished motor weighing 15 tons, and is attached to a carriage of 4.2 tons, having a seating capacity of forty-eight passengers. The engine is capmble of hauling four such cars up a grade of 3 per cent. The second-elass cars carry fifty persons, and the total load of engine and four cars is computed at $4 ;$ tons, or $18 \% \frac{1}{2}$ pounds per passenger.
The following statistics of the tramway between Batavia and Meester-Cornelis will give an idea of the conditions under which this motor can be successfully operated:

The total length is 41,377 feet, or nearly 8 miles, and the difference of level between the termini is 50 feet, with undulating grades. There are curves having a minimum radius of only 82 feet, while the maximum gradient is about 3 per cent. The gatuge is 3 fect $10!$ inches. The mean load drawn is about 9 atons at a speed of 9 miles per hour for 15 hours of each day and the number of machines in service on this line is twenty-three. The total number in use is stated to be one hundred and thirty-three. The cylinders have a diameter of 9 inches and a stroke of 12 inches. The diameter of the wheels is 2 feet $7 \frac{1}{2}$ inches. The capacity of the reservoir is 2,0010 quarts of water and 550 of steam, and the weight is about 10 tons. There are four generators in each station, but only three are in constant use, the other being in reserve.
This company also exhibit photographs illustrating the application of the motors to canal towage, to driving machinery, and to other purposes.

An exhibit which can not fail to attract attention is that consisting of an engine with tender and one car, evidently designed as a special solution of the high-speed problem.

All the wheels are of the same magnificent proportions, namely. 8 fect in diameter and have a wheel base of 18 feet. The engine has three axles, the tender and car two each.
The latter is about te feet long and consists of a pair of heavy, longitudinal, arched beams supporting a double-decked body which is divided into compartments. The lower ones are suspended before. between, and behind the axles and contain seats for ten persoms in each. In the seromd story there is room for forty, in all making a total of serenty passengers. This uncouth model has been finished several rams, but its utility would appear to be very doubtful on account of its size, weight. and inconsenience.

As to redocity; it is reforted to have run at the rate of ipge miles per hrur. which is no more than has been rached be existing forms of mant.
Among the varions interesting exhibits made ly the Soriefe dis Ameirns Etahlissemments ('all we can omly notice specially the small tank hocomotive illustrating the De Bangesystem. It has four axles
with coupled wheels, but they run loose and the axles cam radiate on curves. The cylinders, which are inside, drive a crank shaft resting in bearings attached to the engine frame above the level of the wherls. The ends of this shaft are coupled to cranks at the ends of two auxiliary shafts placed between the two leading and the fwo trailing axles, respectively. these latter shafts also resting in bearings on the frame.

The wheels are driven by connecting them with the triangular rompling joining the crank shafts, by ball and socket joints, so that the engine can turn curves of very short radius, the one on which it stank being only 32.8 feet. The mechanism is ingenious but complicated.*

The remaining exhibits include one Crampton locomotive made in 18t! for the Northern Railway Company, which has made fon, 0 , 00 miles to date: one Bange truck, one tank engine with six drivers, system Achiét a Bapaume, and one 4 -ton tank engine for farm purposes; also locomotives without fire boxes (Francog system) and various desigus, photographs, etc.

These constitute but a small part of the magnificent display of rolling stock shown by the numerous French exhibitors in this class, but in this condensed accoment it has not been possible to refer specifically to all. Additional notice will be made of some of them under their appropriate headings. We now pass to a consideration of the exhibits of foreign countrips, begimning with Belgium.

THE BELGIAN RAILWAY PLANT.

Next to France Belyium makes the most extensive display of railroad plant. There are twelve engines, embracing a variety of types, and designed for heary work, with slack coal for fuel: hence special attention has been given to the enlargemont of tho grate areas and to securing greater boiler capacity.

The compensating levers work on knife edges, which is a common practice in this country; and in the later pattems the stacks are being made square in horizontal section, as tending to simplicity.

The radial axle boxes, Walschaert valve gear. central frames, compling rods, with solid bushed ends. Belpaire fire box and springs. and Westinghouse brakes constitute the predominating features of the Belgian models. which are more particularly deseribed in the following aceount of a few of the exhibits:

THE ($\mathrm{R} A \mathrm{~N}$) (ENTRAL, RAHIWAY.

The imposing display made by this company is well worlh a care ful inspection, not only on acount of the gemeral excellemer of the Workmanship but also berather it represents an alvanerd stage of ralway construction, experially in rollinge stock.

[^35]1. They show an eight-wheel coupled tank locomotive (No. 1\%0) for steep grades, the diagram of which is appended with tho principal dimensions. It has the Walschaert valve gear with open link.
Similar engines have been in use sinco 1805, but the one on exhihition contains all the latest improvements. (See Fig. 2ri).

Fia. \%r. -Tank locomotive. Belgian Crạnd Central Railway.
The principal dimensions are-
Mean interior diameter of loiler . feet. . 4.92
Area of grate. .square feet. . 24.86
Tubes. number. . ${ }^{2} 70$
Length. feet. . 11.48
Exterior diameter. inches. . ${ }^{2}$
Heating surface:
Fire box .square feet. . 94.6
Boiler tubes. do. . . 1, 510. 70

Working pressure. pounds per sf. in. . 147
Diameter of cylinder. mehes. . 18. 84
Length of stroke of piston 22.6
Diameter of wheels . D. feet. . 4
Contents of coal bin .cubic feet. . 88. 2
Contents of water tank . do. . . . 158.8
Weight, empty .pounds. . 90, 200
Weright, in service:
Leading and second axle. pounds. . 52,800
Third and trailing axle. do. . . . 62, 480
Tractive force:
Theroretical. pounds. . 83,846

A mixtel rarriatye for first and second class passengers (Fig. 28).This carriage is designed to secure greater capacity and comfort, yet still keeping within the limits of clearance of the permanent way. The body constructed of fat pine contains $1,301.5$ cubic feet, and is divided into two compartments of the first class, with seats for eight persons, and two of the second, with seats for ten; total thirtysix passengers.

The net weight of the carriage is about 23,320 pounds. The heat apparatus weighs 990 and the brake 1,650 pounds.

Wead wright in se	Si, 960
Dimension of axte journals.	8. ${ }^{\text {2 }}$
Wheel base	14.43
Length of sill	25. 58
Lengeth of body	2 S .90
Width of body.	7.67
lengrth of springs	6.88
Length from out to out of buthers	99.12
Area of Hoor space	196. 2
Cnits of floor space jer passenger.	5.45
Cnits of volume per passsenger.	37.25
Lnits of length of car per passenger.	0.81
C'nits of weight of ear per passenger.	
Weight of passenger (average).	15.4
Ratio of dead to live load	4.71

The supporting links of the springs are inclined towards the "interior" (Feraud's system*). The springs are fixed to the boxes. The car is lit by the Schallis and Thomas lamps burning petrolemm.

The heating is by the Bellerochet system; the brakes are of the automatic racuum system.
The heaters are let into the floor under the feet of the passengers and are kept warm by a current of hot water, which is casily regnlated both as to quantity and temperature. The water starts from the engine or from a heater van, and returns to this point after having circulated through the train on both sides. It has been in practical use for sixteen years.
The couplings are of the Deitz system.
3. A 20 -ton gondola with motable sides (Fig. 29).-F'or freight purposes, a well-built gondola is shown, having an iron frame 33.13 feet in length, supported upon two bogie trucks.
This style has been in use by this company since 1869.
Out of 7.024 goods wagons 180 are of this kind.

[^36]The general dimensions are:

Extreme length between buffers .	36.4
Extreme length of frame	83, 13
Extreme width of frame.	8.50
Distance between pintles of trucks.	21
Wheel hase of trucks	+.9
Live load	44.1160)
Dead load (tare)	
Capacity .	(1)
Ratio of dead to live load	1:1.62

Fig. © 0. Twenty-tongomdola. Belgian Grand Central Railway.
Special machines are on exhibition for cutting and trimming crank pins.

THE BELGIAN STATE RAILWAYS.
An engine of attractive design and excellent finish is that numbered 192 , * buit by the Sociéte Cockerill, of Seraing. Its most novel feature is the rectangular form of its stack, which is spread out at its base to make a simple and firm joint with the barrel. There are four axles: the two central ones holding the drivers are 6 feet bot inches and the others 3 feet $11 \frac{1}{6}$ inches in diametor. These angines pass freely around courves of $98+$ feet radius and draw trains of 100 tons net, or exio gross, up gradionts of one-half per cent at a speed of 59 miles per hour, and keep up steam on such a grade it milos long. They make a run of 5 hours with one stop of t minutes, and three others of a minutes each. The genemal datit will be found in the table at the end of this report.

Another engine (Fig. 30) was constructed by MIM. Carels Fremes. of (Gand, from plans of M. Leon Bika, engineer-in-chief of the Belgian state raildoals.t It is adapted to heary grades, and honco is mate heavier and stronger than its predecessors. from which it differs but slightly'in other particulars. In addition to the two outside frames it has also a strong central frame. composed of two plates separated be distance pieces and carrying a central bearing for the crank axle. so as to relieve the latter from the bending strains due to the thrust of the pistons.

- In-this engine the ordinary reversing lever is replaced by the Stirling apparatus, consisting of two horizontal cylinders. the pistons of which are mounted on the same spindle. One of these cylinders

[^37]is filled with oil or glycerin and connected by a pipe which allows the lluid to circulate from one end to the other. In the middle of

Fig. 30--Belgian state railways. Locomotive for heavy grades.
the pipe there is a valve which euts off communication between the piston hearls and keeps the piston fixed in any position. The piston in the other cylinder receives the pressure of steam from the boiler and can be moved to and fro by means of a controlling valve. The reversing lever is comnected to the rod carrying the two pistons.

The axle boxes of the leading wheels are fitted so they have a lateral play in their guides when passing around curves; the pressure on the lealing springs is transmitted to the axle boxes throngh inclined planes, which bring tho boxes back to their normal position as soon as the engine passes on to a tangent.

The springs, of the inverted Belpaire, type are connected by compensating levers. for dimensions see the general table of rolling stock.

Another locomotive deserving mention is that made for this eompany by the Sociatr Anonyme des Forges et Fonderies de Haine St. Pierre.

It has been employed for working mail trains of 110 tons not at a speed of $37 \pm$ miles per hour ovar grades of 1.6 per cent. At several points these gradients extend for 9.3 and 19.9 miles, requiring heary work.

There are three pairs of coupled drivers. 5 fect b. 9 inches in diametor, and one pair of leading wheels of 3 feet 5.7 inches in diameter. Inside cylinders, 19.69 inches diameter by 23.62 inches stroke, are placed under the boiler in rear of the leading axle. The grate area is musually large, being 60 square feet, while the total heating surface is $1,58 s$ square feet, of which $151 . s$ are in the fire box. The boiler pressure is $1 t^{2}$ pounds per square inch, and the engine weighs 48 long tons empty, or $2:$ tons in service. The load on drivers is ti tons.

There are also sevaral small tank engines and locomotives for tramways and narrow-gituge railways which go to complete the excellent display of this enterprising nation, but which we are compolled to omit.

The tank locomotive "Le Cinquantenaire." made by Lar Sociéte Anonyme, "La Metallugique," of Brussels, resembles so closely in its weight and rumning gear the latest American heavy freight engrine of the consolidation type* as to merit a brief notice.

It was designed from an engine rumning on the inclined plane at Liege, by M. Belpaire, and intended to operate on steep gradients of 1 to 40 or 23 per cent. The weight in service is 166,000 pounds (75,000 kilogrammes). That available for adhesion is 132,000 pounds, distributed over four pairs of triving wheels coupled together. There is moreover a trailing axle furnished with radial boxes, permitting the engine to turn curves of 40 feet rarlius.

* See No. 10 of the Baldwin exhibit.

The stack is rectangular and, forms the prolongation of a large smoke box-giving ample draft. The tanks are placed like panniers on either side of the boiler, and the coal box surrounds a capacious cab. This is claimed to be one of the best examples ever produced of an engine designed lor heavy work. In the four trial trips made on the Liege plane this engine drew the load ordinarily repuiring two eight-wheoled freight locomotives iij, tho grate of :3 to 100 . In all the trials the pressure, thanks to the large heating surface, was never bolow ten atmospheres. This machine represents the most recent improvements in the art of engine-building.

The brochure of this company describes many of its structures, workshops, and various types of rolling-stock built at Tubize, Nivelles, and La Sambre, which are necessarily omitted.

Lu Société Anon!me des Atcliers de Construction de la Mense, of Liége, Belgium, present-
First. A stationary engrine for operating an electric-light plant in the workshops of the Belgian State Railway Company.
Second. A novel type of locomotive for the State Ralway for drawing light trains.

Its dimensions are as follows:
Wright in service. pounds. . 66, 400
Weight empty....... 54,340
Gage of track...eet.. 4.9
Diameter and stroke of cylinders..................... inches. .13.8-19.2
Diameter of coupled wheels.. 3.9
Total wheel base . 13. 12
Heating surface of tire box
Heating surface of tubes (interior) . 10. . . . 494. 0
Surface of grate.. 21.4
Xumber of tubes. 147
Length of tubes. ..et.. s. . 2
Volume of water tanks..................... cubic fcet.. It
Volume of coal bunker .. il
The engine exhibited is taken, without special selection, from the usual run of the stock, and is representative of the workmanship of this company, which is of a superior grade.
There are shown also photographe of boats, hydratic ermes. locomotives for portable railways, tramways, industrial ways, amo other devices for railroads and mechanical operations.

Madame Aurelie Verhueghen, proprietress of the Usine Ragheno, at Malines, Belgium, exhibits-

First. A mixed carriage of great capacity, divided into two compartments and a coups of the first class (twenty places) and three (ompartments of the second class (thirty places). It is supported on three axles and furnished with a Westinghouse brake.
Second. A first.class carriage with two compartments, for suburban traftic.

These works are the oldest and most important in Belgitum, and thomonghly equipped for the construction of all kinds of converances for railway service. They employ about 350 workmen and produce anmally about $1,500,000$ franes ($\$ 360,000)$ worth of product.

The following are the general dimensions of these cars:

	Mixed carriage.	Suburban chrtiage.
Total length from out to ont	39. 0^{5}	33.5
Distance letwren axles	10.48	5.9
Breadth outside.	8.51	6.54
Height.	7.21	7.20
Lemgrth of berly, outside.	33.15	15.i4
Weight, empty.	33.4(x)	(1). 10.010
Price:	\$3.4(x)	S(x)

ENGLISH ROLLING STOCK.

The Lomdon, Brighton amd South Coast Railuray Company exhibit one of their express engines of the " Gladstone" type. It is peculiar in having large coupled leading wheols. There are three axles, the two forward ones, wheels $;$ feet f inches dianeter, being used for drivers; the rear ones, wheels $\&$ feet $;$ inches, for the trailing wheels.

Compressed air is used for the reversing lever and locking gear, as designed by Mr. James Stirling. It is taken from the Westinghonse brake reservoir.

The tender is six-wheeled, with inside bearings. The following dimensions and woights will serve to grive a better idea of the locomotive and its capmeity:

P'rrtirulurs and dimemsioms of B rlass engimer and tender.

		Inelies.
Diametor of erlimur	1	(i)
Stroke	2	$?$
Lap of valve		$0 ¢$
Lead in full gear		13^{3}
Distance of eylinders apart	$?$	1
Diameter of driving and leading wherels.	6	i
Itameter of trailing wheols	4	(i)
Driving center to loading center.	i	i
Wriving center to trailing center.	8	11
Total wheed hase.	15	7
'Total wherd base of' engrine and tender	38	! 1
Length of engine and tender ower butfers	51	11
Iength of beiler barrel.	1()	2
Mean dianeter, outside	4	-
Firelmex, outside length.	6	81
Working pressure....		150
Number of tuless.		3333
Outside diameter of tulxs.		11

Heating surface of tubes . square feet 1,386
Heating surface of tirelsox 114
Total heating surface. 1,500
Grate area 21
Areage temperature of feed water 14.
Quantity of water evaporated per pound of coal pounds. 12
Weight on leading. wheels 16Tons. Cwt.
Weight on driving wheels 10
Weight of engine Wrint on enghe 14
Total woight of engine and tender 66
Capacity of tender 2.250
Maximum number of vehicles to train $\because 6$
Maximum woight of train and engine 378
Bookid sipeed 461
Aremge coal consumption of eighteen of these engines, pounds per mile. 28
Longest run without stop 80(onstructed in the Brighton Works.
The locomotive and tender representing the South Eastern Rail-ua!! ('ompuny is a fine specimen of workmanship). Its main featureis the phemmatic reversing gear as designed by Mr. James Stirling.It is mounted on a bogie truck, with two outside coupled drivers.Thr berrings and cylinders are inside and the forward driver has acrank axle. The tender is carried by three axles with wheels of tfert diameter, spaced σ feet apart.
The following data are furnished by the company:
Boiler: Feet. Inches
Firelox casing, length outside 9
Wilth outside at luttom ()
Height from rail to center 5
Volume of water at 4 inches above crown of tire box. .cubic feet
Stramp pipe perforated on top with 260 holes one-half inch diameter.
Comer firelox:
Lungth inside lox (paralle) 0)
Wilth at top 61
Width at bottom 3
Ileight from top of firebox to crown at tube plate 6.
Height from top of firebox to crown at back $0 \frac{1}{2}$
Area of tire grate 16. 78
Heating surface of firelos 103.5
Tulnes:
Langth between tube plates 0116
Thickness (wire gatuge) 11 to 13
'hutside diameter Is
Simber. 209
Total heating surface 1, (120).5
Crlimbers:
I iameter 7
Stroke. \because
center to center 4
Cylinders-Continued. Feet Inches.
Length of steam ports. 4
Width of steam ports. 12
Width of exhaust ports 3
Slide valves, phosphor-hronze:
Travel, full gear 415
Lead, full gear. is
Outside lap 1
Wheels:
Diameter of coupled wheels with tires 3 inches thick \uparrow
Center to center of coupled wheels 6
From center of logie to driving wheel $\frac{1}{4}$
Weight in working order: (wt.
Bogie S
Driving wheels 5)
Trailing wheels 17
Total. 41 10
Tender:
Capacity of tank 2.600
Coal space, about 4
Wheels: Feet. Inches
Diameter with tires 3 inches thick 4
Distance center to center 6
Weight in working order: Tons. ('иt
Front wheel 6
Middle 10 1
Hind 3
Total 3) 10The North London Railway Company exhibit a complete work-ing model of their standard bogie-tank passenger locomotive on ascale of one-eighth, or $1 \frac{t}{d}$ inches to a foot.The engine represented has-
Feet. Inches.
Four coupled wheels (diameter) 5
Four bogie wheels (diameter) 10
Outside cylinders (diameter) 17
Length of stroke 24
Tractive force . pound 16, 500
Working pressure 160
Heating surface of tules square feet . . 904
Heating surface firebox do. 91
Total heating surface .square feet 095
Grate area. 16. 62
Wherel base do. 20.8
Contents of tanks. $\times 50$
Contents of coal bunker 2.5
Total weight in working order .tons 43

As representing one of the most progressive companies of Great Britain this exhibit possesses peculiar interest both from an historical and practical point of view. The model of the Webb compound double-cylinder engrines and the old types of George Stephenson, as exmmplified in the Rocket, and of Richard Trevithick's No. 14, contrast strongly, and serve to impress upon the observer the great strides made in the art during the past fourscore years.
The full size model of the Rocket represents the original engine as it appeared when it competed for the prize of $£ 500(\$ 2,500)$ offered by the directors of the Liverpool and Manchester Railway Company at Ramhill in 1829 . The model has been prepared from various drawings and also from information given in the Mechanics' Magazine of $15: 9$.
The engine weighed in working order 4 tons 3 cwt . It ran at the rate of $12 \frac{1}{2}$ miles per hour with a load equivalent to three times its own weight, and when taking a carriage and passengers it traveled at the rate of $2 t$ miles per hour. The model stands on old fishbellied wrought-iron rails and stone sleeper blocks taken up from the archway where the old engine used to stand, and which formed part of the original Liverpool (Crown street) Station.

A high-pressure engine designed by Richard Trevithick about 140.3-09 and made by Hazeltine \& Co., of Bridgeworth. This engine was found at Hereford, in a dismantled state, by Mr. F. W. Webl, of Crewe, in 1883, and purchased as scrap iron. The parts were taken to Crewe and put together as now seen. Some of the parts were found to be broken; these were mended and a few missing pieces replaced and made to accord as nearly as possible with the illustration in "The Life of Trevithick."
The boiler is of cast-iron, with the cylinder, which is vertical, placed insido it. The cast-iron manway cover bears the following inscription: "Hazeldine, Bridgeworth, No. 14." This firm appears to have been the makers of many of Trevithick's engines.
'There are also shown the following relics: An old fish-bellied castiron rail and stone sleeper blocks, which were taken up from the Cromford and High Peak Railway, and formed part of that line whon it was first constructed; a Blenkinsop's rack rail and wheel, as laid down on the Middleton Colliery Railway near Leeds in 1812. An old steel rail 2 feet $;$ inches long. This is a piece of one of the 21 font steel rails first laid down at Crewe Station in 1863 ; it was turned in 1sific and taken up in 187%. It is estimated that $79,000,000$ tons halw passed over it. The greatest wear of tables is 0.85 inches. Loss of weight, 20 pounds per yarl.
. 1 mondel of compound engine (Webb's system). -The total miles run by the seventy-five compound engines now in use on the London and

Northwestern system since their introluction in 188. amount to $11,64+222$, and the average consumption of fuel of all types of these has been 3 ..9 pounds per mile. As illustrative of the kind of work these engrines are called upon to perform it may be stated that the me mamed the "Marehioness of Stafford," between December li, isisi, and May 31, 1880, ran (1) two hundred and forty-four trips from Crewe to Carlisle and back, with a maximum load of twenty-two coaches and an average load of thirteen coaches in both directions: (?) two hundred and forty-three trips from Crewe to Lomion innd back, with a maximum load of twenty-two and with an arange load of thirteen coaches; (3) fourteen trips between various prints, with a maximum loadof sixteen and an average of nine coaches. bowering in all a distance of $15+342$ miles, with a coal consmmption of 36.5 pounds per mile, including that burnt whilst standing in str:mm, and, in fact, issued for all purposes. She was turned ont of the Crewe workshops on February 28,1885 , and on the doth of April following was sent to the International Inventions Exhibition, and her designer and builder, Mr. F. W. Webb, was awarded the gold medal for railway phant by the executive council. On November 30 she arrived back at Crewe, and on December 17, 1885, commenced her working eareer, continuing in active service, with slight, interruption for repairs, up to the present time.

The average consumption of fuel of forty of her class and dimensions has been 36.8 pounds per mile, whilst the loads mentioned above may be taken as fairly typical. The average cost of maintenance compares very favorably with that of other classes, and in all respects the commercial results obtained with compound engines on the London and Northwestern system up to the present time have been very satisfactory, and have shown to great advantage in the case of one of the ordinary type of metropolitan engines working on the district railway, which was converted into a compound some time ago.

This engine has run 188.333^{7} miles since its conversion, the average consumption of coal being 23.2 pounds per mile, including the usual allowance for raising steam, whilst the average consumption of the same type of engine, noncompound, doing similar work was, during the past six months, 32.4 pounds per mile. A morlel of one of there engrines is exhibited.

The sleeping saloon built by the London and Northwestern Railway Company at their works. Wolverton, England. to run betwem London and Sootland, is $4 *$ feet long, 8 feet 6 inches wide, and \mathfrak{f} foet 10 inches high at center outside dimensions, and is divided into four slegping compartments, each compartment being provided with a separate lavatory. The entrance to each compartment is from a transverse vestibule, of which thereare two. commected by a corridor on the side of the two central compartments. The following outline sketel
will further illustrate the arrangement of each compartment. (Seo Fig. 31).
The saloon is constructed to carry twelve passengers (four in each of the end compartments B and I and two in each center compartments I) and (t). The compartments B and I have pull-down upper buth over each of the longitudinal lower conches, marked 1 and 2 , which are provided with hair mattresses, pillows, ete. The compartment is fitted up, with American walnut framing, burr walnut panels, and bordered romed with Hungarian ash bands, the whole being upholstered in moquette cloth of a velvet pile, with laces to match. The lavatory (A) belonging to this compartment is fitterl up with a silver wash hasin, in one piece, with all the requisites for toilet. There is also a water-closet, fitted with all the latest sanitary improvements and provilod with folding flaps. The closets are supplied with water carried at the under side of roof' in copper tanks, timed on the outside, the water gravitating to the basin and water-closet through suitable flaps. These lavatory tanks are filled from the outside by a portable water ank and pump at the terminus. The fitting of the lavatory is in American walnut fascais and frame, with syamore panels, with walnut molding bet wern each, and the whole polished.
The sleeping compartment I is also similar to B in arrangement, with pull-flown upper wheping berths, etc. The center compartments D and G are provided only with sheping berths below. The dimensions are af feet 3 inches long by 6 feet wide.

From cach of these central compartments I) and (ithere is a diagonal lavatory fitted with folding wash basin, shutting up into a
 small compass when not in use, as well as a comer water-closed with folling flaps. The entrance to each of the sleeping compartments is from the vestibules C and H : these again are comected by acorridor. K. The vestibule H serves as a smoking compartment and is furnished with cleven revolving wahut came-siated chairs: this (ompartment is fitted up with rosewoed panels and satinwood band moldings, ete.

The small vestibule C is arranged to carry an attendant, who also prepares light refreshments, tea and coffee, there being apparatus fitted up in the stove chamber I. The stove is used also for heating the saloon by means of a small pipe, through which hot water circulates around each compartment, returning again to the stove. The siloon is also fitted with electrical communication from each compartment to vestibule C to call the attendant. It is also lighted by compressed oil gas, burnt in the same way as coal gas, toned down to burn at atmospheric pressure by suitable valves, the gas for this being carried in a cylinder attached to the under frames. The lamps in each compartment are regulated by the attendant, there being valves inside to do this when required. The weight of satoon in service is about $2: 2$ tons exclusive of passengers. The frame on which the saloon body is mounted is carried on four pairs of Mansell wheels. The two center pairs have a fixed wheel base of 16 feet, working between iron axle guards or hornplates fixed to the side of carriage frame, while the two end pairs are fitted with Mr. F. W. Weblis radial axle boxes at 8 feet outside each conter pair, thus making a total wheel base of 3 feet. Each of the latter axles has the axleboxes guided by hormplates, forming part of an independent frame which is capable of moving laterally under the main frame of the carriage, the direction of its movement, however, being controfled by suitable curved guide blocks so that it can only move along an are of a circle of 6 feet $9 \frac{1}{2}$ inches radius. The lateral play allowed is $2 \frac{1}{2}$ inches in each direction from a central position, the movement being controlled by a central spring which is compressed by the movement of the lawer frame to either the right or left.

At ach corner of the lower frames is a casting upon which rests the slipper block attached t the main frame. The weight is thus transmitted to the lower frame and all tendency to rolling on the lower frame is avoided.
The whole arrangement is simple and effective. The under frame is also constructed to carry two gas cylinders for supplying the sleeping saloon with compressed gas. Theso cylinders are 16 feet long by L3 inches outside diamoter, are suspended by spectacle eyes partially encircling them, and attached to the center and outside of the frame.
Carrying brackets are also attached on the outside cast-iron body for bolting the borly to the frame, and in them is inserted Ludiarubber cylinders to take off the jar and tremor from rolling of wheels. The bearing springs also are suspended by adjusting serews and India-rubber cylinders to further eliminate any jar to the boty of carriage. It is also fitted up, with the simple automatic vacum and Westinghouse brakes completr.
The frame is made of steel throughout except the longitudinals

II. Fx. 411 -ven M-Face patge 4×1
and diagonals, which are of oak timber, the whole being riveted together and forming a very strong carriage frame.
 imporements in rolling stock in England are revealed in the beantiful types of locomotives and carriage shown by this companys of which Mr. S. W. Johnson is the locometive angineer. In itsporfile the engrine is very neat and trim, all the working parts being woll covered. The tout ronsemble is as simple as it would seempersible to make it, judging from the exterior view as illnstrated in the aceompan!ing cut.

The wormanship is finishod in the usual excellent style. The rnginu is mounted on four axles, two of which are under the bugie truck and have inside bearings. There is but one driver. \hat{i} feet $;$ inches diameter, connected by a cank axle with the inside cylinders. There is one pair of small trailing wheels under the cab and three axles under the tender. The boiler pressure is 160 pounds per squate inch, and the engine is designed to run at the schedule rate of $53 \frac{1}{2}$ miles per hour with from nine to thirteen coaches. These engines have been doing this work for two years with an arerage consumption of from 20 to 23 pounds of coal per train mile and have frequently taken from thinteen to sixteen coaches without loss of time.
The leading wheek are 3 feet 6 inches in diameter, placed $;$ feet apart, and permit of a lateral play of three-fourths of an inch on each side. The truck is brought back to its central position by a combination of steel springs and rubber cushions. There are two hundred dred and forty-four copper tubes in the boiler, 11 feet long and 18 inehrs extermal diameter, fastened to the fire box ly formes and to the smokebox end by expansion. All the motion work is of mild strel. case hardened.
Two automatic injectors supply the feed water to the boiler. These are fitted directly on the back of the fire box, and the clack boxes are included in the casting of the injectors. There are no pipes under pressure outside the boiler, and the injectors can be taken out and fxamined without lowering the steam pressure.

The engine is fitted with the automatic vacuum brakes for the train, in combination with a steam brake for the engine and tender: also with a steam sanding gear and an automatio sight-fead lubricator.

The water tank of the tender will hold 3 ,200 gallons and the bin abrut 3 tons of coal.
The draw and buffer springs are India rubber cylinders. but a large (\because swing, with about $1 \pm$ inches initial compression, is used as the daw spring between the engine and tender.
H. Ex. 410 -vOL HI- 31

Midland Railuay carriage No. 91f,on furo sior-ukheeled bogie trucks (Fig. 3:3).This carriage contains three first-class and three third-class compartments, with lavatory accommodation to two compartments of each class; also a compart. ment for the guard and luggage. This is fitter with hand brake and provided with racks and shelves for letters and parcels: also with switch for controlling the electric light, cord communication, appliances for communicating with the engine driver; also automatic valuum brake-indicator gauge and valve for ap. plying the continuous brake.

This carriage is the ordinary type of six-wheeled Bogie carriages working on the Midland Railway, and the three first-class compartments are samples of the styles of upholstery and finishing arlopted for the Midland Company's carriage stock.

The first-clas: compartment for ladies is upholstered in brown plush, and the inside casing of the compartment is of walnut wool. relieved by solid chasings and moldings.

The nomsmokers compartment is upholstered in bue woolen carriage cloth, ant the inside casing is of sycamore pancl, with maple and walnut mold. ings.

The first-class compartment for smokers is upholstered in orimson mororeo and the inside lined with Lincrusta-Walton, with mahogany facings.

The third-class compartments are of the ordinary description and style of the third-e lass compartments in the Midland Company"s carrage stock, upholstered in crimson and hack phush.

Both the first and third class lavatory compartments are of the ordinary description and fittings pertaining to each chass.

The carriage is an feet long over the
borly, s feet wide, and $\tilde{\sim}$ feet high. It accommolates sixteen first(liss and twenty-eight third-class passengers: total capacity, fortyfour. It is fitted with the automatie varumm continuous brake and lighted withelectric light. The mader frame of the carriage is made of white oak, as is also the body framing. The flow, partitions, roof, and the inside casing boards aro of Swedish red deal. All the outside panoling and moldings are of Honduras mahogany.
The Bogie trucks are chiefly constructed of wrought iron.
The bearing ard buffer springs are all laminated, and, with the tires and axles. are mado of Bessemer sterel. The disks of the wheels are formed of teak-wood segments. The hoss is of cast iron, arranged to give increased end-bearing surface to the wood block. The ante boxes are artanged so that the brass bearings may be taken out and replaced without lifting the carriage.

The compartments are lit by electricity. The total woight (tare) is :i tons, of 2,240 pounds.

In aldition to the several railroad companies exhibits there were mumorous others containing a goodly display ol matrrial used in construction and operation, including electrie signals, compressed-air and racuum brakes, nuts, bolts, switches, splices, mik, ties, hamps, buffers, boilers, etc., constituting an instructive display.

The characteristic features of the English engines aro the absence of pilots and headlights, the inside commetions and eylinders, the small size of the cah, which is wanting in some patterns, and the general simplicity of the design.

SWITZERLAND.

The Soriéte Suisse, of Winterthur. have on exhihition a compoume locomotive with three coupled axhes and a pony trurk, having outvide cylinders and Stephenson valve gear, the latter being inside and onerating by means of rocking levers. It is of the Mosul type and designed for a standard gatuge. The locomotive is characterized by a pilot and headlight, as in the American pattern, and carries a large cal.
Another engine is shown for a l-meter gange. It hat threr axhes (cmpled, atal is designed for tramway servier. A momitain loenmotive of a mised type. constructed to run by simple adhesion. wh by rack and pinion, is also placol wh exhibition liy this compans. It has four wheres coupled to the central shatt carrying the toother where, which can bo geared into the arank shat driven by inside rylinders.

The Monnt Pilatus engine is also a fature of this exhibit. It is momated on two axles and propellod be double horizontal pinions graring into the rack. The maximum gradient on this unigur line is is per cent, and the difforence of mation betwean its formini

. ITALY.

The Société des Chemins de Fer de la Méditerranée, of Milan, have on exhibition a locomotive and carriage of excellent design and finish. The engine, No. 1701, has four axles, two coupled, and a Bogie truck. It has outside cylimers, and valve gean of the Gooch stationary-link type, a boiler pressure of $14:$ pounds per square inch, and a long fire grate extending over the trailing axle.

The locomotive shown by the Société Italienne des Chemins de fror Méridionaux, of Florence, is also an eight-wheeled machinc. It is similar in many respects to the Swiss engine already described.

One of the most instructive of the Italian exhibits was that made by Miani, Silvestri et Cie of Milan. It comprised an engine and train of seven special carriages. The engine rests on a Bogie truck and three coupled axles. The valve gears and cylinders are outside. and the workmanship is very good.*

The only other exhibit in this class was that made by M. Cyriaupe Helson, of Turin, who shows an interesting collection of metallic cross-ties, in both iron and steel, for railroads.

* Condensed in part from Engineering, August 9, 1889. London.

UNITED STATES.

During the year 1888 the Baldwin Locomotive Works, at Philadelphia, Pemsylvania, turned out no less than 727 engines, classified as follows: Consolidation, octopod engines, 27e; six wheels coupled, freight and passenger, : 275 ; passenger engines, four wheels coupled, 1ss: special single-driver engines, 1 : rack-rail engines, 1. The smallest number built in any one month was 54 and the largest ios.

As illustrating the great variety of locomotive construction now prevailing we have to submit from the Baldwin works the following illustrations of twelvedifferent kinds of engines of their manufacture, fugether with a brief description of each.

Fig. 3 trepresents a ten-wheeled passenger locomotive, with radial stay waron-top boiler, built for the Denver and Rio Grande Railroad Company. Cylinders, 18 by 24 inches; driving wheels, 54 inches diameter; rigid wheel base, 6 feet; driving wheel base 11 feet 9 inches; tutal wheel base, 22 feet 1 inch; weight in working order, total, about

Fig. 34.-Ten-wheted passenger.
101.000 pounds; weight on driving wheek about $i \boldsymbol{T}, 000$ pounds. Fitted with two Friedman Monitor No. 9 injectors, Nathan sight-feed Inhricator, Westinghouse atomatic brake for tender and train wherls, mat the LeChatelier water brake acting hy hack pressure on the pistons.

Fig. 35 is a rack rail locomotive of the Riggenbach's system, designed for the Estrada de Ferre de Gran Para, of Bramil, to han o? toms (of 2,204 pembls) of cars and lading up a spate of 15 per cent, or Bee feet per mile, at a sped of akilometers (or mid miles) per hour. (Glinders $1 刃$ by 0 inches, geared driving wheds 41.35 inches diamder on piteh line, carring wherls oi inches diameter. Weight in working order about 42.000 pounds. Fitted with hand sorew brakes ating on geared wheds and the Lechatelier wator brake operating by back pressure on pistons.

Fig. : m, decapen lecomotive built for the Northern Pacifie Railrond Company, the dimensions of which are as follows: (iange of track, 4 feet i ? inches; actual weight in working order exclusive of
tender, 148.000 pounds: actual woight on driving wheels, 133.000 pounds; estimated weight of tender: including coal and water, somo pounds: estimated weight of liocomotiveand tonder, in working order,
 coupled, 4 inches diameter: total wherl hast : t fert 4 inches: hriving

\$ inch thick, gs inches diameter; height of rentre line of boiler above
 wide: tubes, 270 in number, si inches diameter, 13 feet i inches long. Hating surfaco: fire box, lhe square fect: tubes, o, $14 \begin{gathered}\text { square feet: to- }\end{gathered}$ tal 2,310 square feet; tank eafacity, 3,600 gallons. The first, fourth,

Fig. 36.-..Decaper.
and fifth paits of driving wheels of these engrines have flanges, the second and third pairs are plain. To reduce the friction when traversing curves the rear or fifth pair of driving wheels has additional play. The rigid whee base is therefore practically only the distance between centers of the first mad fourth driving wheels, namely, 13 feet 8 inches, which is less than that of either a consolidation or Mogul locomotive of ordinary type.

Of the performance of the "decapor" Mr. (G. W. Cushing, superintendent M. P. M. \& R. S. of the Northern Pacific road, writes as follows:

With reference to the "decapod" engine: During the work of construction I am not likely to get experimental trips of which to send you reports, but am able to report the remarks of my assistant in regard to their prosent working, as follows: "The "decapod" engines are working well, and you would be surprised to see the track they can run wer and remain on the mails. They go anywhere, either on bad trark or curves, that an eight-wheeled engine can go, and surprise tis all. The rentl curtainly justities your choice of these engines for the special work."
I may add in explanation, the tatek is tmosually bad becatuse of the peenliar conditions of climate and soil which render track-laying in the momatains possible in Jamary. At a later date, when tack becomes settled and in good sufface, it will be fair wrexpriment with reference to capacity of these engines on a 300 -foot grade, and I anticipate their work will then further surprise those in charge. I am entirely pleased with their performance.

Fig, 3 .-.Noiseless steam st reet car.
Fig. 37. Noiseless steam street car: Cylinders, 8 by 10 inches: driving wheels, 30 inches diameter: weight in working order, without passeners, about 10,000 pounds. Built with steel boiler and fire box, steel tires and wrist pins and charcoal iron flues. Fitted with steam hrake applying to tread and flanges of tho driving wheels. two injectors, two headights and all necessary tools. A steam car of this type is used by the Grand Trunk Railway Company for ferry passenger service on the International Bridge at Buffalo, between Black Rock and Fort Erie.

Fig. 38. Six-wheels-connected switching locomotive, with separate dight-wheeled sloping back tender. of 2.400 galloms capacity, built for the Norfolk and Western Railroad Company. Cylinders, is by et inches; driving wheels, if; inches diameter; wheel base, 10 feet 6 inches; weight in working order, about s:3,000 pounds. Built with steel boiler and fire hox, steel tires and wrist pins. and lap-wedded charcoal iron flues. Fitted withtwo Friedman Monitor No. s injectors, steam brake, and Nathan sight-fed lubricator.

Fig. 39. "Forney" type locomotive, with two pairs of driving . wheels connected and a four-wheeled swing bolster truck in rear,

Fig. 38.-Switching.
built for the Suburban Rapid Transit Company of New York. Cylinders, 14 by 18 inches; driving wheels, 48 inches diameter: weight, in working order, total, about 55,000 pounds, weight on driv-

Fia. 39.--Forney.
ing wheels. about 42,000 pounds: tank of 600 gallons capacity catrried on extension of engine frames. Built with steel boiler and fire box, steel tires and wrist pins and charcoal iron flues. Fitted with

Fig. 10.... Mogul.
Eames vacuum brake. Shaw muffer for safety valves. two No. ${ }^{6}$ Friedman Monitor injectors, and all necessary tools.

Fig. to. Mogul locomotive, huilt for the Central Vermont Railroad Company. Cylinders, 19 by of inches: driving wheels, at inches di-
ameter; weight in working order, about 100,000 pounds; weight on driving wheels, about 89.000 pounds; separate eight-wheeled tender ,of 3,000 gallons capacity. Boiler of steel, lagged with asbestus; fire box, tires, and wrist pins of steel, flues of charcoal iron. Fitted with Eames vacuum brake, Seibert sight-feed lubricator, and two Friedman Monitor No. 9 injecturs.
Fig. 41. Double-ender suburban passenger locomotive, with two pairs of driving wheels comected and a two-wheeled swing bolster

Fia. 41.-Double ender-Suburban.
truck with radius bar front and back, each truck equalized with adjacent pair of driving wheels, built for the Brooklyn, Bath and West End Railroad Company; to burn hard coal. Oylinders, 15 ly的 inches; driving wheels, 49 inches diameter; weight in working order, about 70,000 pounds; weight on driving wheels, about 53,000 prouds: tank of 900 gallons carried on builer. Total wheel base 21

Fic. 4e.-Tank switching.
fert 8 inches; driving wheel hase. 7 feet if inches. Built with steel builer and fire box. steel tires and wrist pins, and charcoal iron flucs. Fitted with water tubes and drop bats for grates, hopper ash pan. Eames vacum brake two Friedman Monitor No. 7 injectors, Detroit sight-feed lubricator.

Fig. 42. Six-wheels-comected tank-switching locomotive built for
 wheels, 43 inches diameter; weight in working order, about 70,000 pounds; wheel base. 10 feet; tank of fan gallons capacity. Built
with steel boiler and fire box, steel tires and wrist pins, and charcoal iron flues. Fitted with two Sellers's 187% injectors and Detroit sight. feed lubricator.

Fig. 43. Consolidation freight locomotive, built for the Buffalo, Rochester and Pittsburg Railway Company. Cylimders, on liy ot

Fici. 43.-C'Onsolidation freight.
inches: driving wheels, io inches diameter: weight in working order. total, about 116,000 poumds; weight ondriving wheels. about $10: 3,100$ pounds; total wheel hase, 21 feet 0 inches; driving wheel base. $1+$ fort: tender of 3,000 galloms capacity. Built with steel boiler and fire lwa. steel tires and wrist pins, and charoal iron flues. Fitted with Westinghouse automatic brake for driving, tender, and train wheels. two Friedman injectors.

Fis. 44.-Plantation.
Fig. 44. Six-wheel-comected plantation locomotive, with separate four-wheeled tender of 90 gallons capacity, built for Messrs. Krajewski \& Pesant, of New York, for service in Cuba. Cylinders, 13 by 16 inches; driving wheels, 33 inches diameter; wheel base, 7 feet 8 inches; weight in working order, about 34,000 pounds. Built with steel boiler and fire box, steel tires and wrist pins, and charcoal iron Hues. Fitted with Radley \& Hunter stack. one No. 5 eclipse injector, one brass pump, and all necessary tools.

Fig. 45. American type passenger locomotive, built for the Norfolk and Western Railrond Company. Cylinders, 1s by tinches; driving wheels. 6i: inches diameter; total wheel base. it feet did inches; driving wheel base, ! feet; weight in working order. about 101.000 peunds; weight on driving wheels, about di.000 pounds; tender of 3., wi) gallons capacity. Built with steel boiler and fire box, steel tires and wrist pins, and chareoal iron flues. Fitted with two No. ! Friedman Monitor injectors, Westinghouse automatic brake for driving, tonder, and train wheels, and Nathan sight-feed lubricator.*
The more practical technical information regarding a few of the muncrons types produced by this enterprising company will be found in the accompanying general table of data, and the sectional diarrams submitted herewith (Figs. $46, t_{i}$, and $4 s$). The facilities of the ewtablishment are such that recently an congine was designed, drawn, built, and delivered in eight days. The present output av-

Fia. 45.-American type passenger.
erages two locomotives per diem, and arrangements are now perfected ly the firm for turning out one thousand locomotives in a year, if it be found necessary.
For heavy work a few engines of the "Decapod" type, shown in Fig. 3f. havo beon built, with its five pairs of drivers, but it is found that suhstantially the same results areobtained hy an eight-wheeled driver aud larger boiler capacity, so that the Decapod type is practically suprseded by the " heavy consolidation freight "engine, similan to No. 43. A late engine of this type, built for the Northem Paciaic Railroad Company, is now in use on the momatan division, where there are 10^{9} curves (573 feet radius) and grades of 116 feet to the milo ($\% .2$ per (ent). Under these conditions the engine is reportod to be able to draw "about eighteen loaded cars, and for wintor abont sixteen will be the averago." The largest load yot hauled by it vas twenty loaded cars, weighing in the aggregate about 600 net tons, or 535 tons gross.
The actual weight in working order, exclusive of tender, is 150,000 pounds, and the weight in drivers, 135.000 pounds. The cylinders

[^38]

Fig. 46.-" Mogul " pattern, freight locomotive. longitudinal section.

are 22 inches diameter by 28 inches stroke. The driving-wheel base is 14 feet, but the central wheels have no tires and a broad tread.

It is therefore the heaviest American engine on the general list, and is exceeded by only one Belgian locomotive, of substantially the same design, but having its tank over the drivers. The weight on each pair of the driving wheels is 33,750 pounds, or on each wheel, $16,8 \mathrm{a}$ a monds. Additional data will he found in the table.

Consolidation locomotive with Wootten fire box Fig. ts represents a special consolidation engine, built by the Baldwin Company for the Calumet and Hecla Mining Company, of Michigam. The engine is fitted with the Wootten system of fire box, and, though built for a narrow-gauge line, has slightly more tractive power than most consolidation engines and considerably greater weight, being the heaviest consolidation engine ever built for any gauge by the Baldwin Locomotive Works. The following are the leading particulars and dimensions of the engine:

Cylinders, diameter and strokr, 20 by 26 inches.
Tractive fore per ${ }^{\text {orond }}$ average pressure in cylinders, 208 pounds.
Gauge, 4 freet 1 inch.
Fuel, buck wheat or pea anthracite.
Weight in working order, about 130,000 pounds.
Weight on driving wheels, 166.000 pounds.
Total whed base of engine, 21 feet 9 inches.
Driving-wheel base of engine, 13 feet 8 inches.
Total wheel base of engine and tender, 50 feet 6 inches.
Driving wheels, diameter on tread, 50 inches.
(Front and back driving wheels flanged, intermediate wheels plain.)
Driving-axle journals. diameter and length, $7 \frac{1}{2}$ by $8 \frac{1}{2}$ inches.
Engine-truck journals. diameter and length, 5 by 8 inches.
Tender journals, 34 by 7 inches.
Boildr, Wootten patent, straight top, of steel, \& inch thick.
Diameter of waist of boiler at smoke-box end, 60 inches.
Fire loox, inside, 114 inches long by 9 and inches wide.
Tules, 204 in number, 2 inches diameter, 10 feet $6 \frac{1}{2}$ inches long.
Boiler tested to 200 pounds per square inch; working pressure, 160 pounds per square inch.

Boiler lagged with astestos.
Variable exhaust: diameter maximum opening, 6 inches.
Ferd water supplied by two Rue injectors, one No. 9 and one No. 10.
The brake shoes of the Ross pattern, with hearing on flange of tire and tread inside of track line. hut recessed over the part where the wear of the rail naturally comes, so as not to increase the wear of tire at the point where they are wom by the rails.

The colinders taperd so that indicator cards may te taken when the engine is put into regular service.

A steam \&auge attached to the steam-brake pipe, so that the engineer can see just what effective brake pressure hi has available.

Le Chatelier pipe for braking lay back pressure on pistons.
Hudson's patent automatic lell ringer.
Relief corks on steam chests, operating automatically and by rod running back to cab.


```
Bugden's sight feed lubricator for cylinders.
DN: Lancey's, patent balanced slide valves with Allen ports.
Reverse quadrant graduated to each inch of cut-off.
stam, brake acting on forward side of all driving wheds.
American steam brake on tender wheels.
Height from rail to center of loviler, i feet it inches.
Huight from rail to top of boiler. 10 feet 1t inches.
Height from rail to top of stack, i5 feet id inches.
Engine-truck wheels with strel tires.
Driving boxes of cast steel.*
```

Insrription of miscellanemes articles exhibited by the Pemnsyleania Railroad Compan! of Pemms!lrania.
(1) One cast-iron wheel worn out in service under a passenger car. Length of service, 21t months. Mileage, 120,915.
(\because) One cast-iron wheel defective in casting. The dofects in this wheel are chill eracks due to contraction of the whee while cooling in the mold. These chill cracks are the most common defect in the manufacture of cast-iron wheels, and wheels having these defects are never placed in service.
(3) One new cast-iron wheel with piece broken out to show depth of chilled iron on tread, and also having holes broken in the plate to show strength of metal. This wheel was struck over ?oo blows with a : i-pound sledge.
(t) One pair 33 -inch wheels mounted on axle. showing the wheels and axle realy to be placed in a truck for service.
(5) One section of Pemnsylvania Railroad standard si-pound rail and rail joint, showing simply the shape of the rail and the style of rail joint used.
(i) Trestles and chocks for setting up the wheels.
(i) One 33-inch Pemnsylvania Railroad standard wheel flask, filled with paster of Paris to represent sand, and having a wooden pattern in pusition to represent a wheel in the mold. A piece is cut out through the flask, paster of Paris, and pattern to show the position of the different materials in the mold as in casting the wheels.
(8) One Pemsylvania Railroad standard freight-car truck, showing the truck complete and ready to be phaced under a car.
(9) One Pennsylvania Railroad standard passenger-ar truck. showing the truck complete and ready to be placed under a war.
(10) One section of the Pemsylvania Railroad standard box freight (ar, showing the height, width, and general style of framing, weatherboarling, and roofing. This car complete is 34 feret long and has a door $4 \frac{1}{2}$ feot widr in center of car on each side. The car Wrighs about 29,000 pounds and has a carrying eapacity of dis, own promds. It is used for carrying grain, merrhandise, and all chases of perishable freight, except such as are required to be carmed in re. frigerator cars. This car is known as class" X (" box rat.

[^39](11) One section of the Pennsylvania Railroad standard coat car, showing width, height of sides, and general style of floor framing. This car complete is 0 f feet long, and has a hopper and drop bottom in the center, from which about two-thirds of the load can be dropped on the coal wharves. The car weighs about 93,000 pounds and has a rarrying capacity of 65,000 prounds. It is principally used for hanting coal. ore and other materials of that character, but may also be used for lumber and other materials which do not require protecetion from the weather. This car is known as class "Gd" Gondola can.
(1\%) One section of the Pemnsylvania Railroad standard passenger car, showing style of finish, seats, etc. This car complete is thet feet long, and seats fifty-six passengers. It is provided with a saloon for the accommodation of passengers, a tank containing drinking water, and is heated by two stoves, from which hot air is conducted through boxes on each side of the car beneath the seats. From these boxes the hot air is distributed throughout the car by means of openings under the seats. This car is known as class "Pf" passenger car.

Another exhibit is an album of specifications for materials, ete., used by the Pennsylvania Railroad Company. The materials which are referred to in these specifications are tested either chemically or physically, as the case may be, and any which do not meet the requirements of these specifications are condemned and returned to the manufacturers to be replaced with materials of the proper kind: and the last is an album of photographs of the Pemsylvania Railroad standard locomotives and cars, and also a fow miscellaneous pictures of special equipment, scenery, ete.

From this brief description it appears that the capacity of the rolling stock is kept up to modern standards, and that it is much greater than formerly, when dead and live load were about equal. At present the ratio is about as 29 is to 65 for the box car " Xe," or as 1 to 2.24 ; for the standard coal car it is as 23 is to 65 , or 1 to 2.82. The eronomy resulting from this change is manifest in the great reduction of rates.

The body of the standard passenger day coach is $46 \frac{1}{2}$ feet long, and the end platforms is feet each, making $50 \frac{1}{2}$ feet for a seating capacity of if persons, or 11 inches of train length per passenger.

The car seats, intended for two, are about 40 inches long, placed transversely and separated by a central aisle about 20 inches wide, giving an interior width of 100 inches or over, say $8 \frac{1}{2}$ feet. The cubic contents would then be 46$\}$ by $8 \frac{1}{2}$ by $9=3,557$ cubic feet, while the Hoor space is 39nt square feet. There result, 7.06 square feet of area and fi3.5 cubic feet of volume jer passenger.

Again, rating the weight of the passenger at 154 pounds, the paying load would amount to s.tiot pounds per car, while the dead load is about 39,300 , giving a matio of 1 to 4.6 .

H. Ю. $410-$ VOL $111-3:$

The fregert cars vary in lemerth from se foed for the
 the stock catr。"K 1)." immerar thereformall mombtedonformwherel hogit troleks.

The Stron!! loramm! ire No. 4.t. - This marhinu reme sents a hew departure in Amprican paletice, aml although mot romersinterlat the exhibition it is believerl mere assary lo allula to it in this report as one of the typor of engines which mallk a ralical changer in this bramel of ther servioe in Ammerica.

Its desigher. Xr. (inorger. Strong. has radratomed twimprove upon what he regatres as the weakest parts of all engine. vi\%, the beilar. the valur g'alrs, alld thr valves themselves. alll hallo ha has malle important monlifications in these parts with tha riaw of whtaningereator eflicientor

In the boilor hre has dome away with all flat and sumare forms which resist preselur by their transtorsa strongth alome. alld has anfopterl the
 thas di-pronsing with all stay and crown hatrs. Thari-ivalsa a duplex-fire box diar latresing the gaseme prollacts wor at hallow hridge. where ther we (eive thr s"pply of air mec-
 bustion. and bex altromatr lif-
 Ways mathtalne 1 on onte - id. to bum the gis from H14 af) prsite rhamber. 'Thar , hastion amd fire rhanmery arr wolled, cormgated, storl eyt
 expesture of any rive hambs the dired antion of the tire. 'The.

 the long. peraliar form, resembling atuning forkor $\boldsymbol{>}$, as shown in the ammexed illustration.*

The valves used are of the "gridiron" pattern, having ten ports per valve, each th hy inches. The travel of the value is $1 \frac{1}{1}$. the
 throw of the eccentrics es inches. "With these guadruple values al the alvantages of balancing are secomed without its complication-

[^40]Far. 盆the peraliarity of the motion given to the meker gear, it hapfrle Hati when the lome on the ralves is greatest they are mostly at pol, and when the a me moving the compression roming beneath
 - atom halamod. whilst similaly whem, in torm. the exhatust valses
 Tha fall that in allat work the wear of the vialies is fomm to be atmot mothing. shows that the maptation of this type of rallo to

 - \because 'illli.

This valve geat is based upon the Walsehare sestrm, which has lome heren in use with good results.
.- The valve seats are plugs, fitting into holes bored in the passures from the saddle to the eylinder, the ordinary stem chest being dis-

 satts." All the ohjoctions to the link motion are removerl ber this ratre-gear. which is of the radial trpe.
This mathine, No. Ht . when run on the Nombern Padile Railmad be an mainere who kngt a farly open thouthe dowoped, at
 - gatare foot of heating surface or 30 home power pur foot of grate
 mantainell indefinitely. The engine gives agool distribution of - bam. large cards, high pewer for an ordinare colmber caparity, amb great economy, * especially for high speeds. Its gemeral appearanme is indicative of power, and its evolution marks an epoch in stean motors. The more detailed data will be foumd in the gemeral lahl.

The II. K゙. Portar de (or loromotir.

The only American locomotive artually paced onexhibition in its fall size Wat that manufacturel be W. K. Portor \& ('o. of Pitts-

 W. Wiemed on batid the steamers at Now Vork.
 if :arras follows:

The Ineomotive is intembed for use in hot comatries. and for this purpose a canopy is and to protere the emginerer from the hat of the sum, the builer is thoromghly farked, and the arrangements for carring the forl and water, and the general
 driver. as woll as full control of all working parts. It is "sperially desighod for

working on very sharp curves, and is constructed with a truck which is arranged for working on sery rough travk and for sharper curves than any other truck mate. The engime is also well adapted tw, working very steep grades, and is therefonedesirable for work on protahbe track or light track on phantations where the grommis
 very low. su that the engine can mot te derailen emsily. The design is simphe, without any compliations, so that an ordinary rnginere can keep the machine in wowl
 pwition of "roper and tin: the valse motion throughout is case-hardened athel with hardemed stere pins and thimbles, so that the locomotive will rum a very long time without repairs. and their dupheate system of construction makes such repairs. when meded. very nas. not requiring any great skill.
Whila the company have amed to seerure the gratest convenience and adaptation
 there are mo uselosis bass omaments. The locomotive is built for work mather ham for leoks. but at the same time it has a meat timish. The lowomotive was not comstructed especially for exhibition. but the different parts for its construction wre dupliate parts taken at random from the finished storek kept on hand.

Fici. 51.
The general charactoristics of this machine are as follows: (ature

 front end. ens at watr. The dome is is inches in diameter. on inches high, with cast ring and (eips lagered amd casel. Tha boiler tosted to

 valur motion comsists of shifting links graduated to cut off equally at all parts of the stoke. 'The drivers are furnished with east-iron centers with sterl time For other data sore the genemal table.

SPECIAL ENGINES AND APPLIANCES.

 It burns worl on coal, and is capablenf tuming curves of only 9.9

Foet radius and of mounting gradients of s oper cent on ways of from

 is in the compunding of its celinders, the being arranged tandem and sor far apart that the forward one drives the four from wheds white the one in the rear operates the remaining drivers. the ome heing
 aptins as to diamerer, that of the forwand arlinder heing to ind hes

Amother type is sem in the domble-headed, duphex articulated engime. which is. almost a duplication of " LiAvmir" just deseribed, ixweting that a single beile dreve both sets of pistoms.
The lack of :"pace predudes won a brind deacripion of the remark-

 of the establishment. Sulliere it tosay that withinaseoreof years it

 patation diminution sizes, makine a ereat many pieres. The

 What ay" of tha many lines in existriae of this cory useful and !n州: ableystim.

E'm!imr for high spurd.

M. ('hathe Saint Dizior has published a momgraph deseription of ath romind drigum be him for high semed. in which the drivers.

 fammer of :3: fien. The axk pasese themed the smoke bex. the phase of which ate cut twermit of its passage. 'The jommats are then with matial bexes far farility in turnine cumer

two pistons. The bilar pressure is computed at $1:$ atmospheres.

 carred bỵ a tember supported on there pairs of wheels. The hndy of the cars will be dexigned on the Ameriomesstem.

Sipeed iregulator.

A spered regulator for locomotives, patented by M. Hansshondter and made by Dr. (i, Haster, at Berne. Switeremal, contains the following allantages: First, an apparathe for registoring the spen an a bamplof pare mery twelve seconds: secomd. he indicating on a dial
 recond of the sumed, and in case of any exerssive velocity thore is an ammuriator which calls the attention of the ensinere by ringine a bell. The entire mechamism. rxerpting the hell. is inclused in aratiron case.

 or watere is towerrome all resistances with the least posible den. and as the ereator portion of these resistances result from wember and friction, it is self-wident that the eromomiat solution of har
 lise load amd diminished frictions. Ans imporemont. therefore.
 load, or. in other works. which reduces the weight of the whiche
 in the interest af eromomes. Sine the introrluetion of ster an a large scale. and in ans required structural form. it has beeome pros sihhe to make these very desimabe monlifications in the form and
 Broalway. New York deserve the highest commendation for the
 their excollent sestan of tubular frames for frefot rats of all type amd doseriptions. By the substitution of ster thbes there has hera

 tham domblen.

 assembled be an ordinary mordanice.

The best result hitherto obtained with woulen ars has been. fin

 according to the size and weight of the body. Its regnlar lom is
 ! hat on the coal tommate of the Philadelphia amd Rading Railroad forme gear the salving afored he the use of the iron rall would

Therddest tain of these ars hat hern in serviou wed ten years and it has ast patatally nothing for ropairs oxepting to paint thom. ('arefully onllecombtatistios show that while womben freight

 all.

The folluwing lata melative the there of these cars will serve to -animm thar chams as to caparity:

Amother test of stranth of thes cars is fo bre foumd in the use of

tion in this limited repert．＇The interested mader must hereferen （1）thr stambad works of A．M．Wellingtom，Rohnt Gomdom，Edwart

 sherrvationt．

小mahbr．

 －atit al paint．
 （1，thr mile：age oll ath ordinary（all．
 ans of 1all．
 thr wear and trar upon rails amd madbed．

（10）＇The dratw frames are the stronges wer devised：they ab

（11）In（ate of a werek the sallage on the thbe－iron wat waty

 いい以 parts．

（口MPRFSSED－ARR MOTいRS．

 tions American Seciety（＇ivil Enginems，Vol．xx，Lew York， $1 \times \times 4$ ．
an eath rar. viz, twenty inside. twenty-four on the top, and six on the rear platform, being very similar in construction th the cars of Hh. Paris (boneral Ommibus ('ompany. The total worght with pas\therefore -

The ronsumption of air on an molulating line as actually meas-

(bapaning the results with the consumption of fuel for ordinary Anam or eren with hot-water angimes under the same or less fatror-

 \because therompreseet-atir motor exists with reference to the other itrom-

air．in fromt of which is placed the heater B，through which the air circulates on its way to the pistoms．It enters through a pose be which it is divided，pases up；through the liguid columms and ho． comes hatad and saturated with vapor at a temperature which is recorded daring the trip at the sme time with the presure．heme the consamption of air and water can be readily dotominmel．The． use of compmessed air is mot so ohjocetionable as has berm stipn sul． and is justifed as an intermediate step betwedn the expenso af a stationary and a small lowomotive engine．
These compressed air motors ate in use on the tramwars of Nath－ tes．in the mines of（amissessate．（hemins de for Sogentais．and in
 Motropelitan Railways of Paris．

The praticability of this sestem will be seen from the following hriaf aceoment of the roal al Nantes：

Here there are two lines in operation，the onre on，oit fore lons．
 long，since Junc 1t．1sss．Both have proven entirely satisfather． The plant consists of twenty－two allomotors without upper deok． capable of carreing from thity to forty paserngers ：four ordinary rarrages with double deek for fortysix persons．to be attachen to the motors when the traftic is heary．

These motors weigh when empty about $1+.300$ poumds．Tla it axles are diseomected and they mount without difficulty the grames found on the line（one of which is as high as f！per cent），with a carriage attachod，in ordinary weather．

During the last half of the your fask the following results wore whamed：

Number of milas rum	1it． 1706
Sumiker of passemgers carried．	1．iti．1：3
Recoijts from operation．	
Rexajpts pre mile fun	
	S1．1109
Expunsestof operating．	S\％，617． $1 ;$
Experner per milu rum．	洨，以－
Expenter pry pasathar．	※11．103

The profit per pasenger was therefore about imills：and the atro ate leoneth of ride per passemger wat only and foed

＇The appliation of compressed air to tramways was thopolghty stadied in the winter of

 the great economy to be derived from this form af motor and wp．．
dially when supplemented by the hot-water tank as used on the Mhanski motors. yot it is a firld in which comparatively little progprsh has bern made.

These motors are well adapted for subterranean lines for cities of thu first class.

III.-The permanent way.

Prohably no part of the malway structure exercises a greater inflawhe "pron the exonomical management of the foad than does the fromanent way. Its firs cost is therefore a matter worthy of serious romsimation, but this is a function of various local comditions such as the chamater ant prices of the materials and labor avalable. Homer it is that eo great diversity is found in the existing lines of wathed in different parts of the world. (of thertrioms armants which comstitute the way, the most important in point of maintemance ar the arosstie or sleper, sine it is not only essential to adid in disfihuting the load wer the roadbed, but to preserve the gatuge of the tark. It is therefore subjected to complicated cross and longitudimal stresses, which it should bedesigned to resist as well as to afford facilities for realily and securely fastening the rail and for removal ,f the tie in case of neressity.

In enuntries where timber is abundant these requirements are most arommically satisfied by the use of the various species of oak, black forlst, chestmat, beech, red elm, cherry, maple, butternut, tamatark, yhlow pine, red amd whitecedar. andlignum-vitad; oceasionally hemBrk and white pind are used. but they are only temporary expedirats. not justified in good praterice, amd danererons.

As the life of wooden ties is limited to from five to sevell years, imwolving an enormons consumption of timber ammally, many rom-
 Gur the ties on their limess and at the same time they have on a lares -xtrat resertol to the use of motal ties for inerease the dumabity af the reatherd. So extensively has this bern done that there are now :mans hamdreds of miles of such line: in wise in France. Beleimm, Garmans. Fuglamd, amd other comotrios.
 Whing stork of the variotis compamies at the exhibition. ()n most of the limes the hallast consists of emand which parks peadily in and

 and Northwostorn Railway of Eashand foroverspern valrs. There is
 mal, hat this disappears with the use of the llathe mal of the Ameririn pattern.

In Framer varions systems of ties have been triod. In last theru

 of miform thickness and fat of the samm with vareing thicknos. and o. it of the Boyenval and Pownad types.
 prements have beem made and alter frequent moditications the tio Whirh seems for erive the best result is that invented le Mr. J. W. Pas.

The tires trials were made in the Notherlands in latio. wh a rombination the (Cosyns) of iron I beams. with mak rashions. but whiluat first eiving gend results ther are now superseded be those of thr im. proved Past tyer. Nearly

A montitiol form, known as the Dumand tie, madron' old rats amd
 10.1 permals, and it is clatmed to cost only $\$ 1$ for the lighter varity and shat for the havier. The cost of manmeature is put at :3 (ronts.

There are many forms in use for supporting the rats. but most of tham have not been in servico fong enough to furnish definite data as (1) their peroliar morits. Several humber patents have been issum in the Lnited States abme during the past wix yatrs. ()f these omly a fur are to be fomm on exhibition. A comprehensive digest of them maty be fomm however, in the report compiled by Mr. B. E. Fropow, rhial of the Forestry Division, Department of Agriculture. Washington, with much valuable material relative to ties in general. (口ntributal by Mr. E. E. R. Tratman, divil enginemr.t

In (drman! the use of metal tios has increasel mpidly, having ex.

The arerage weight of the flanged rail is ato pounds per yard, and noally su per cont of those in use are of irom. There are ! 159 milas of track haid on metal ties an incroase of mat miles durine the year.

In Englamd. atso, it is the pradice to space the tios about one yare

'Takinge it at only ? , bow as an arorate al' all roads, there would re-

[^41]If the average life of a tie be but is rears there would be reguired

 ins at wod. cheap, amb dumble motal tio.

At the price of the Dumal tie it ought mot to be many yats before the user wool is largely superaded by mild stael.

> The H:dulie.

Mr. F. W. Wohb, the enterpmising superintembent of the Lomdon and Nonthwestem Ratway, has bern using a stoel the with stere chair
 ase. Thequmeral form is an inverted trongh oither rolledorstamped. Ther chair is emmpened of two plates bent to tit the English rail on (h) side and on the other to grasp the mak kere here is akso a hase

phate under the rail and chair. The parts are assembled ber rivets. making a number of pioces, which can be united, however, before learing the works.

The Belgian (Z) iron tir.
A form which is foumd to give grool results in Belgimm eonsists of for angle irons rolled in the form of $Z:$ with the wob wital. The top flanges flareontwardly, the betom inwardy but tomehing. 'They are braced apat by a cast-idon chair pated under the pail and riveted 10 the tio. This chatir is gerooved for the mal sad and is fastened to

* See Engineering News, Soptember i. 1sw f, for illustation.

RAIL JoINTS AND FASTENIN(is.

Vory few sperial forms of juints wore exhibited. but the stamband types were shown as a part of the permanent way. 'Those wire grmbrally suspension-spliced foints, consisting of two tish phate of rarious forms fastemed her four bolts patssing thromgh sho
 ill the ratl. Ont somberand. these phaters weme hat is inches longe.with the time lual spared: inchos from themat. thesecond f. learing timelte piteh between those al the contor. In seraral rase tha fish platosworlaphthe lomam flange and projeced about owe inches downward for indras. their stiffones.
'The latest Americatia pantice as exemplifien on the Pemmsylvania Railroad is lo increase the length and bearing of the joint ber usins: longer scarf. covering on inches or more and having in some cases as many as six bolts. When only four are used the spacing is o. 11. 1i. 9:3. ss. making the pitch if inches from cranter to center.

The emed ties arealso phaced a little eloser than the rest to give a bearing for the fish plates, and the rails are madr. to break joints, whereas in England the practice is tw lay the joints opposite. The British aml Contimental method of keying the mals to each tie by means of chates and wedges gives greata stiffoness for a lightom malam! permits of ervat eoonomy in ties. Onsome roads it is the practice to place the wooden keyon the inside of the track. while on others it is on the outside.

 whan ther ratim the combined support of two ties acting ats ond for earb goint, and rail ends carried direatly by the arched beam and

Fig. st...The Otis joint. Top view.
 a matinuous rath. No holes in web of rath, riving the whold surfar. . .f hase for support and wear. Nobrakage of mils or joints. $\therefore \quad \therefore$ "hw joints." No "ereeping." Nolonse muts. (bost of kenping up tatek reduced to one-half of that with angle bats and giving smmother surface.

Fia. 6.6. Side view.
The parts are assembled in the shepswith the muts serewerd almost "home" so that, in track laying, it isomly nocessary to slip the ends of the rails under the "forelorks" or washers and tighten the nuts. care being taken to serew them down equally and simultanmously on the

 ins. thespikes on the semm side should bedriven at the same time to
 ther rat ends will be firmly hell in the same homionntal phan and the
joint be afliciontly bidged without reducing thestrength of the rail namly on per cent be panching. as in the ordinary fish joint. This fastmins madily alduts itsolf to any pattern of mal, and any wat is parlily aldusted or taken up ley fightening the muts.

This is mot a suspension but a supported joint with doubha the amount of supnet given he any other through the arched hamer

Toutilize stall further amgle-har spleres, which, without strengethening, would hatw to be rejocted, this company hats recently intro.
 fis). designed to be applied as a stiffoning clamp and suppert fowno out anglospliees. It consistsof a shackle phared moler the joint and passing through two holes drilled in the lower flagges of thengns. ing angle irons, towhich it is fastened by bolts, without " forelorks." The shank under the rail is mate fat on top and is widemed out to give a better bearing to the steel briger phate, which is insertal he. tween it and the base of rail. A better ideat of this joint maty in. obtained from the illustrations.

Flg. 5s. The otis joint. Section.
By the use of this joint the ends of we rails are clamped together vertically as well as laterally and the injurions action incidental to the ohl form of spliced angle bate is entirely aroded. The result is a much longer life to the entire rail as well as to the rolling stock lar to the stiffening of the joint, practically making the rail continums. Thי Otis joint is not intemded to supersede the Fisher, but merely to he used in strengthening the ordinary fish-plate.

The Motfine ir system.

As the rontinuous longitulinal stringer or " balk" has somu inherent dafects and the arosstan does not give a rontimums supmet.
 form of tie which is designed to meet hoth whections.

In the language of the intentore the impored tir consistsof a cern-
 lageth. projerting from both sillas and directly opposita. neat the
 and with it form a contimmons heming me rail sulpert when the
ties are laid in a roadway. The contiguous arms are adapted to comect with each other by means of tongues and grooves, one of each pair of arms having a horizontal groove in one end, the other a correponding tongue, but the tongues and grooves are located at the end of opposite arms of the pairs of each tie, so that any two ties will interlock when lad down, no matter which sides of the ties mas be brought together. On the upper surface and along the center line of these projecting arms is placed a shallow groove or chanmel alapted to receise either the flat base of the ordinary T rail or elliptic: base of the Finglish rail.
The tie and its arms are made hollow on the under side by tapering downwards the upper surfare toward the outer edge, along which is placed a thickened vertical flange or rib, giving to the tie sufficient dyth and stremgthening it, as is illustrated in Figss 59 to 64 , inclusive: or. the upper surface of the tie and its arms may remain that, hasing attached underneath a strengthening rib of sumficient depth, idared vertically along their center lines, as is illustrated in Fig. (ia.
Through the tie on each side of the rail bed or chamme amb close to its adges are cut perforations adapted to receise the bolts and other fastring devices used to hold the rails in place. These perforations are shown in the several phan views in Figs. $59,62,64,65$.
Two clamping-plates, bolts, and nuts, as shown in detail in Fig. fif, are used where $t w o$ rails meet to hold the ends of said rails to the tie. as is shown in Fig 67. This joint should always be at the conter line of a cross-tic. This clamping-plate consists of a bertical and horizontal pertion, forming an angle iron; the vertical protion is aldpted to chgage and bear against the web of the rail, and the horizontal fortion is alapted to engage and bear on the base of the rail, the rear cond resting on the upper face of the tie; a shoulder on the hettem of this plate is aldapted to bear against the edge or vertical fare of the rail chamel, and a log near the rear end is adaptend th har agamst the rear face of the orifice or perforation in the tie, the forpreventing said pate from slipping away from the rail, while the T-bolt and mut hold it downward in place (see Fig. (if).
Gn cuch side of the rail chamel, near the upper ends of the intermentiate ties, and on thecenter lines, are shown perforations altipted threreive the domble-jawed clamp-holt and locking-staple shown in
 in the seectional view. Fig. gis.
Wh ach side of the rail channel, near the upper ends of the two rall firs, and on the renter lines, are placed perforations adapted to rarive the single-jawod damp bolt and locking wodge key shown in datail in Fig. b9. Two of each are used to hold the rail in place, as shown in the sectional view. Fis. is.
When it is desired to have the joints of two contignoms ties not in the same line, a form of cross-tie shown in Fig. f;3 may be used,
H. Ex. 410-volilil-3:3
the center lines of the opposite ends being about 8 inches perpendicularly apart.
It is clamed that this system of malway track laying furnishes a continuos bearing or mal supent theomghot the matire length of

hifrseleris tife.
track, using a less number of the than would be repuired to lay the same length of track with womelen ties under the presont . Amerinall system.

Soup-and-down motion where two rails meet, as the loarl on them pasise from the end of we rail on to the end of the other, as is the case in the old system.

The rat channel in the ends of the ties forms a continuous rail seat that effectively prevents throughout the spreading of the rails and the eonsequent dorailing of trains, liable to ocour at any point in the present system.

A solid, compact, and continuous roadway makes the entire track a mit, imparting a smooth, even, and easy motion to atpasing train; nu jarmg. jolting, or exorssive pattling, as is the case in the present rombay of the woolen tie.

A complete chat for the seating of the elliptic base of the English rail: in fact, of any hase of any rail without the extra piece fitting and bolting required in the old wooden-tie system.

A continuous bearing or mil support, preventing the springing or bumbing down of the rails between the ties, caused by the heavy trains passing over them, straining them, and, with the abrasive forre of the loaded iron wheels, causing the rails to soale and strip, as is the case in a roadway of wooden ties in the present American sy:trim.

Souse for fish plates and no holes through the wel at each end of the mals: doing away with the two fish plates, six bolts, and nuts required at each rail joint in the old system, under which in each mile of track, there being $35=$ rail joints, are used fot fish plates, with $\therefore 11:$ bolts and nuts. requiring the constant and careful attention of trackmen, while in the new system the clamping plates and T bolts tikn their place, requiring in the same distance only rot of each, yet making in every respect a superior joint.

Sospikes to be driven into intermediate ties to hold the rail base to thom. the double or single-fawed clamping bolts taking their place.

Surhairs to be spiked to the ties where the ends of two contiguous mal: meet; the rail chamel in the tie forms the base of the chair, while two clamping plates, one on each side of the rail, complete it, each (lamping plate being held in place by a T bolt and nut.

Souse for bridge joints of any kind: the ties forming a cont inuous baring. leave no portion of the rail to drop or break.

No holes through the web, at the ends of the rails (fish phates being disarded) to weaken them where, if anywhere, they shoull be stringest.

WOODEN (ROSS-TIES.

The Cie Boñe-Guelma use cross-ties of oak S.Q feet long by ! ! will and at thick. There aro fwo varieties: (a) the chene aron from
 rheme Efen from the forests of ourhtettas (Tumis). Which weigh 209 frombs. These oaks are a peraliar variety found on the coasts of

Barbary, where they cover an extensive territory in the mountainous regions of the Kroremirie. They remain green all the year, and attain a height of from 80 to 100 feet and a circumferenceof 9.8 feet. They grow rapidly and with great density, having a specific sravity of about 1.20 , and decay very slowly, making them umusually valuable for these purposes. The principal defects result from a tendeney to warp and check, making it necessary to fell the trees when rometation is least active, that is, in midwinter.

Other ties are obtained from the extensive forest of beed on the sand hills of Croatia, cut when the trees are about sixty to ninety years old. After treatment with chloride of zinc amd exposurn to the air they acquire a remarkable durability. The treatment ansistsof the three operations of sweating or drying, pumping a valum and injecting the antiseptic.

Ties of the encalyptus tree have not yet been generally intrommed by this company, but from the tests made up to date it is hoped that they will be found to answer the purpose. It should be noted that only the Euculyptus resiniffere, wred grom, should be emplosen. because of its straight grain, while the Eucalyptus globulus : wim should be rejected because of its crookedness.

OTHER METALLI(' TIES.

 formed by an 1 beam of mild steel resting at cach end on at thed plate. Two chairs are riveted to the girder and the rail is suppored on the chairs by a steel cotter held by friction between the flanar of the rail and a lug on the chair. The weight of such a tie, with itfastenings, is about $11+$ pounds, and its length is $\% 1:$ feet.

The Boyenval and Ponsard system is composed of double chamel bars closed at their extremities by beating down the ends of the metal in the press. The bed plates are attached he four rivets, the outer edge haring a lip extending throughout its length, which is fixed on the the by two of the four rivets, giving a bearing of 3 is inches on the outer rail flange. The interior elge is held by a mat. The woight of the tie, with fixtures, is about 125 peounds. and its length is 7 rit feet.

Two thousand five hundred of these ties of both systems have harm under trial since they were inserted, from March, 1sss, to April. 1ss: and although the time has been too short for any conclusion as to economy of maintenance, yet it is said they have required no sure ial attention, and that the movement of trains over these sections is wery smooth ; neither was there any difficulty in putting them in plare.

The Panlet system (Fig. F(0).-This metallie way comprises two systems resulting from the same idea, one simple, the other doubled or coupled.

They are equally applicable to roads of any gauge and to rails of any pattern.
The principles involved are: (1) The bearing surface of the tie on the lallast is made flat: (?) the attachment of the rail to the tie is math by the intervention of chairs with locking wedges of wood for the double-headed rail (English), and of iron or steel for ${ }^{-}$the T rail (Timoles pattern): (3) the kers are slightly conical. The fastening (1) :he chair to the tie is simple and firm.

The Semellory system. -The new (ioliath rail section, as cxhibited he Mr. Sandberg. hats a wider head than the old patern, being 3 inthes instend of $2{ }^{2}$. and it is 13 inches ind depth instman of the haml. however, contains a little more motal. namely, 只 5 per cent. Thar is no change in the wel, but the flange is correspomblingly lighner. The top is somewhat more curved than formerly, the radius beines insteal of 10 inches.

Fll: il. ...The Panlel in:m tie.
A thimhase plate is recommended tohe phared under the railoneach
 Way at a cost somewhat less than that in the Ehsish hull-hemed rail.* This new patern of rail weighs 100 gentods. athl has beron in use in
 is damed to posess man! adrantases over the lighter rails aside from its relative eormomys and ite uw is being rapidly extembed. The cross section of the rat and tish pate. as shewn in the aceompaying Fig. Al remernents that now in war he the Pemsylvania hatroal on its main lime and will give a good ilea of the heavier Sundherg rail and fasteming.

Thr Werfmat sy/stem.-Thersstem designed by M. Edmond Magnat i. . .n permitting cars to turn curves with a radius no greater than the breadth of the vehicle. It consists of a pair of guide wheels phatal under each rad of thr trucks to direct their motion. These

[^42]
P.R.R. Standard Angle Splice

Fif, il.- Heary rail and fastemmos used on the Pemnsylvaia Railroad.
wheels bear upon the cheeks of a central rail so phaced as to follow the line described by the apex of a triangle, the base of which is the ante of the single pair of wheels supporting each hatf of tho truck. This latter is articulated, the halves being supported by a hinge or daw bar which permits great freedom of motion in a horizontal 1hame, but prevents any deformation in i vertical direction. ()n the curce both the front and rear asles follow the same path, but at the tangent point the rear guides follow a different curve ${ }^{2}$, ${ }^{\prime}$ s c^{\prime}, while the forward ones take the path cole (Fig. \%e).

Fifi, is-- Mamat system.
The advantages clamed for this sosem are todiminish the chance of derailment; to reduce the friction on curves: to permit the passage of curves of 50 feet rallus, with wherls keyed on their axles, hut with lonse whens the radius may be mo greater than the width of the car body (2 is moters) sod fert: to admit the rolling stock of this system on ordinary ways hereking the articulation by a rigid D, nan: and to reduce the cost of construction to a minimum bey permitting a "surface" line to breallopted.

The central rail may be placed on the same ties as the others amd may be of lighter weight. The form of switch required is shown in Fig. 73.

Fut. *3.-Mamat switoh.

P()RTABLE RAILWAYS.

From the extensive works of Achille Legroud, at Mons. Belgium. there are shown material for narow-gange railroads. comprising a locomotive, a mixed carriage two thidelelass carriages an ambulance car, and cross-ties of iron.
The peculiar features of this portable way consists of the iron tios and their fastenings. The ties are inverted chamel bars having a bent lug, serving as a clamp, bolted to the upper face. On one tio both of these clamps will be placed on the inside of the rails and on the adjacent tie upon the outside. By this altermate arrangement of outward and inward flaring lugs the track can be laid rapidly by
merely slipping the tie under the rails obliquely and then revolving thim intos their true position at right angles to the rails, where they are held by tamping. They require no bolting or spiking in the fiem.
'Ther catalogues of the company show great variety in the forms amb weights of both ties and rails. The ties are alapted to the Contimental amd American patterns of rails. For the former they are fheded vertically, forming a recess or trough in which the mal is laid and kered by the ustal hard-wood wedge. The company manufarture all varieties of rolling stock from the simplest truck to the most (omplicated motre.

The Legrand journal box is simple, compact, and dmable. It is a linht erlinder, embracing the jommal and clowed at its imer face hy a worlen packing block which surroumds the shoulder of the axte. Thr lower bearing is omitted. Fastened to the outer and of the jommal there is a projecting father. called a palot. which at each revelution dips into the pool of oil collected in the bottom of the Wex. thas rasing a portion to the jourmal. Its speed is antomatic. Thar oil is introduced through a small hole closed by a bolt. on top wi the bos.
11. I) J「ille-Chatel et ('ie of Brussels, have displayed their "Voies du. Signies, portatives," and the difterent forms of rolling stock used on them. In this system the track is very light, the normal length of rat is 16.4 feet, ant the weight of one section of track with its fise tios attached is but $1: 3$ pounds. The extremu ties are phaced mon the ends of the mil to support the joints, which ape opposite amil made with light fish plates. The ties are light chamel bars.
 rumbing meter.

Wagons, trucks, and dumping carts, crates, turn-tables, switehes, (fossings, frogs, crames, and engines are all mannfactured by this (ompany aceording to the types shown in their illustrated catalogue, t. Which the reader is referred for dimensions, price, ete.

The monorail system of M. Charles Lartigue. - Another of the portable railways, which has ahrealy demonstrated its practicability by -xisting lines, was shown by its inventor at the exhibition. As the mame indicates, it consists of a single rail supported at a variable hoight by batter posts which are bedded on a sill placed on the gromd, forming a trestle or horse. The treethes are commected by a pair of horizontal braces which serve tho double purpose of stiffering the way and steadying the trains, which have guiting wherls bearing ajoon them. The rolling stock st raddles the frack, overhanging it like panniers. The economy and advantages from this fom of way are manifest and have hen repeatedly stated.

Its extreme flexibility is an important chamoteristic. as by its use trains can turn curves of se feet ralins or less withont ditheulty,
and the stability of the train is greater than on the ordinary way. Switches are mate by revolving asection of the way about a vertcal axis. but grade crossings are readily avoided by elevating one or the other of the intersecting lines so as to pass wremeal.

A line of this deseription a.3 miles long was put in operation on the e9th of Fehruary, 1888 , from Listowell to Ballybunion, in County Kerry, lreland. The total weight of the track. including the trestles, does not reach 10.3 pounds per meter, about $: 31$ pombls per font. with horves one meter high and the same distance apart.

The rolling stock is adapted to all kinds of traffic, whether passangers, goods, animals, minerals, timber' ete. The boilers of the ldere motive, placed on either side of the single rail, are united with wach other and the steam erlinders. There are three drivers, couphed together.

The machines were designed by M. A. Mallet, with the most recent mprovements. They weigh 14,850 pounds. or. with tender it. 20 pounds. The tractive effort as given by the formula, a.Ge Plly, is about 2.200 pounds. The 62 per cent is taken to cover lowses be condensation and friction of machinery.
> P is the pressure of steann. 142.2 pounds.
> d is the diameter of the eylinders. 6 inches.
> l is the stroke of the cylinders, 12 inches.
> I) is the diameter of the drivers, ${ }^{2}(0,8$ inches.

The speed obtained from the tractive effort is from fis toi.f miles per hour.

Taking $1:$ pounds as the maximum tractive force per ton, there will result from these 2,200 pounds the ability to draw a train of about 183 tons, or. deducting the weight of the engine and tender. It toms. there remains for the load 10 tons. On a 2 pere cent grame the net load would be about os tons, or 5 wagons of it to 4 tons.

On the Listowoll line trains have been rum at a spent of od.s milus per hour, and the completepracticability and ecomomy of this syom is believed to be eetablishod.
 exhibits by drawing and desoriptive matter his various improvementin momitain railways. These consist of a rompound rack rail, composed of a number of bats having their teeth armaged in eschelom-that is to say, instead of the usual single rack or lader between the bearing rails, this rack is divided lomgitudinally, in two or more sections so phaced that the teeth " hreak joints." By this means the pitch is divided into two, three, or momparts, which engage in as many different cog wheels or driving pinims mounted on the same axle on the engine, thus producine a mone comstant pressure and giving a much more uniform motion.

A second modification consisis in the arramgement of the mechan-
ism of the locomotive whereby twoof its four cylinders are employed for drive the pinions on steep inclines and the remaining two the ordinary adhesion wherls on limited gradients.
The angine is alaped to operate on grades where practical limits haw onot yot been reached. On the (ortetsbruck railway the maxi-
 radius of 1% meters. The weight of the engine is about $4:$ tons, haring a bractive fore of 4 tons, while on some roads it is as great as it toms.

The driving pinion is divided into two or more parallel disks whose terth aresoset as to engage in the corresponding portions of the split rack, as already described.

A third important improvement consists in an elastic entering section of roadbed which enables the train to pass from the ordinary way to the rack without stopping. This is accomplished by mounting the rack of this section upon involute springs which yield to the action of the pinions and take up the motion gratually as the rack engages with it, the pinion being meanwhile capable of turning independently of the supporting wheels so that the latter will not be compelled to slip or slide on the outer rails. This section of the rack rail is hinged to the main rail by means of links. The teeth of the contering section are also made of diminishing depth towards the entering end, so as to vanish at that end, and they are rounded off alsu to facilitate the admission of the train.

This very interesting and useful system has received universal rerogntion and the ungualified indorsement of the numerous seientifir societies and is a very happy solution of a difficult engineering problem.

THE HYORACLIC RAILWAY (CHEMIN DE FER (GLISSANT).

This interesting and novel invention has only now reached that stage of development which emables its projectors to exhibit a model of sufficient magnitude to demonstrate the future possibilities which await its extensive application to the problem of rapid transit.

The line as constructed in the Fsplanade is hut 500 feet in: length. yen the train makes the rum in 30 seconds, including stops. This is omly about 1 ? miles per hour: but it is clamed that this motor is capahoof generating a speed of ono kilometors (about lof miles) per hour. It an be stanted and stopped in a very shont distance, without shock. It erides along noiselessly upon a cushion of water, and is propedled be jots of water under pressure impinging upon a rack composed of hurizontal buckets attached to the botom of the train. There are
 and giving stability. since the bearing points are "patins," skates or shose to which the carriage boly is comnected by a short spindle
fitting into a socket. These skids are lubricated by a film of water fed to them from a reservir carried on the train, and which is kept under pressure.

The waste water is conducted to a central trough under the way and utilized in part for propulsion. The water for this latter purpose is stored in a conduit lat moler the tack and hating reservors at frequent intervals subjected to a pressume, in this case of about 10 atmospheres (1ti pounds). The pressume is mathtaned in the mains by a stationary engine phaced at any convenient point on the line.
r The way itself' consists of two continuous rails or plates, 8 inches in width, upon which the skates slide, and the necessary framework with the watermains and nozales at short intervals for mantaining the constantly impinging jet of water. There are two series of buckets under the train, one flaring forward, the other backward, and two sets of jets on opposite sides, either of which may be thrown into play by the train guards, whereby the train may be started, stopped. or backed. After starting these valves are opened and closed by the moving train. The amount of water said to be reguired is 1 liter (quart) for each patin per second, and il liters per ton per kilometer, under a pressure of 10 atmospheres. for propulsion. In winter it is proposed to use 00 per cent of glycerine with the water to prevent freering.
'This remarkable departure from the use of steam motors for transportation was first conceived by M. L. D. Girard, a prominont hydranlic engineer of France, who in lsiat built a model of his projowt on his private grounds, and, under the patronage of the Emprome Napoleon Inl, continued to experiment and improve his phans until his death from a bullet, in 1 sith, during the Frameo-Prussian war. His collaborateur, M. A. Barre, has since continued the work and has ormanized a French eompany for the completion of the methots and introduction of the system embodied in this model,* which is one of the most interesting of the many novel attractions of the exhibition.

THE METROPOLITAN RAHLWAY OF PARIS:

This grand enterprise, conceived and projected by M. Hager and his associates, contemplates the opening of a wide avenur through the heart of Paris, upon which shall be constructed an elevated mailway, forming an arcale in the middle of the street. It is intended to be built either in masonry or iron and to be finished sumborately as 60 constitute an attractive architectural fature of the city.

The exhibit of the project consisted of large wall maps showing; the plan of the route, with mumerous sections, profiles. grades, tables of probable revennes and expenses, estimates of eost, and an interesting model of the city. The graphic mamer in which the subject was presented left nothing to be desired. In phan the road torms an "imner belt," covering both banks of the Soine, with occasional lomes amd branches so disposed as to commed the stations of the various trunk-lines centering in Paris. These include the termini at St. Lazare (western), Du Nord (northern), Dél Fist (eastern), De Vincemoes, De Lyon-D'orleans, Mont Parnasse, and Champ de Mars, giving a development of about $12 \frac{2}{2}$ miles.

As the design requires the purchase and removal of many valuable

[^43]buildings and the reoonst ruction and opening of new strets paralled with the railroal, and many other conditions peculiar to this dity Which temel to incrase gratly the cost, the estimate is made liberal to cover all conceivable contingencies.

The net cost of acquiring right of way is $\$ 505000,000$.
(of this amount the various railway companies would guaranty the interest at + per cent on fifty millions in tolls. The construetion of the road and ansiliary works will eost about son,000, 1000 .

The ammal receipts of the Metropolitan Railway are estimated at
 in ammities to the rity, leaving s , 2 sogoon for distribution.

The general character of this project will be more fully realized be reference to the dimemsions adoped for the estimate. Thus are tain sections of the line are to embrace an elevated structure extemding es feet abose the streets and nearly to feet wide, with lateral avelutes on either fank, each bis feet wide. requiring the construction of two parallel streets, as well as the demolition of mumerous obstructions. Yet, notwithstanding these unnsual expenses, the company experts to clear sufficient revenne tomake it a profitable investment. The question assumes importance as one of the solutions of the arerpresent problem of rapid transit in cities, and it differs only from other elevated railways in the physical conditions which surroumd this particular project. The condition of the streets and sewers of Paris would constitute an almost insuperable obstacle to the construction of an underground road in this city, complicated as it would be by the necessity of crossing the Seine at not less than three different points.

MIS('ELLANEOCS.

Eflurard Noulet d. (ro. haveon exhibition:
(1) A bridge of 30 tons weight supported on metallic foundations instead of thr masomy foundations, which are always expensive and sometimes diflicult. " The price of a bringe is ?, © 50 france (8500)."
(?) A swifeh. left handed. with (ooliath rails. designedespecially for rapid trains and giving perfect security at the point of divergence. The price of the switch is ! 130 francs ($\$ 1865$). The ammal output about :3.5(\%)
(3) A metallic semaphore with three arms, with lampsand connections. Price, l. en france ($5 \cdot f(0)$.
(4) A phatform car having a capacity of 10 tons marle vory light and strong, at a cost of 1,00 france ($8:+0)$; foll of these are turned onl ammma!ly.

Thureshibit of 11 . II. Imoos, of Asheville, North Carolina, comsists of a model of a lock for a turntable.

Whilst this invention has mot bernas yot extensively int porluced it is onve leserving of consideration fon its strensth, simplicity, and chathess. The experience with it in the rathoal yards of the Rich-
momd and Danville (ompany has demonstrated its practicability. Thror are two locks or bolts and two sockets required for each table, weighing together nearly ofor pounds. The socket is phaced on the rim of the well in which the table revolves, while the holt is attached to the table by means of a rectangular trough (open on top), in which it shides by a lever. The box or frame which guides the bolt is 18 inches long and if deep; the cheeks are 1 inch thick; the bolt is rectangular in section, $\overline{5}$ inches deep hy et inches thick. The socket is $1:$ inches long and i^{\prime} wide, made of cast iron 1 inch thick. The great. morit clamed for this simple deviee is that it can not bind and is ahondantly strong and safe. The price is s st .
'The house of P'iore Brouhon, of Liege Belgium, exhibit a dumping (ar with an antomatic flap designed by the engineer, M. H. Brouhon, (1) save time and reduce the risk. This is aceomplished by plating the body on a rocker so poised that it rolls wrer and dumps the load latrably by merely detaching a lever which releases the borly from its nomal josition and opens the tiperar door antomatically by means of a linkage comnecting the door with the frame. By reversing the movement the door is again closed.

The lolére Mabile, of Mariemont. France, manufacture iron huffirs of all descriptions, ironwork for wagons, grates, journal boxes, bascule bridges, crossings, switches, and the smaller parts of railways.
In consequence of the limited space assigned to this company only a small number of the ome humdred and twenty-two kinds of buffers wrere exhibited. Particular attention is given to the manafacture of stol axles and elliptical and spiral springs, of which a very large number are produced ammally. These extomsiveshops give employment to seven humlred workmen. It is here that the Dixon injector used by the Chemins de Fer del Etat, of Belgium, is made, also the Wilsun valves, of which about two thousand five hundred have been matmulactured in two years and sold to varions companies. There is also a testing machine worth sl,000) for testing a great variety of forms.
 Broalway. New York. and of which Mr. John (. Noyes is the genral manager, have placed one of their full-sizel refrigerator cars on -xhibition.
The body of this car is $3: 3$ feet long. sfeet \because inches wide, and $\%$ foent 4 incheshigh, inside dimensions, and it waghs when in service empty Br.000) pounds. It is a type of two thousand five handredothers owned and operated by this company on the railroads of the United States amblandat. These carsare used only for the transpomation of fresh muats, vegetables, and dairy products. In consequener of the compete isolation due to the interior partitions the car is prof agatast the rextreme coll of the winters in the Nonthwest and Manitoba, whilst during the summers the refriseration renders ferfect surnity
on the longest journeys. The car is constructed to secure perfert purity of the air by the renewal of the water from the meltel ice which circulates through small galvanized tubes.
The designs are those covered by the patents of Mr. J. H. Wickes, car superintendent for the above company. There are six thousand of these refrigerator cars in use by the twenty-two different transportation companies of the United States, and they are found to fulfill the requirements of the traffic entirely.

The (truson coupher is a patented device for diminishing thr risks of coupling by rendering it umecessary for the guard to pass between the cars; it reduces the danger of derailment resulting from an irregular draft; it dispenses with the safety chains, reduces the time required to couple and uncouplet ains, and has other advantiges.

The device consists of a draw-latr with an articulated head. The latter is hinged eccentrically so as to fall bank when uncoupled and to be raised to a vertical pesition by the action of the socket into which it slides when coupled. This socket is an open drawhean, the

Fig. 75.-Feraud's system of suspending car bolles.
top and bottom leaves of which are slotted, and the upper one is also hinged so as to be raised by a pair of outside links which may be lifted by a cam, operating on a short pistom. The shaft containing the cam is revolved by an external lever.

- There are two couplers at each end of a car adjacent to the huffers. Detailed information of this device may be obtained from M. I). Grusom, Calais, :2 Rue des Prairies, France.

The F'eruud system of supporting car bodies as compared with the ordinary method.

In the former the suspending links are placed within the length of the spring and the inclination is reversed so that the axesof the links. if proluced, would intersect below the base as in Fig. 75, while in the latter method this point is above.

Although this modification involves no increase of parts and is very simple, it is clamed to effect a material economy in the maintenance of the rolling stock and way by the improved action of the spring. It has been introduced on the carriages of the Grand Central Railway of Belgrim.
The claims made by the inventor are:
(1) That the main blade of the spring is not extended more than throthers and consequently does not tend to separate from them.
(\because) At each oscillation the carriage decends less than the flexure nf the spring.
(:i) The loss of cambre due to the dead load is less than that which should result only from said load.
(.t) The flexibility is inceased from $\because 0$ to 40 per cent of the normal amount.
(a) For springs of greater length it permits the axles to be spread firther apart and thus increases the stability, a great alvantare in "ariages with three axles.
(b) The hangers, moreover, embracing the spiongs, as they do, gramaty against all aceidents from the breaking of the linksor bolts.
The corresponding negations are properties of the ordinary springs.
The system is patented in France and foreign countries.
Ther Peckham Street Cerr Wheel and Ade Compern!. of Kingston, Suw York, oxhibit, through the secretary, Mr. George L. Fowler, ?: Broalway, New York, some of their ordinary wheels-steel-tired paiper wheels, steel-tired metal wheels and car axles. The hubs of the elastic: motor wheels are lined with a rubber cushion which bears on the axle, thus increasing the life of both wheel and axle, and prePatserystallization, reducing the cost and increasing theirefficiency. These cushions also reduce the noise and give an casier motion. The whels of the motors are attached to the axles by an ammar disk, with bolts passing through the hub, so as to be rearlily removed by : 1 ordinary workman without dotaching the motors from the axles. Thu axle is also enlarged at the bearings of the motor-driving gear; it is not weakened by cutting a slot in the body of the axle for the kerwat, and it has an adjustable serew-threaded collar to take up the lost motion of the motor bearing's.
Messers. Charles (A . Fekstein \& Co., as arents for the Arbel patent wrught-iron center, steel-tired wheel, show the method of fastening the tire to the wheel.
The Arbel wheels are made at a single operation, being stamped and welded by a few blows from a heavy hammer. They are not drpment upon bolts or screws for strength. The method used for lastming is what is known in Fngland as the Gibson and in Ctermany as the Bute key. It consists of a ring of metal which overlap the joint between the wel, and tire, and so clamps the tire to tha wheel that, even in cases where the tire broaks, it is prevented
from beeoming dotached. 'The form of the key can best be sem bex refrence to Fig. As.

By this combination it is clamed that \cdot the life of the cemter is practically unlimiterl" and that the Amel solid-spoke wherle an mate by the Corkerill Contans, are moted for their" stremeth. lightness, safety, dumbility, and ecomome." The weights vary from

The centers can be re-tired at a mominal cost many raihoarl mathine shou.
IV.-BLOCK sigNALS.

Many of the railway companies, in ardition to their rolling stork, have placed on exhibition theirsystems of operating whereby greater safety is secured. Chief among these is the bock system of signaling and of operating switches. Under this head we find The Sim. ples Railuray Patents Syudicate, of Temple Chambers, Lomdon. claming for their devices an increased economy with alditional facility and safety in trafic movements over any other system.

This machine consists of a successful combination of (1) duplex plunger point locks; (2) double indication detectors; (3) "selectors" for lever saving purposes, all operated by one cabin-frame lever. Whilst the "simplex" is thus able to operate simultaneously both a "point lock" and a "point detector," by one lever", with the ordinaty pall-and-return movements, yet the detecting indications and the bocks are distinct for ach romb and double for each of the single blarles in the wire commertions at the detaching box.
'This system is installed at the Watergoo station of the London
and Southwestern Ratway, which is one of the most eomplicated prints in England. There are in all one hundred levers placed in the (ablin. Of these thintrone levers are employed to operate the Thity-two pairs of points: ninetern heres work the selactor bars of the nineteen "simplex" mathiness and thas perfomm the desired lowking. detecting, and indicating features of this mew machine; twentr-four levers work the semaphore-arm signals: five levers only work in comnection with the adrance and rear fouling bars, whilst of the remaning twenty-ome levers, nine are spare omes and twelve work shatting signals. Another characteristic feature of this lever framm is the "special rotation" locking, which is too technically intricate to justify deseription without detail drawings. The same mat be said of the general system, but more eomplete information (an be obtained from the compans.

The ('ompuegmir du Midi have a device for maneurening several fixel signals by a single leverso adjusted that one of them may be "perned only while all the others are closed. It consists simply of a mumber of rods commerting the rarious signals with a yoke phaced horizontally upon fixed chains. The emts of these rods may be fastoned successively to a chain comnected with the maneurering lever whoreby they may be opened. Their nomal position is maintained clowed bey a counterpoise attached to the signals.

Another mechanism for operating a single point and disk simultaneously, consists of a small cast-iron box placed behind the lever for throwing the switch, in which there is placed an auxiliary lever ammeded by a wire with the sigmal so that one movement controls the position of both point and sigmal.

A third device is shown for operating a fixed signal and a movable *!n hy a combination of levers so adjusted that the disk is only able twhe bpened when the stop closes the lateral line and conversely. The stopeonsists of a chock of wood which is thrown over the rail be a lever.

A fourth system for operating two or three disks by means of a single rod is composed simply of the transmitting articulated rod pasing over pulleys and connected at the outer end with the several signals to be operated by means of levers.

By combinations of the above types, four, five, six or more movemunts may be obtained by a single lever of transmission.

Still a fifth device, consisting of a cabin containing twelve levers, is shown as one of the types arlopted by this company at the station at Pau, and designed to enect in the simplest manner and with the fowest parts the maneuvering of signals and switches. Inthis case the table accompanying the levers is horizontal. Another in which the table is vertical contains twenty levers. These block stations Wh not differ materially from the customary forms exeept in their details. There is also a mechanism for operating and locking points,
a turntable, platform scales, and other applances which go tormplete this instructive display of material.

The Lestros system permits the automatic closing of thr simals by the action of the car wheels. It is composed chiefly of two levers moving in a vertical plane and comected on the one side with the wires leading to the disks and on the other to the manembrime levers in the cabin. (On the first of these levers is fixml a spime clasp and on the other a movable catch with a counterpoise. Tha. two parts operating together mite the levers, which are mombutom the same axlo. so that the latch can not be unclamped by any $\cdot x$. ternal action, but is opened by a lever actuated by a pedal which is itself moved by the operation of the first wheel of the carriage.

The Compurgie de POMest have introduced the electrical system for operating signals on adjoining blocks. This involves, for moh cabin, (1) a stop signal with detonators, a caution, and an "all right" signal, disks by day and lamps at night. (?) These sionals are duplicated by others at distances varying from 1,300 to $\because .1111$ yards. operated from the same cabin.

Adjacent cabins are put in circuit by electrical conductors (on nected with Regnault indicators. These boxes carry two indics. one outside of the station and visible to the engineer, the other inside and in sight of the station agent. The arrival and departure of a train on a block section is indicated by the position of the index. any change in which is announced by a bell. The operator at any station can not unblock nor open the section until word has been received from his neighbor of the arrival of the train upon the forwarl block. To insure against inattenton or sudden disability of the operators thesystem is designed (1) to prevent an agent from announcing an approaching train before he has first set the distant signal and then blocked the line by the home signal; (2) to present his withdrawing these signals before they are unlocked from the aljoining cabin; (3) that the next operator shall not be able to wise the electric signal until he has first set his own block. Thes. wquirements are met by the locking gear, the olectric lock and boit. and the electric relay.

The Lomdon and Northwestern Railway Company show the frain staff, working for single lines of railway, under the Webl $\&$ Throm, som sustem, which is dercribed as follows:

Railways in Great Britain constructed for a single line of railsujッil which both the up and down traffic is conducted are as a ruld work... on a system generally known as the staff and ticket system.

With a small traffic and trains ruming at stated times it is pros. he to work this system without delay; but where the traffic is heary and variable, and where a time table can not be adhered to, somins delays result, due to the fact that if a train has been dispatehed from station A to station B with the staff, a train ruming out of course,
in a pecial train arriving at A, can not proceed until the staff has in. + n mumed from station B.

The ind over this diffeulty the Lemdon and Northwestern Railway (\because mpathe have adopted a system whereby a number of staffs are provind at each staff station in suitable receptacles and so eontrolled he 小owtical and mechanical devices that, althoughonly mestaft can :... in use at a time. the moment the staff in use has been deposited in the peceptacle, say at station B. a second staff can be obtained by A: anl so the delay of waiting for the staff previously sent to P to be fommed to A is avoided. By these means a single line of malway may be utilized to its fullest capacity, and the traflic comblucted with frriect safety and regularity.

The apparatus adopted by the Londonamd Northwestern Railway (ompany is the joint patent of Mr. F. W. Web)), Mem. Jnst. C. E., the ehief mechanical engineer of the company, and Mr. A. M. Thomp\therefore.n. Dem. Inst. C. E., the companys signalling engimeer, and it has hern in use on a busy section of the London and Northwestern RailW:a for about twelve months, during which time it has proved itself f. In in erery way reliahle.

The apparatus is characterized by great simplicity of construction, and as it dispenses with the usual telegraph instruments for block wriking, it not only possesses the advantages previously referred to hon is an economical substitute for the old sestem, which, it is rea--mable to anticipate, will be rapidly repatad on all busy lines by this the latest contribution to our list of safety apliances for railWitys.

A valuable feature of the new system is the key-interlocking which 1. combined with it. Eacl staff is formed into a key at one end, which mocks the points of any siding which may join the main fine hetween the two staff stations. The staff is used to monlock the pints, and immediately they are unlocked the staff itself becomes looken, and can not be withdrawn until the points are again chosed and locked, and thus perfect security is afforded at a trifling cost, all simals being dispemsed with.

Although Block signals are in gemoral use on the continent, and matry modifications were shown at the exhibition, their introduction int, ther Conited states has not been as rapid as the safoty of the thathing public would seem toreduire. Quite recently an improved patablie semaphore has bern invented by Prof. Koyb. of Swarthmore (ollege, Pennsylania, which penders it more distinctly visible hath berlay and night. It is a great improvement over the old form of that valle.

> V.-Electroc Motors.
 bend street, New lork. malle an exhibit of a complete street mail.
way truck. equipued with its standarl electric motors, as shown in the acempanying view (Fig. '大)

In wrom to speure the neerssare track adhesion by means of indefundent driving, and to premit the entire woight of the car and its antonts to be availablo fon tradion. two motors are used on each (atr. whe lor each axle. with indrpendent driving. At the same time
 \because witch placer at bither emb of thr car, this switch controlling hoth ther sperel and the direotion of movement of the blotors.
Fath motor is of vore eompat form and simplo eonst potions and
 the floming, where it is geared to the axke. At one end of the motor are projoctions which emahle it to erip the astre of the car, and it is Lerla in pesition by iron caps. Inside of these aresplit liners to tatke up, the watr.

In wrater to permit of free movement of the motors under the e:r. athe at the same time preserve perfect parallelism in the meshing of the grars, mah motor is contered apon its axle, and at thr other end is supperted by double compression springs playing upon a lowi hilt resting upen the cross har of the truck.

By mans of these springs the motion of the armatures is trams- .-. mitted to the axles throush a spring gerang of compard form and treat stremeth, amb whenmer the axles are in motion there is a spring form of the pinions mpon the wems.

This mothod of flexible: supmert of the motor is of vital impertanore. momly for relieving the motor from smaten jar. hat also for takmis u! part of any sudden strain upon the geats by making the mowement always a pogressiverome.

From this it will be sern that. barring friction, a single pemm of
 - light amount. It follows that mo matter how sulden or great the tatan. whether becanse of a variation in loal or spered, or reversal wi direction of rotation, it is impessible to strip the arars unless the reahant strain is greater than that of the famsile strength of the itm, becaluse thr moment that the motore exerts a pressure upen the -rats at the same instant do the spring supperts allow the motor to riald. The result in practice has bern that with a werght equivalont

Both motors are simultameosly groverned he a sime spatsum switeh from ather platform. Which throws the winling of the motor frla into different aleatrical combinations, thas altorine the rurrat. mantaining practically a comstant ficld, and therolly varing the l"wre and speed of the motor withont the use of any wasteful mesist atme. By this methon there is molossol perver, amb theromben wor Here rar is perefore

The brushes are on an ontirely new principla and design, and are
remarkable for ease and adjustment. and work with equal facility in running either forward or backwarl. By their means a perfect electrical contact is secured without excessive pressure on the comb. mutator, and all wear is reduced to a minimum.

The cars can be run at widely different speeks, varying from the foast movemont to 12 or more miles per hour.

They can be stated and stopped without thr wer of braks in the space of : ${ }^{3}$ or + inches: and when making thr nomal rumine sped can in an emergency be sopped and reversed without bakes within less than a quater of a car length by allowing the electrio rurrent to flow through the motors in the reverse direction. This ability to quickly start and stop is especially advantageous in crowded thoroughfares, and makes an clectrie car ruming at the rate of $1:$ miles an hour much sater to the general publice than an ordinary horse car with only halt that rate of speed.

The motor equipment as shown can be used with either stomag. batteries, werhead wires, or underground combluit. When theoverhead wires are used, a special arm (atso shown) for making contart with the overhead wire is required.

This consists of a light trolley pole supported upon sitout horizontal and vertical springs, so that it can move in every direction, and having at its upper end a grooved where, making a ruming flexih; contart on the under side of the working conductor. 'The flexibility of this arrangement is very great, it being able to follow with facil. ity variations of the trolley wire 4 or 5 feet in either horizontai direction or more than 12 feet in a vertical direction. By this means a constant contact is made by the trolley wheel at different rates of speed or around curves and for different heights of the trolley wire.

It is impossible (working undermeath) to pull the trolley wiredown: and if off the line the trolley can be replaced quickly and easily. even in the darkest night.

By the use of this underneath contact not only are there no complicated switehes on the overhead comductors, but all changing of contact is avoided when passing the turnouts.

The truck shown was manufactured by the J. Ca. Brill Company. of Philadelphia, Pennsylvania. The entire woight of truck ant motors is about 6,000 pounds. Selling price of truck and equipment. s3.き!
 Massachasetts. have phaced on exhibition a complete st reet-railwal. (ar truck with electric motors athached, to show the operation if theirsstem. (Sin Fig. Ms.).

This plant is designed to fultill the following comelitions:
(1) The motors must beplaced under the car bodies. instoad of mpen the phat forms and most le so armoged as not to project above the floor, nor require any change in the boly of the car.
(?) Direct gearing must be used instead of the sprocket chain emphend when the motor is placed on the plat form.
(i) In general, each car must be equipped with two motors, drivb.e: wo independent axles; also that the trucks of ordinary cars shinh be changed for motor trucks provided for the purpose.
The sestem of conduction is that by orerhead wires supported "unn hameked poles erected on the siderwalk, or in some cases along therenter of the street or roal. 'The current is gemerated hy dyatames at a central station, from whener it passes. through the trolleys farmer against the moder surface of the overhead conductor, to the mators on the axles of the cars; thence through sad axles and wheels 1. :hr rails, which complete the cireuit. The joints of the rails are hathed by copper wires riveted to each ond, and finally the current is conveyed to the negative pole of the genemator by an molerground wir.

Fig ix. - The Thomsom-Houston electrit strestear motor
The compent is developed by a "series-shant" qenerator driven by ans suitable mechanical motor, which is oprated automatically aceasting th the amount of electrical power requirel. givinge grat econmay and efficiency of operation.
This motors also are" series-womd" and are proporiomod to deray! therdditional power required to propel the car upon grates or
 ne wre is sem in the acoompanying coll.
T:as company have introlued carbon instad of enpler for the bra-hes: with impurered results, in some instances obtaining a mile-
 ita eromomy in the commatators from the use of this material. T : same ot her imprownents hare resulted in reducing the cost of mamonance and operation ant have rendered this system fustly fophar with its patrons.

Vi.-American road machines.

 sylamia, haveon exhihition at Paris one of their machines knmenas
 huary on six ordinary homes hatul it. The hate on mold ham in
 angle to line of trave. The wertical piteh is alse alljustable : rither and of the blade can be mised on depmessed independently and all these adjustments an be instantly made by the opratore withme leaving his pesition on the miachine. These mandines move the arth to right of left in mamer similar to a phow: thes aremain! usen fur repairing eath rade or digging surface drans, dithles, or irrigat ing ditches, and for grading new roads which nararlermeremel with the surface of the ground, at which work the caparity of the mat chine is very great, ten doing as much work as could be dome bia fifty men and fifty horses in the old way, or one humdred mell with ouly piek and showel. They are sold for sono on cars at the shans. The demand for them has increased very rapidly during the past in vears, and their use in the United States is genema, although they were only introduced in 15s\%.

The Fiteming Manufurluring Compony, of Fort Wayne, Indiana. exhibit throngh their agents, the Browlyn Railway supll ('inpany, of 5 (Chambers street, Now York City, me of their ammere sible ". Leader" road machines, which they describe as comprining an all-sterel cutter bar or scraper, of fee loms, to which the kniso are attacheal. Ther are comease in section. mande of the how
 Wharpenced. The leader is a light and strong four-wheeded mathine with the from draft. The dratt bats of the scraper bat extmenting direct to the frent truck make it a light-draft manhine. The lean en is compled short and the front truck swings ander the frame. whe bing it to be thened in the shortest pessible spare. The derime ned for the fifth-wheel is a ball and socket arrangement which an
 ratal motion these marhimes are providen with hanges on one whand.

 p:My:

 murh less pewer to oprate and therefore are the most aromomio toels for rand Work on the markot.
The marhines are made wither right or laft hamd. wnint right in left hand phos:

 them murh las liable to got out of repair.

The Prulean Road Machime (tempumy, of Media, Pennsylvania, exhibit one of the Lambern road mathines, for which the riatm:

It is comstructed almost exclusively of iron and sted, the mily
 tho impertant combination of stremgth and dumbilite without monAne wiont, that ohjectionable chanacteristice of all rad mandimes :mand of woorl.

Su other read machine is so simple in construction. so steml! in ation, su light in draft, or su great in caparity, with the same ammont of team, as the Lamberm.

Sunther roal mathine will do the s:mme amomat of work in hilly anmotres in at given time. Indered. it is the only mathine that

'Jhe Lamborn has won the emviable position that it mow holds as :hersadard road-making machine by the rexerllence of its work on ?he public highways fom Mame to Califorman and by the fard that it hasts ahost a lifetime without expensive repairs

These clams are hased upen certain peedaliatios in the eonstrobe , bon whereby efficiency, lightness. strength. durability, andsimplicity ate surumed. Most of these desiderata are obtained by the form of the cutter bar and the method of supperting it. Its bearings are Samed to the frame at nine different peints. thas distributing the thath owe the whole machine. The har is comiform in shater. fer -mbling in action the coulter of a plow as it cots mader the ardh at onte end and rolls it back towarls the other. which. being mone arally vertical, operates as a soraper. By moans of lomors and racks it has groat vertioal range and can be usod for side ditehing. This

The remaming American exhihits imelude a combination railroal

 Battimore. Marreland.

E!nipments and supplies for building amd operating ratromes bes

 い1..

 Jomy City, New Jorsey.

Lever lifting and lowering jacks for railroad work，he Ambror Warrem，of St．Lomis，Missouri．
The American manutacturers of ralway applances wope distin． guishad bey their absence，dur doublless to the diffeculty of shipping full－sized monlelsof rolling stork，the remoteness of the mankrt，and the well－known conservatism，which renders it difficult to int rodued any important changes in Continental practice．

The sections shown by the Pembslamia Railroal Company were excellent tye of their kind，taken from the regular stock，hat wir． insufficient to give an idea of the appearance capacity combent． sat＇oty．and effirimoy of a fally equipped Amerian train as com－ trasted with those of Europe．The few articles exhibited wrer．in． structive and succeeded in attracting considerable attention，bit it is to be regretted that they were not more numerous and repnednt－ ative of the railways of the United States．

のにDし＂（TIONS．

Tho ereat discomforts of foreign cars as contrasted with Amprican are so well known as to require no detailed deseription here．But it is claimed that this is offset to a large extent by the lightnose of the rolling stock；yot it would seem that the long whee base and rigidity of movement more than counterbalance the gain in weight ath that the cost of tramsportation on European roads is much higher than on American．This is due largely to the necessity of provifing fon at least two and in some cases three listinct classes of patrons． These again must be subdivided to provide compartment：fin singl－ larlies traveling alone and for nonsmokers．The same gomplica－ tons are introlleced in the wating rooms and ticket or bookine oftices of the stations，requiring a much lerger persommel fund staft for operation of the lines，and longer trams and stations for the passengers．On most roads the percentage of first－class thaved dows not reach 12 ，and that of second class from 0^{0} to 25 ，yet these alass must be provided with separate rooms and compartments at stations： and in cars which are sedfom if ever all tilled．Thas the asi of opration is increased．Some lines bave discarded the semend ehas： to reduce expenses．

The statistios of standard American and foreign railpoads what compared show that in the former country a locomotive does mone than six times the work，makes ammally nearly twiee the mileare with a charge of less than ond half for the tralfic．and earns nomly doulde the revemur of its European competitors．
These presults are in themselves sumbient torlemonstrate the sunpe rine rarning capacity of Ammican milwas；but it is mot to be roms chaled from this that there is not rown for improvement in man！ of oum means of bocomotion．For rapid transit in cities thome is murh to be learned with refermere to mothes well as to the wity．

The extent and variety of the exhibits comprehended in this class make it one of great interest to the railroad builder, contractor, manarer. manufacturer of supplies, and capitalist interested in economic Hamsportation. Indeed, every one desiring speed. comfort, sate \because. and convenience in traveling could find much of interest and protit in this display. The principal innovations were noticeable in the increasing use of long bodied or saloon coaches on the continental routes, and even on the shorter lines of Great Britain there was a marked temdency to substitute the "American" passenger coach. The " grools waggons," however, have not mado much progress in the direction of increased capacity ans: reduced resistance. They are still small and in general open, the contents being protected by canvas covers or tarpaulins.
The latest improvements in German malroads and rolling stock hase not been touched upon in this report, since that country was rompindous by her absence from this class, and it is not felt that, with the possible exception of the Pemsylvania Ratroad Company's whibit, the tamsportation methods of the United States were adequately represented at this notable Exposition at Paris. This was dur largely to the expense and difficulty of moving the lull-sized phant of American rolling stock across the ocean, and to the further find that the European markets are already well supplied by domestic manufacturers, with whom dmerican contractors do not in general compete.

The following general tables contain important data relative to a large percentage of the rolling stock at the exhibition, from which somr interesting conclusions and comparisons may be deduced. For instance, the car giving the lyghest nonpaying or dead load per pasenger is the slecper (No. 41), where the ratio is 1 to 28 . The great"st had per wheot is on the latige first-class coach (A 20;3) of the same company, giving a pressure of 11.36% pounds: but this is much lighter than the load on drivers of many angines. (Class P of the Pemnsylrania Railroad gives 18,400 pounds per wheel. 'The least load is that show by the mixed carriase of the Midland Ratway, which, loeinge monnted on bogies, gives a minimum of wear and is light-ruming. Itscapacity, however, is not so great as some of the other cars. That having the greatest capacity for first or second-class traflie is the stambard day coach of the Pemmsylvania Railroad, which will seat tifty-six passengers in a length of 46,5 feet, and weighs a of pound fur passenger, giving a ratio of live to dead load of 1 to a.f. Tha. apment exception to this is the light car of the Chemin de Fer du Sud, but this is only for suburban travel. The other instance is that of a third-class car, where fifty persons may be crowled into a Irngth of $95 . f$ feet in closed compartments, having but $34 b$ cubic foet of air to each passenger, and with no opportunity to move about on eren to leave the seat except at stations, whereas in the cars of the

American pattern, although there is nominally but 0.8 of a foot of car length per passenger, the travoler may move freely from one end of the car or train to the other, and there is an abundance of sentihation from the numerons doors, windows, and ventilators found in the cars.

A('KNOWIAED(BMENTS.

In concluding this report the writer desires to express his obligations to Gen. William B. Franklin, commissioner-general; Professor Charles B. Richards, יxpert commissioner for the sisth group: Mr. H. B. Plant, United States juror, class $f 11$, and Mr. H. D. Woodsseceretary, for much of the data and information embraced in this paper.

Data Relatino to Rallway Carbiags

N
π
π
π

REP（ORT

115

135

WIIIIAM WA＇IN（）N，1＇h．I＇．

Exposilion；memther a！the Internaliomal Inr！g af thr I＇aris E．comsilion of バッ゙s，etc．

CONVERSION OF FRENCH WEIGHTS AND MEASURES INTO THEIR EN(łLISH EQCIVALENT:.
Measurements of length.

Méasurements of surface.

Measures of volume.

Measures of capucity.

rremeh.

Measurr of work.-1 kilogrammeter $=i .2331 \& f$ fot-pounds.
Money. -1 frane $=\$ 0.101$ gold.
H. Fx. 410-VOL HI--35

TABLE OF CONTENTS.

Page.
Introduction 551
PART I.-RIVERS AND CANALS.
Chafter I.-Hydraulic canal lifts at Les Fontinettes and La Lou- viere 552Les Fontinettes lift-Introduction-Principle of the lift-Description
of the works-The troughs-The pistons-The presses-The guides-The machinery (pistons and pumps)-Method of working-Timerequired for an up and down motion-The towers-Method oferecting the presses and pistons-Cost-Summary-Acknowledg-ment.
La Louriere lift-General remarks-The presses-Tests of the mate- rials-Precautions against freezing-Improvements proposed- Cost--Summary,
Chapter II.-The movable dam at Suresnes on the Seine 564
General description-Frames-Panels-Cost.570General description-Flooring-Frames-Panels-Cost.
Chapter IV.--The new lock at Bovgival and its hymbaulic oper- ating appliances 572
Location-Motive power-New locks-Gates-Hydraulic machinery- Protection against frosts-Operating apparatus-Hydraulic cap- stans-Advantages of the system-Cost-Conclusion.
Chapter Y.-New movable dam at poses on the Seine. 588
Introduction-The curtains-The suspending bridge-The hoisting bridge-New principles-Depth of foundation-The flooring-The frames, and their method of suspension-Footbridge-Method of working-Construction-C'mst.
Chaiter Vi-Villez movable dam on the Seine 606
System of closing-Frames-Method of opening.
Chapter VII.- Movable fish way erected at Port-Mort Imam on the Seine 610
Chapter VIII--Tobey-Netf Reservoir for febing the Central, Ganal. 612
(ieneralities-The dike-The gate tower-Sluices-Guard lock-Cost.
Chapter IX.-The new high lift bocks on the (ennthai Canal.....619Description-Fontaine eylindrical sluice-Lock gates-Time of lock-age-Cost.
Chapter X. -(able towarfe for boats on canals and hivers625Difficulties of cable towage-Systems adopted-Passage around bends$-\therefore$ thod of attaching the boat to the cable-The grip-Length ofcircuit-Cost.
Chapter XI.-Towage by a submergei) chain, with a fireless engine.
Page. $6: 31$
Chapter XII. -System for supplying the canal from the Marne to
the Rhine and the Eastern Canai 635
Chapter XIII. -Oscillating bhidge over the Dames Canal Lock 638
Chapter XIV.-Balanced gates at the place where the Rhone and Cette Canal crosses the Lez River 638
Crapter XV.-Braye-En-Laonnois Tunnel 642
Geological section of the ground-Use of compressed air-Accidents by fire-Accessory constructions.
Chapter XVi.-Nividation of the Seine from Paris to the sea 649
Charter XVII.-Embankyent works for theimprovement of the tidal SELNE 651
Depth of water-Improvements-Alluvial land-Results.
Pafer by Prof. Vernon-Halcolet on the principles of training RIVERS THROUGH TIDAL ESTUARIES, 653
Introluction-Conflicting opinions respecting methods-Investigationabout the Seine estuary-Prof. Reynolds's working model of theMersey estuary-Model of the Seine estuary-The arrangementsfor imitating the tidal and freshwater flow--Trials of various gran-ular substances for the bed of the estuary in the model-Resultsof working with Bagshot sand-Experiments with training wallsintroduced in the model-Principles deduced from theexperiments.
PART II.-TIDAL. COAST, AND HARBOR WORKS.
Chapter XVIII.-Calais Harbor works 670
History - Sluicing basin - Docks - Improvements - Northwest dike-Use of water jets in driving piles-Outer harbor quays-Foundationof the quays by the system of water jets-Dock locks-Swingbridges--Hydraulic machinery for operating the locks and bridges-Quays-Graving dock-Barge dock.
Chapter XIX.-The new outer harbor at Boulogne 687
State of Boulogne Harbor in 1878-Project for a deep-water harbor- Work done up to 1889 -Description of the dike-Results obtained- Further improvements.
Chapter XX.-Port of Havhe-The Bellot Lock 694
Iron swing bridges--Lock gates-Hydraulic apparatus-New iron dock sheds-Cost.Chapter XXI.-Port of Havre-Iron wave-breaker on the break-Water on the south side of the outer harbor.700
Chapter XXII.-(dinal from Havre to Tancarville-Gingle qate of the Tancarville: Lock 702
Chalter XXIIL. -Slipway bulht by the chamber of commerce at Rouen FOR THE REPAIR OF SHHK 704
Chapter XXIV.-Port of Honfleur 708
Sluicing Basin-Method of closing the sluicing lock-Lock gates-Weir for feeding the storage basin-Description of the weir gates.Chapter XXV.-Port of Honflect-Siphons betwefe the storagebasin and the fourth dock-AUTOMATIC Siphonage715
Chapter XXVI.-Traversing bridge on the dock locks at the port of St. Malo-St. Servan 718Position and general arrangements-The lifting piess-The recuper-ator-Operation-Weight and cost.
Chapter XXVII.-Hydraulic works and pneumatic foundations at Genoa
Page. 722
Dry docks and accessory works-The Quai des Graces-Character of thefoundation-New method adopted for the foundation-Caissonsfor blasting out the rocks-Boring apparatus-Movable caissonsfor the construction of the quay walls-Deseription of the lock foradmitting and removing material-The great floating caisson andits mode of working-Supply of compressed air, etc.-Iron centersfor the arches of the Quai des Graces.
Chapter XXVIII.-Port of Rochelle-Foundation of the jetties at La Pallice 736
Process adopted for the construction of the blocks-Description of the caissons and air locks. Work in the caisson-Displacement of the caisson-Access to the caisson-Removal of the submarine rocks-Cost.
PAR'T III.-BRIDGES AND VIADUCTS.
Chapter XXIX.-The new stefi bridge at Rouen on the Seine 745
Chapter XXX.-Reconstruction of the roadway on the suspension bridge at Tonnay-Charente-Alternately twisted cables. 748
Chapter XXXI.-The lifting bridge at la Villette, Paris 752
Chapter XXXYI.-The Garabit Viaduct. 756History-Description-The horizontal girders-The roadway-Thearch-The iron piers-Principal dimensions-The stresses-Erec-tion of the iron work-Methods of raising the pieces-Generalinformation-Cost.
Chapter XXXIII.-(Goler-noir Viadect 767
Chapter XXXIV.-Viadet over the river Tardes. 769
Chapter XXXV.-Consolidation of the side slopes at Laplante. 771
Chapter XXXVI--Tunnel through Cabres Pass on the rallroad from Crest to Aspres-les-Veynes 773
Chapter XXXVII.-Cubzac bridge over the Dordogne. 775
The viaduct-The bridge proper-Mathod of launching by steam-De- tails of the machinery employed.
Charter XXXVili.-The Crueize Viadect 781
Chapter XXXIX.-Construction of the Castelfet, the Lavelr, and the Antonette bridges. 782
Description-Centers-Construction of the arch.
Chapter XI.--The Ceret Bridge789
Chapter XLI.-The Crossina of the Garbonne at Marmande-The use of masonry catsons 793
Chapter XLII.-Oloron Bridge upon the: Gave doloron Rallroad from pau to Oloron 796
Chapter XliIf.-The Gravona Bridee 798
PART IV.-CIVIL CONSTRUCTION AND ARCHITECTURE.
Chapter XliV.-Specimens of iron construction in Paris. 801
Introduction-Borings-Zschokke's Bell caisson-Foundations-Iron work-Strength of the iron pillars and beams.
Chapter XLV.-The Eiffel Tower 806
Introduction-Description of the propesed tower-Strength and sta- bility of the tower-Force of the wind--Different hypotheses
Paga
Chapter XLV.-The Eiffel Tower-Continued. adopted-Overturning moment -Anchorage-Deflection-Resis- tance of the tower against the wind-Calculation of the dimen- sions of the uprights-Construction-Situation-Borings-Use of compressed air-Foundations-Deseription of the iron work-De- tails of the foundation-Lightning conductors-Erecting scaffold- ings-Erecting cranes-Methol of raising the cranes-Erection of the first and second stories-Erecting cranes above the second story-Method of shifting the crane-Protection of the workmen- Arrangement of the second and third stories-Staircases and eleva- tors-Time of ascent-Verification of the verticality of the tover- Uses of the tower-Strategical operations-Names of eminent men of science upon the tower-Statistics-Cost-Montyon prize in me-- chanics awarded to M. Eiffel-Acknowledgments-Opposition en- countered by M. Eiffel in the erection of the tower.
Chapter Xlvi.-The Machinery Hall. 832
Introluction-The Osiris prize-Popular estimate of the machinery hall-Extracts from specifications-Foundations-Description of the principal truss girders or arched ribs-Purlins and rafters- Erection-Methorl adopted by Fives-Lille \& Co.-Method of raising the purlins and rafters-Weight-Method of erection adopted by Cail \& Co.-The great vestibule-The erecting scaffoldings-The lateral galleries-Construction of the gables-Weight-Cost- Acknowledgments.
PART V.-LIGHT-IIOUSES.
Chapter XLViI.-Planier Light-house. 864
Chapter XLVIII.-Iron light-house at Port Vendres 867
Charter XLIX.-Apparates 2.66 meters in interior diameter called hyper-radiant, for lighting Cape Antifer. 870
Chapter L.-Improvements in the apparatus in hoht-houses using mineral oil 872
Optical apparatus-Spherical reflector-Clockwork-Automatic brake and regulator-Electrical indicator of the stops of the machine- Constant level lamps.
Chapter LI.-Improvements recentiy made in electric light-houses.
Bifocal apparatus-Motors and connections-Magneto-electric ma- chines-Working of the machinery--Results-Electric regulators and indicators-Cost.
Chapter lifi.--Acoestie signals in connection with electrie lioht-hocses.881
Chapter Lill.-The hlumination of isolated buoys and beacons by means of oasoline 882
The apparatus-Burners-Properties of petroleum products-Arrange-ment of the reservoirs-Success-Cost.
Chapter LiV.-(Graphic method of quadrature 885By M. Ed. Collignön, Chief Engineer of Roads and Bridges.

CIVIL ENGINEERING, PUBLIC WORKS, AND ARCHITECTURE.

Ey William Watson, Ph. D.

INTRODUCTION.

The information contained in this report is derived from official sources. Most of that relating to the public works of France hats been obtained from the notices and documents collected by direction of the minister of public works, and exhibited in a special pavilion erected for the purpose.

For a large number of stereotyped illustrations of these wo.ks I am indebted to the administration of roads and bridges, through the courtesy of M . Collignon, inspector of the school of roads and bridges. I wish also to express my obligations to M. Schwobele, the accomplished librarian of the school, and to M. Boulard, the superintendent of the pavilion of publie works, for explanations and valuable suggestions.

For the information and drawings relating to the port of Genoa and the submarine work of the outer harbor of La Pallice, I am indebted to the contractor, M. Terrier, of the firm of Zschokke \& P. Terrier.

To Mr. L. F. Vernon-Harcourt for his paper on the training of rivers through tidal estuaries.

To MM. Eiffel and Nougier for the descriptions, pamphlets, photographs, and prints relative to the Eiffel tower and the Garabit viaduct.

To M. Contemin and his assistant, M. Groclaude, for information and drawings relative to machinery hall.

To M. Bandet for much information concerning the civil constructions deseribed, including portions of the machinery hall, which were erected by him, as well as the lock gates and dock sheds at, Havre.

A model of one important work, viz, the Forth bridge, was shown at the exhibition; this bridge has since been successfully completed and may justly be considered the greatest triumph of engineering skill. An elaborately illustrated account of this structure has been published in Engineering, and it has not been thought best, for this reason, to enter upon its description here, as the author had no information concerning it that was not accessible to the public.

PAR'T I.-HYDRAULIC ENGINEERIN(i-RIVERS AND CANALS.

Chapter I.

HYDRAULIC CANAL LIFTS AT LES FONTINETTES, FRAN(E, AND AT LA LOUVIERE, BELGIUM.

The Neufosse Canal unites the Aire Canal with the rivers Lys and Aa. It connects Dunkirk, Gravelines, and Calais with the system of internal nạyigation, and has an annual traffic represented by 13,000 boats.

The Fontinettes locks, situated on this canal at Arques, near St. Omer, consist of a chatin of five successive locks surmounting a difference of level of 13.13 meters.

The time consumed in passing through these locks often exceeded two hours; the system of crossing was consequently abandoned, and one day the locks were used for ascending boats and the next for those descending. Much time was thus lost, involving constant crowding, andit was easy to see that the capacity of the locks would soon be reached. Again, as the Fontinettes locks did not arlmit boats of more than 3.4.80 meters in length, they could not accommodate those of 38.50 meters, carrying loads of 300 tons, which were in use on the northern canals.
(2) To remedy this deplorable situation the Government ordered the construction of an hydraulic lift by the side of the Fontinettes locks, and similar to that in use at Anderton in England, on the Trent and Mersey Canal, which accommodates small boats of from 80 to 100 tons.

The Govermment wished thus not only to improve the passage at Fontinettes, but also to try the experiment of raising boats of 300 tons burden by an hydraulie lift.
(3) Principle of the lift.-The lift, properly so called, consists of two iron troughs containing the water in which the boats float. Each trough is bolted at its center to the head of a piston, or ram, which works in an hydraulic press set up in a basin. The two presses communicate by a pipe containing a valve serving to cut off, at will, communication between the cylinders.

We thus have an hydraulic balance, and it is sufficient to give a certain surcharge of water to one of the troughs when the valve is opened, in order that one trough shall descend. and in doing so raise the other. Besides, the weight of the trough does not vary, whether it contains a boat or not, provided the water in it stands at the same level in both cases.

GENERAL VIEW OF THE HYDRAULIC CANAL LIFT AT LES FONTINETTES.

(4) Description of the worlis.-A cut-off was made in the right bank of the Neufosse Canal parallel to the Fontinettes locks, with a depth of water 2.20 meters and a width at the bottom of 17.95 meters. It is provided with a guard lock 6 meters wide at the junction of the excavation and embankment, and it crosses the Boulogne and St. Omer Railrod by an iron aqueduct divided into two independent lines, A A, each with a span of 20.80 meters. Immediately below this point the lift is placed. (Fig. 1.)

A general view of the lift is given in Plate I.
In the foreground is seen the iron lattice bridge over the two branches of the canal containing the lift. Immediately behind is the lower iron framo supporting the downstream gates; the trough on the right is raised; on the right and left are the towers with their iron guides to steady the trough in its ascent and descent. Behimd the first tower, on the left, is the machine house containing the accu-nulator, the turbines, and the feed pumps; on the top is the lookout cabin containing the levers for opening and closing all the valves used in operating the lift. Still farther in the rear are the supports for the upstream gates, also containing the hydraulic moving apparatus. Below, in the rear, is the iron girder bridge carrying the canal over the Boulonge and St. Omer Railroad, resting on the massive abutment. At the extreme right is the original camal leading to a flight of five consecutive locks.

Plate Il shows the trough basin, griving a view of the trough as seen from beneath when it is raised, and of the parts of the structure which are then below the trough. It exhibits the junction of the square head of the ram with the trough bottom and the details of the construction of the latter. On the side of the house is seen the guide; beyond is the gate with its lifting chain and guide pulley, surmounted by the iron lattice supports. On the left side is a little centrifugal pump for draining the trough basin.
(5) The troughs.- Each movable trough, B , is 40.35 meters long and has a working length of 39 , 50 meters. It is formed of two girders 5.60 meters apart, 5.50 meters in depth in the middle, and 3.50 meters at the cxtremities, not including the angle irons. These girders, carrying the corbels supporting the footbridge, are united by cross girders 0.525 meters high and 1.50 meters apart.

The four middle transverse girders aro 1.50 meters high; to these the piston head, hollowed out for this purpose, is attached by strong brackets, thus forming a rectangle 3.50 by 3.10 meters with a horder 0.010 meters thick.

The minimum depth of the water in the troughs is 2.10 metors; the ends are closed by lifting gates. Tho troughs are lodged at tho bottom in a drymasonry basin below the level of the lower bay, which is divided into two compartments by a wall 5 . 20 meters wide; each compartment has its lower entrance closed by a gate at the extremity of each aqueduct.
(6) The pistons.-The pistons are cast-iron plungers 17.13 meters long, 2 meters in diameter, and 0.0% moter thick: they are formed in sections 2.80 meters long flanged on the insirle, united by bolts and made water-tight by a ring of sheet copper inserted between each Hange.

Fio. 3.-(ross section through the transverse axis of the Hydraulic lift at Ies Fontinettes... (ieological section: (iravel with smooth stones; sand; fossil shells; broken tufa; compact tufa.-B B, movable troughs: CC, pistons; DD, great presses; E. E, supply pipes; F, connecting valve; IIII. guides; K K K. towers; L, lookout cabin; P P, compensating reservoirs.
(7) The presses.-The great presses are 15.682 meters high and 2.078 meters in diameter. They rest upon masses of cement beton at the bottom of the pits, which are 4 meters in diameter and tubbed
with cast iron. The presses themselves are made up of rolled weldless steel hoops 0.155 meter wide and 0.06 meter thick, stepped into each other at half thickness, with a joint 0.005 meter high, and made water-tight by a copper lining 0.003 meters thick.
Each cylinder is stiffened by vertical angle irons, fastened to a hexagonal framing below the press, and above to a collar surrounding the cylinder. Four crossbeams supporting the flooring, and resting upon the tubbing of the pits, complete the system. The bottom of each press is of armor plate 2.25 meters square.
The joint between the piston and the press is formed by an Indiarubber band, lined with sheet copper and lodged in an annular recess mate in the cylinder cover; this lining is kept in place by a bayonet attachment.
(8) The presses communicate by an iron pipe 0.25 meters in diameter inside, starting from the bottom of each cylinder and ascending the corresponding pit; the pipe has a horizontal branch at the bottom of the basin between the two pits and contains a valve in the middle. This branch has also tubes connecting with two distributors, by means of which water may be forced under pressure into either press, or allowed to escape therefrom.
(9) Guides.-The troughs are guided on the upstream end and in the middle. The upstream guides are fixed to the downstream pier of the aqueduct, which forms the lift wall. The center guides, D D, which are the most important, rest against three massive square towers. They consist of strong steel shoes attached to the troughs and clasping the cast-iron guide bars. The downstream ends are not guided.
(10) The engineer in the valve-house, L, at the top of the central tower directs the whole apparatus, opens and closes the connecting valve between the presses, and the valves of the distributors. Access to this house is afforded by the tower staircase or by a footbridge from the top of the lift wall.
(11) The side towers contain wrought-iron cylindrical reservoirs 2 meters in diameter-equal to the exterior diameter of the pistons. Each of these compensating reservoirs, as they are called, can be put ints communication with the corresponding trough by a jointed pipe.
(12) When ote trough is raised to the end of its course there is a play of about 0.045 meter between its upstream extromity and the downstream end of the aqueduct connecting with it. At the moment of raising the gates to allow a boat to enter or to pass out of a trough the joint is made, by an India-rubber hose running round the end of the aqueduct and protected by springs. This hose is inflated with air at a pressure of $1 \frac{1}{2}$ atmospheres. Little valves inserted in the gates permit this space (between the gates) to be filled with water before making the connection. The same arrangement is made for the lower bay joint.
(13) Porticos constructed on the lift wall, and also on the tail wall, have, on their tops, hydraulic apparatus for lifting the gates. The gates, which are balanced to a great extent by counterweights, allow, when raised, a free height of 3.70 meters above the level of the water. Below the lift, a footbridge, Q, connects the two banks with the central masonry wall.
(14) The machinery (Pl. III) placed in a building, M, between the two compartments of the dry basin on the upstream side of the central tower, consists of two turbines driven by the water of the upper bay, brought into a tank between the two lines of the aqueduct. One turbine of 50 horse power drives four double-acting force pumps coupled together two and two, and supplying an accumulator of 1,200 liters capacity. The other 15 horse-power turbine drives the air compressor for the inflation of the joining hose, and also a centrifugal pump which serves to keep the trough basins clear of water, whether from leakage or false maneuvering.

A little steam engine works the pump when the upper bay is not in use.
(15) The weight to be raised, including a piston, a trough, the water, and a boat floating in it, amounts to about 800 tons; the pressure in the presses is, therefore, about 25 atmospheres. But the accumulator has been loaded to 30 atmospheres to make sure of the efficient working of the presses for lifting the gates.
The compensating reservoirs were intended by the authors of the project to reduce the consumption of water, but it has not been thought best to use them.
(16) Method of working the lift.-The lift is worked as follows: One of the troughs being raised to the height of its course and containing a depth of water 2.40 meters, the joint is made by opening the cock admitting compressed air into the hose running around the face of the end of the aqueduct. Then the trough and aqueduct bridge are hooked together, and at the same time the space between the gates is filled by means of a little valve. The two gates are then raised together by means of a counterpoise and the hydraulic apparatus; a boat is hauled into the trough, then the gates are lowered and unhooked, the valve is closed, and the air in the rubber hose allowed to escape.
During this time similar operations have taken place below; the other trough being at the end of its course, resting on wooden blocks and containing water 2.10 meters deep. The upper trough has thus a surcharge of 0.30 of a meter in depth, corresponding to about 64.6 tons.
The connecting valve between the presses is then opened and one trough descends while the other rises. The motion is stopped by closing the connecting valve when the level in the ascending trough is 0.30 of a meter below that of the upper bay. The descending

hydraulic canal lift at les fontinettes. view of the pumping machinery.
trough has also its level 0.30 of a meter above the level of the lower bay. The joints are formed, and the gates lifted, slightly at first, then completely. The upper trough takes its surcharge for the following operation while the lower one gives up its water ballast to the lower bay. The boats can then be hauled out and replaced by others.
The position of a trough may be corrected either before or after the opening of the lifting gates. It is sufficient for this purpose to move the distributor valves so as to allow water to escape from the press or to introduce water under pressure from the accumulator into it.
Also safety valves are introduced, opening automatically, and thus preventing the trough from rising too high, which might be dangerous.
(17) At the beginning of the operation, the press of the upper trough contains 41 tons of water more than that of the lower. The force producing the descent attains about 106 tons. This force progressively diminishes, since the water in the first press passes gradually into the second, and at the end of the operation the force is only 24 tons; this is necessary to overcome the friction and passive resistances. This force would be in reality only 12 tons if the connecting pipe was entirely free, but it was thought best to reduce the section by valves and thus regulate the apparatus, in order to avoid either an excessive velocity or a prewature stoppage in case of error in taking the surcharge.
As we see, the initial force diminishes and the motion slackens continuously, so that each trough comes to the end of its course with nearly no velocity.
(18) The actual time of the up and down movement of a trough is on an average 26 minutes, made up as follows:

	Minutes.
Entrance of the boat and closing of the grates*	8
Ascent and descent of the troughs \dagger.	. 5
Correction of the position of the troughs.	- 3
Opening the gates and hauling out the boats	10
Total	26

When the hydraulic capstans are set up to hasten the entrance and exit of boats, which is now done by men, this time will be reduced to 20 minutes, and six boats per hour will be passed.
The works were begun at the end of 1883 . The first attempts to work the lift took place in November, 1887, and it was opened for traffic the 20th of April, 18×8.

[^44](19) The towers.-The slightest movement of the towers would affect the verticality of the guides; they were accordingly built on piles.
(20) Erection of the presses.-Ingenious devices were adopted to set up the presses and pistons.
The troughs were put together upon scaffoldings 7 meters above bottom of the basin, leaving the central portion above the pits open. In this position the girders of the troughs served to support a traveling crane which carried the pieces to be lowered into the pits.

Each press was erected as follows: The hexagonal framing having been placed, the bottom of the press with the first steel rings and the lower elbow of the connecting pipe were lowered, the whole having been lined with copper, the latter projecting beyond the rings. A copper collar 2.44 meters high, made in the workshop, was then riveted and soldered to the lining already placed so as to form on the exterior a regular cylindrical surface. The collar had a diameter very slightly less than the interior diameter of the rings. The latter were threaded on to the collar to a certain height, and then a new collar was placed, and so on.

The presses being set up, they were tested by a hand pump up to 54 atmospheres.

The presses were found perfectly tight, and the result of the test was to press the copper lining exactly against the steel rings.
(21) The pistons.-After this trial the pistons were set up as follows: Each press was filled with water and the connecting pipe closed by a plug having in it a three-way cock. The first section of the piston was placed so as to be supported by the water and project out of the press. The second section was then placed and the joint carefully made. By allowing a small quantity of water to escape from the cylinder the two sections were lowered so as to put on the third, and so on. If one of the joints was not tight it was discovered immediately by means of the hand pump, the piston was raised, and the defect corrected.

When the piston was in place the central portion of the trough was completed. Then the piston head was raised so as to bolt it on to the cross girders. The whole was then raised slowly by the hand pump and the trough lifted from its scaffolding, which was then removed.
(22) Cost.-The cost was nearly as follows:

The location of the Fontinettes lift was necessarily fixed; consequently the purchase of lands and buildings of great value, the expense of making a cut-off in a high filling, of crossing a railroad track, and of laying foundations under great difficulties, could not have been avoided; besides, the Government made its contract with Cail \& Co. when the price of iron was very high. Considering the circumstances, it may be affirmed that if a similar lift were to be constructed on a new canal, the total expense would not exceed $1,300,000$ or $1,400,000$ francs.
(:3:) The plans for the earthwork and masonry were prepared by Messrs. Gruson, chief engineer, and Cetre, assistant engineer, who directed the works.
The contract for the metallic portion was awarded to Cail \& Co., who intrusted it to M. Barbet, their chief engineer. Most of the work of erection was directed by M. Ballon.
sCMMAKY.Les Fontineittes lift-Neufossé Canal, France.
Trough-
Length meters. . 39.50
Breadth 5.60
Depth of water 2. 10
Press-copper internal cylinder with exterior weldess steel hoops.
Thickness of copper cylinder 0. 003
Thickness exterior steel hoops 0.060
Length of press 15. $68{ }^{\circ}$
length of stroke (height of lift) 13.13
Pressure in the press 25
Ram or piston-
Thickness of cast iron 0.070
External diameter 2.00)
Total weight lifted, including water, trough, and ram, 800 tons.Equivalent to a pressure of 25 atmospheres.
The contents of one stroke, in water 41
Equivalent to a surcharge on the trough of 0. 20
Actual surcharge used 64.6
Equivalent to a depth of water of 0.30
Size of loats lifted tons. . 300
Actual time of lift minutes.

Acknowledgment.-I wish in this connection to express my indebtedness to M. Gruson, chief engineer of roads and bridges, for the information concerning this interesting subject as well as for the three figures which accompany it.

THE LIFT AT LA LOUVIERE.

(24) This lift is situated in Belgium at La Louviere station on the railroad between Mons and Namur, on what is called the Center Canal, which, when finished, will unite the Mons and Conde Canal
H. Ex. 410-vol $\mathrm{HI}-36$
with a branch (i. es, the Houdeng-Goegnies) of that from Charlenoi to Brussels. The canal itself is only 15 kilometers long, but the chief difficulty is in a section of it 7 kilometers long, from La Louviere to Thien, with a fall of 66.196 meters, which it is proposed to sumount by the construction of four lifts.
(25) The first lift alrealy completed is in the commune Hourleng. Goegnies, not far from La Louviere, so that it is sometimes called the Houdeng lift.

The masonry work of this lift was begun on the 15th of May, 1.85. and the ironwork was finished in the beginning of 1888 .

It is not proposed to consider here the motives which induced the Belgian Government to adopt the lift system, nor to repeat a detailed deseription of it. The two lifts of Fontinettes and La Louviere are similar in all their essential parts; they only differ in their dimen. sions, their weight, and in some details of construction, which we now propose to notice.
(2f) The presses.-The only real difficulties met with were in the construction of the presses for raising the troughs. These are the most important and dangerous parts of the system. Upon them the stability and equilibrium depend; they must have unusual dimensions; it takes a certain amount of audacity to put a load of e,omf,nof kilogrammes upon two presses, requiring their interior diameters to be e.of meters each, with a permanent tension of $3 t$ atmospheres.
(?へ) We have already seen how the problem was solved in France. In Belgium, after many experiments, it was decided to form the presses in cylindrical cast-iron sections 0.10 meter thick, 2.06 meters in diameter, and 2 meters high, around which weldless steel coils 0.0. meter thick and 0.15% high are shrunk on so tightly as to prevent the cast iron from having, at the interior concave surface, a stress of more than 1 kilogram per square millimeter with a tension of 34 atmospheres inside the press.
(28) Iests of the iron and steel. -One of the sections broke on trial at a pressure of 146.5 atmospheres. The steel has a tensile strength of $46.8 \hat{i}$ kilograms per square millimeter with an elongation of 25 per cent at the point of rupture.

The cast iron, run into little bars, had a tensile strength of 16.03 kilograms and a resistance to compression of $73.4!$ kilogrammes. Finally, and this is the most important test, a cast-iron section hooped with steel, after a series of trials going up to ? 6 of atmospheres. broke at 265 atmospheres, the cast iron only having given way with. out producing a rupture or any alteration in the sted hoops.

We may therefore consider the resistance of the presses at least eight times-superior to the permanent tension to which they are exposed.

The cast iron here plays the part of a tight fining only, and it seems more simple and rational, at least in theory, to replace it with
copper a few millimeters thick, and depend wholly on the steel hoops for strength, as in the French lift.
(2!) The pistons-Each cast-iron piston has three parts; the head, which supports the trough, and is 3.20 meters square, and 1.40 meters high; the shaft, composed of s sections, each 2.13 meters high and o.bis meter thick, bolted together; and the foot, which is a spherical segment 1 meter in height.
(30) The communication between the presses takes place near the top through a flanged annulus bolted in between two segments, thus forming practically the strongest portion of the press, which is fed through a series of holes 0.05 meter in diameter made in the annulus; the two distributing annuli are connected by a special pipe.

It wili be remembered that in the Fontinette lift the presses are connected at the bottom, thas requiring a pipe double the height-of the pits.

The spaces between the troughs and the aqueducts, above and below, are closed by metallic wedges lined with India rubber. Sets of hychralic apparatus driven by an accumulator containing water under a pressure of 40 atmospheres drive these wedges, lift the gates of the aqueducts and troughs. and turn the capstans for hauling the boats in and out of the lift.

Cost. - The cost of construction of La Louviere lift is as follows:

If we add the cost of journeys, plans, committees of consultation, and orersight, the sum will amount to at least $1,500,000$ francs.
(:3) Precoutions against firost. -During heavy frosts the troughs are both lowered, and the presses and pipes emptied. In the new lifts about to be erected by the Belgian Govermment all the pipes will be protected from frost by being inclosed in large masomry chambers in which fire can be kept; the same precantions are taken in reference to the valves, the pumps, and the hydratic machinery.
(:3) Conclusion.--The experience acquired and the observations mate in the construction and working of this lift have suggested numerous and important improvements which will be introduced into the lifts now in process of construction. The whole apparatus will be considerably simplified. The compensating reservoirs have burn definitely abandoned, and the footbridges around the troughs dispensed with.*

The iron aqueducts uniting the upstream end of the canal with the troughs are replaced by masonry ones. The wedges are fixed with a possibility of adjusting the upper one by haud. The downstream gride is omitted, and every cause of accident due to the spontancous action of water under pressure is carefully removed by taking care to move by hand the wedges and the hooking bolts of the gates. The operating levers worked by hand are interlocking, and absolute security results from the fact that an error in operating is mechanically impossible.

The bottoms of the basins have been raised considerably by giving a more natural form to the longitudinal trough girders, and tho weight of all the movable parts of the system has been reduced by the sul)stitution of steel for iron. A last improvement is the protection of the pipes and valves from the action of the frost.

SCMMARY.
La Louvière lift, Canal du centre. Belgium.

Trough :

Length .meters. . 43.000
Breadth .

Weight .tons. . 296
Draft of water. .meters. . 2.400
Ram or piston-cast iron:
Diameter. .meters. . 2.001)
Thickness . 0.075
Length. 19.440
Weight. t ons. . 80
Press-last iron, hooped with continuous steel coils:
Internal diameter. .meters. . 2.060
Thickness of cast-iron core . l 0.101)
Thickness of steel coils . do. . . 0.050
Length of press. 1 19.590
Length of stroke .lo. . . 15.397
Weight of trough, water, and piston. .tons. . 1,048
Equivalent to a pressure of .atmospheres. . 34
The contents of one stroke in water weighs.tons. . 49.3
Working surcharge 0.25 meters. do. . . 63
Actual time of lift, from 2 to 3 minutes.
Size of barges lifted .tons. . 400
Total time, including entering and departure of a barge in each direction, 15 minutes.

Chapter II.-The movable dam at Suresnes on the Seine.
(34) The needle dam constructed at Suresnes in 1866 assured a draft of water through Paris of 2.20 meters; to obtain one of 3.20 meters above Paris it was decided in 1880 to reconstruct the dam so as to have an additional fall of 0.97 meters.

The river Seine is divided at Suresnes into three branches by the Folies and Rothschild islands. The dam is builf at the head of these islands and consists of three separate passes. Looking down the stream on the left is the navigable pass, 72.38 meters. To the right, between Rothschild and Folie islands, is the waste weir or intermediate pass, 62.38 meters; to the extreme right is the raised pass, $f \circ .3$ meters: the total length, $19 \% .1+$ meters.

Above and below each pass are the aprons marked R. Next to the navigable pass are the little lock, P, the old lock, A, and the great lock, G. On the left bank is the lockman's house, E, and on each of the two ishands houses, B B, for the " barriagists" or dam keepers.

The rectangle in front of the navigable pass shows the location of the old dam, and the old weir extending from the end of Rothschild Island to the outer end of the rectangle.

The normal fall is :3.27 meters.
(35) The dam is closed by method imitated from Poinets ses tem of needle dams; Poiree's frames (fumettes). Fir. i. have been retained. but with such modifications as were requisite to withstamd the increased pressure due to the unprecedented difference of levol.

(35) Frames.-Each frame (Fig. 5) consists of a downstream and upstream upright, united by horizontal and diagonal bracing. These uprights, instead of being merely plates, are made up of chamel iron put together so as to form (Fig. 6) box girders. These girders have the advantage of resisting equally well in the direction of the water pressure and in that at right angles, produced by raising or lowering the frames. Tovary the resistance in the first direction it is only necessary to increase the distance between the channel irons; to vary it in the direction at right angles it is sufficient to increase the number of irons.

The bracing consists only of chamel irons having nearly the same dimensions as those of the uprights.

The frames, 1.25 meters apart, are mited by three distinct rails which serve to carry the hoisting windlass and the planks of the service bridge crossing all three passes.
(3f) Operations.-The difficulties in raising or lowering the frames are satisfactorily overcome by the use of Megy's patent windlass.

All the frames of the Seine pass are united by a continuous chain by means of link catches placed on their upper cross brace. The length of the chain between two successive frames is greater than the distance between the axes of rotation, so that six frames are lowered or raised like the sticks of a fan: the chain is hatuled in hy a windlass placed on the abutment of the pass.

By this system. having put the first frame in place, it is only noressary to haul in a short length of chain to bring the seeond into its. upright position, and the operations of opening and closing the passes are almost reduced to the taking up or putting down of the rails and planks of the service bridge.

At Suresnes the opening of the navigable pass, $2 x .38$ meters in length, is accomplished in 3 hours, and the closing in 5 hours: although each of the fiftyeeight frames weighs 1,800 kilograms. The following table indicates the diameter of the chains and the cost of setting up of three dams.

Fig. 5. - Movable frame (fermette) of the navigable pass

Fig. 6. - Transwere section of the upstream upright.

Fig i.-Transurrse section of the downstream upright.

	T,m.	m.	Prans.
Navigable pass	${ }^{11}$		9.14)
Waste weir	1	17.5	\therefore
Raised pass	"	$: 1$	6, ¢0\%

(37) The flooring, fixed in the masomry, has the peculiarity of hating no portion hollowed out to receive the frame. The sill is placen at such a height as to protect the frame when lowered, but at a cortain distance from them it is united by an inclined plane to the row

Fio. N.-Dam at Suresnes. Movable frame with its panels.
of cut stones containing the upstram axle bearing. These stones project a distance of 0.30 meter, and beyond them the flooring is horizontal. Hence no deposit can be formed to obstruct the lower-
ing of the frames. Iron sockets plaved on each side of the frames allow the formation of a cofferdam in case of need, with the aid of a windlass, for the purpose of making repairs.
(3i) Panels.- The dam is closed both by M. Boulés panels and by M. Camere's curtains. (The latter will be hereafter fully explained).
M. Boule's panels are of wood, 1.22 meters wide by 1.10 meters high, varying from 0.04 to 0.09 meter in thickness.
A panel of 0.00 meter is placed between two frames of the navigable pass at the bottom, then one of 0.0 meter, followed by one of $0.07,0.06$, and finally one of 0.04 meter. (Fig. 8).
The water flows over the tops of the panels, and the opening takes place in horizontal layers; the upper panels across the dam are first removed, then the second, the third, and so on to the last; the flow always passing over the top.
This apparatus is strong, simple, and casily operated, for, as the panels are removed the head falls, and consequently the pressure diminishes, so that the effort to raise a pmel under water is always slight, and about the same whatever height the dam may have.
(3i) Handling the primels.- The panels are handled by means of of a windlass with a long straight rack terminated by a hook and guided by the frames themselves.
(38) Cost. - The works for the erection of the dam were hegun in 1×2, and finished in 1885 . at a total cost of $2,799,908$ franes, inclurling those for the protection of the banks in the three passes, the earthwork on the islands, the storehouses and dwellings for the lockmen, cte.
The dam, properly speaking. including the abutments, piers, flooring, and movable parts cost. per ruming meter-

For the navigable pass (frames 0.01 meters)	$\begin{aligned} & \text { Frances } \\ & 12,26 ? \end{aligned}$
For the raised pass (frames 5.49 meters)	$10.81 i$
For the waste weir (frames 4.14 meters).	7, 81
Average cost for the dam per rumbing met	10,350

The following table indicates the weight and prices of the different panels:

	Thiotheres of panmes.	Wiarht.	cosst.
	Mrimers	Kilos.	Hatucs.
0.94	N:3	41.11
10.0)		11.5	52.01
0.05		136	54.95
0.15		117	(0).4)
0.6\%		183	i1).4
	tal fur unי span.	(i) 1	293.21

The project was prepared and the works exceuted uncor the dires. tion of M. Boule, chiof engineer, and MD. Nicou and Luneatu, assistant engineers.

Chapter III. - Marly dam on the Seine.

(39) The old Marly dam which consisted of tive piers and two abutments, supporting six spans of planks a meters long, with a aross section of 05×0 millimeters, very difficult to hander and indeed often impossible in times of freshet, has just been rephaced iny a Poired dam. that is. the piers have been replaced by iren frames like those of the movabledams: upon these frames panels, large and small. rest and slide, which are easily handled under all circumstances.

But as this dam is situated in a hanch of the Seine which is mot navigable, and behind the screens for protecting the water whels which form the Marly marhine, the frames are never lowered as in movable dams. for no boat ever passes through it : and as the seroms protect it completely from ice. it is sufficiont to vary the flow over the weir as the waters rise or fall. These frames being thas fixed, and incapable of being lowered, certain modifications in their eonstruction have been matr. economizing material used. and changing the system of attachment to the flooring, both of which have been here introluced for the first time.

The dam is 3f.15 meters wide and has a fall of 3 meters. The fooring is placed 0.20 meter above the lower bay. The frames are twenty-eight in number. 1.25 moters apart: the dam is closed by pancls, large and small. sliding in guides formed by the upstream uprights of the frame, and handled by a windlass rolling, on the service bridge.
(40) Fhooring. - The fooring, 12 moters long, between two rows of piles and sheet piling, is $3 . \%$ meters thick, consisting of: (1) A layer of beton ? meters thick, laid under water, and covering the heads of *lo piles. driven to consolidate the foundations: (2) of a mass of rourh masonry 1.30 meters thick; (3) a hewn stone revetment 0.tio meter thick.

The rear apron, 4 . 50 meters long, is formed of masonry blocks, e. 200 cubic meters, weighing about $\delta, 000$ kilograms each; and at the end of these blocks coarse riprap is placed.

This dam was construeted by means of a cofferdam built above, having a fall of 3.30 meters. Below. the work was sheltered from ittle freshets by simply rasing the inclosing walls, which were sawn away whon the frames had been set up.
(+1) The fromes.-The fixad frames are 3 . w (meters high and 3 meters long at the base (Fig. (1). The upstram upright, inclined at an angle of $9 e^{\prime} 30^{\prime}$, with the vertical, directs the resultant pressure towards a point exterion to the base but very near the downstream end: the overturning moment is nearly mothing, and the general action of the frame upon its fastemings is reduced nearly to a horizontal thrust. The pressure is transmitted directly to the apron by three inclined braces, which divide it between the different groups of fastenings, so that these fastenings only resist shearing.

Nevertheless, to guard against the vertical fension from below upward the first ahchorage consists of a great cut stome, attached to the mass of the apron by chamel-iron phate bands and anchor rods \&iof meters deep, with washers 0.40 meter in diameter.

Each frame rests upon the horizontal surface of the apron. on its luwer flange, forming a double T reversed, and strengthened by a phate, the whole having the form shown in Fig. 10. It is fastened be eight bolts divided into four groups, and a cast irom shoe phaced on the downstram side, fastemed by three bolts $0.0: 3$ meter in diametrr.

Fui, 9. Fixed frame used in the Marly Dam.

Fia. 10. Mrthod of anchoring the frame.

The total maximum pressure of $9,5 \%$ kilograms gives a horizontal component of 8,850 kilograms, and if we admit that the lower flange of the frame divides this effort equally between all the fasteningswhich is a rational supmosition in view of the situation of the braces, and the rigidity of the lower flange-we find that each bolt has a load of son kilograms, that is, a maximum load of a.05 kilograms per square millimeter of section.

The weight of each frame is 6.30 kilograms,
(42) The pancls are 3 meters high vertically and 3.25 meters in the direction of the uprights of the frames. They are divided into four' ranks, having the following heights, respectively, $0.89,0.98,1.09$, and 0.32 meters. The last rank serves to regulate the fall. In each rank the thickness of the panel varies from the base to the summit, so as to a void all useless weight.

These panels can be handled from the upper service bridee by means of a windlass of 1,800 kilograms power, which can raise a
panel from the bottom or drive it back under a fall of 3.80 meters, a fall higher than would be possible undey any circumstances.

The upper panels are moved by a little crane of 300 kilograms power, more easily handled than the windlass.
(43) Cost. - The cost amounts to \because in 1.000 francs, as follows:

Upstream cofferdam, 60 meters long, built in a fall of from 1.50 to 2 meters . Franes, (m)
Dredging foundations in the location of those of the old Marly machine .. 3n, (1000
Word and masonry work for flooring and abutments......... 133, (ин)
Storehouse and removal of the cofferdam 24 . (O)
Iron frames, panels, windlass, etc 10

Price per running meter, 7,496 francs.
The work were directed by M. Boulé, chief eugineer, and M. Jozan, assistant engineer.

Chapter IV. - The new lock at Bougival, and its hydraclic WORKING APPLIANCES.

Looking up the stream on the right is the famous Marly machine. a collection of water wheels for supplying the city of Versailles with water; at right angles to it is the new dam, N, at Marly (see Fig. 11). A is its waste weir; on the left is Loge Island, on which a roadway is built at a reference, 20.80 meters above sea level, conmected by a footbridge with the right bank. Next on the left is a great lock, G, connecting the two pools, Bezons, 2:3.73 meters, and Andresy, 0.50 meters. To the left is the little lock. P. Two houses for the lockmen, E E, are situated, one on Loge and the other on Gauthim Island.
(44) The work of constructing new locks at Bongival for the purpose of obtaining a draft of 3.20 meters between Paris and Roum was begun in 1879 and finished in 1883.

Two locks, side by side. have been built, one, 200 meters long and 1% meters hroad, for trains, and the other, 41,60 meters long and 80,00 meters broal, for isolated boats. Both locks accommodate boats drawing 3 meters. The fall is 3.20 meters.

The length of the great lock was made 200 meters, instean of $14 n$ meters the usual size on the lower Seine, in order that it might contain the largest trains which the towing company generally tow: between St. Denis and Paris, that is to say, sixteen or seventeen barges and the towboat.
(45) Mofive power-All the apparatus of the locks except the gate sluices are worked by water power, from an accumulator loaded so as to produce a pressure of 60 atmospheres and supplied by pumps driven by turbines obtaining their power from the Marly dam.

The motive for adopting this apparatus was the great traffic passing through these locks, which are the most frequented, not only of the lower Seine, but of the navigable water ways of France. There passed in 1888 through the Bougival locks $\because 3 . \therefore 30$ boats, carrying $3,1554,8: 9$ tons of merchandise.

Before describing the new locks we must add that the old Bougival lock constructed in $1 \times 3 \times$ by. M. Poirée has just been restored, giving a chamber 113.50 meters of available length and $1: 2$ meters wide, capable of containing six barges drawing 2.36 meters.
(tif) Neur locks.--The coping of the new locks is placed 1.61 meters above the normal height of the upper bay, which is the lieight comesponding to the highest water safely navigable with the towboat.

The grates, 1 : meters wide for the large lock and 8.20 meters for the small. are of pitch pine with oak frames. Each pair of leaves has four gridiron valves having atotal section of 3.43 square meters.

Besides these valves, culverts, placed in the walls on each side of the gate, fitted with gridiron sluices, have a total sectional area of 4. in square meters for the large lock and 3.50 square meters for the small.
'The volume of water reguisite for ach lockage is. respectively, 13, soo and $1 . \mathrm{i}$ (0) cubic meters.
(4i) Hydicullir muchimfoy-The application of hydraulic power for working the new locks at Bougival according to the plans of M. Barret was decided on in 1879 . The system includes: (1) The machinery and accumulator; (2) the piping; (3) the hydraulic presses for moving the gates, culverts, siluces, and capstans.

The machinery and acomulator are placed in a buiding on the right abutment of the Marly dam and comprise:

First. Two Fontaine-Baron turbines worked by the fall of the Marly dam which varies from d.30 meters to $0 . s 0$ meter and gives under the least favorable condition 14 horse power.

Second. 'Two sets of three single-acting plunger pamps driven by the turbines by moans of beveled gearing, capable of making from twenty-thre to forty-five strokes per minute and forcing inte the accumulator from 1.3% to 2.20 liters per second. A pump is attached to cach turbine toraise water for the tank on the first story. which supplies the water for the accumulator.

Third. An Armstrong accumulator of for liters capacity loanded for a pressure of fo kilograms per square centimoter. Its stroke is 5 metors, and it is filled in from 4 to 9 minutes.

The piping comprises the supply pipe from the accumulator to the hydraulic machinery on the lock walls, and the pipe which returns the water to the feeding tank; so that the same water constantly circulates, except some slight losses which are made good by the pumps. The pipes are cast iron or drawn wrought iron; those which have to sustain pressure are tested up to a hydrostatic pressure of 110 kilo. grams per square centimeter.

The head walls are reached by means of siphons submerged in the gate chambers.

The offective prossure in the pipes is transmitted to a distance of more than foo meters from the accumulator without loss of head on account of the slight flow and the smail diameter of the pipe, which is only from $0.0 f$ to 0.0% meter in interior diameter.

Fig. 12-Machinery house and meomuhator. Iongitidiual section abong A B Fig.13).

Fia. 13. - *ehinery house and acmimulator. horizontal serition.

LOCK AT BOUGIVAL.

Fif. 14.-Machinery house, trausverse section along ($\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ (Fis, 13),

LOCK AT BOLOIVAL.
APPARATU'S FOR OPERATING THE LOKE SLEICES bY HYORATLIC POWER ALONE

Fia. 15.-Vertical secetion.
Fia. 16. --Elevation.

Appailatis for operatino the lock shetces by midhallife power alone.

Fiti, IN, - llat of the sluite.

Fias. 12, 13, 14.-Machinery homse and areumulator.
a, Supply pipe from the tank to the pumps.
b, Direct supply pipe for the punps.
(. Supply pipe from the accumulator to the presses.
d. Return pipe.
e. Waste valve regulated by the stroke of the aceumulator.
f, Lifting pump: $(f$. its suction pipe.
h. Pipe supplying the aceumulator.
F, Filter; R, reservoir; i, float.
k, Waste pipe; $r m$, stopeoks: s, safety valve.
M, T, Punching machine and lathe.
V. Turbine sluices.
v, Emptying cock for the pipes.

Fins. 15-18.-Appuratus for operating the lock sluices.
a. Frame of the cylinder for operating the sluices; b. Cylinder for operating the sluices; c. Differential piston; d, piston rod: ρ, air cock; ff, Water cocks; g, gridiron sluice: h, sluice seat: j, Upper bearer: k, valve chest.

Fag. 19 - Elevation.

Fic. 21.-Plan.

For, *) .-. Vertical sertion.

Fic: ris. -section OH

Fias. 19-23.-Apperatus for operating by hand.

A. Endless serew terminated above by a square head on which a strong key, provided with handspikes, fits.
B. Vertical cylinder for operating the abutment sluice.
('. Worm wheel driven by the endless screw and driving the rack and pinion; E E, racks.
F. Balance beam driven by the racks and united in the middle of the sluice.
(i, Rollers guiding the racks: P, counterpoise counterbalancing the endless screw to facilitate the working of the engaging and disengaging gear.

Hydhatlo apparates rob operativg the: loce gates.

Fio. 2t.- Valve chest, vertieal section along I J (Fig os)

Fiti. 25.-Horizontal section along K L (Fig. 24).
a, ('ast-iron frame; b, bronze valve seat; c, valve chest; d, D valve; e, valve rod; f, eccentric; g, eccentric rod having its vertical axle with a square end to fit the operating key; i, the stem of the stop valve, forming the valve itself; j, duct leading the water under the piston: h, exhanst; l, duct leading the water above the piston; m, supply pipe for the water under pressure.

HOCK AT BOUOMN: A.
(4i) Protection against frost. - In the winter, to avoid frost in the apparatus and in the pipes exposed to the air in short lengths, 6 or 8 kilogrammes of glycerine per cubic meter are added; this material has the advantage of lubricating the surface of the pistons, while chloride of magnesium, though cheaper, corrodes them and is hard to preserve on account of its deliquescent properties.

When the apparatus is well guarded by manure, glycerine is only used when the temperature deseends $\gamma \boldsymbol{o}$ or 8 degrees below freezing.
(49) On the supply and return pipe four pieces of apparatus are placed for operating the grates of the large lock, each consisting of a horizontal eylinder (Figs. : 6 and $2 i$) oscillating around id vertical axis and having its piston attached to the upper transverse girder of the leaf, : meters from the heel pust; this piston is called differential, becanse in one direction, the pressure beingr, the same on the two faces of the piston, the motion is due only to the difference of the sections

Fig. as....Tramsurse section through X Y' Fig. : ?

on which the pressure acts. This pressure acts constantly upon the face next the gate, that is, upon the ammar face; the other face, which orrespomis to the total section of the cylinder, is put alternately in commmatation with the accumulator and the return pipe.

The piston is attached to the gate by a double nut which can be mised while in use to prevent the former from benting, and its eye is wal shaped to allow for the transerse displacement of the leaves in their varions positions.

The lireed of the cylinder rests on an iron guiding sector. Finally the piston stroke excends by ? contimeters its requisite geometrie lemgth, so as to take into aceount the possible deflections of the leaves.

This apparatus is lodged in a pit 3.50 meters long, 0.85 moter wide, and o. th moter defp, just below the roping. It is capable of exercising a tensile effort of 6,600 kilograms on the piston rod to open a
leaf, and a compressive effort of 4,710 kilograms to close it. The dimensions are as follows:

	Muters.
Diameter of the piston	0.15%
Diameter of the piston rod	0.100
Maximum stroke.	2.5)
Water expended	

Each apparatus has on its supply pipe a cock to cut off the water; at the bottom of the cylinder a waste air cock; also two cocks for emptying the cylinder in case of need.
(50) The apparatus for the small lock consists also of four pieces similar in every respect to those of the large one.

D	Meters. (1. 128
Diameter of the piston rod.	0.1080
Maximmm stroke.	$\because .060$
W	

This apparatus is capable of exerting on the piston rod a tensile effort of $4, \therefore 10$ kilograms to open the gates, and a compressive effort of 3,016 to close them.
(51) The apparatus for operating the culvert sluires for filling and emptyiug the lock chamber are eight in number, consisting of cylinders with differential pistons having a stroke of 0.on meter and acting directly on the gridiron sluices, capable of exerting a tensile effort of 8,044 kilograms for raising the sluices, and a compressive effort of 3,816 to close them.

Hydraillic capetan for new lock at boloival.

 (

Hydhalige eapman fon new here at boroival.

(is) The ten hydruulic capstuns (Armstrong type modified by M. Barret) placed on the side walls of the great lock can exert a tractive effort of 12,000 kilograms on a cable, at a velocity of 0.43 meter per second (about 7 horse power).
All these pieces of apparatus are so arranged that they can be discomected (in case of failure of the water supply, or for any other reason) and worked independently by hand (Figs. 19, 隹).

Fig. 33.--Lateral ele wation along I J iFig. 31 .
Since these hydraulic appliances were set up in 188.3, there have bren only three insignificant interruptions in their regular working. and no hindrance has occurred in the navigation; and in virtue of the precautions taken to guard the pipes and presses, there has never been any interruption in the service on account of frost.

Fig. 34.-('ross section through the valle chest.
(53) Adtrontages of the system. -Thelock chamber of the great lock at Bougival can contain sixteen or seventeen barges with their towtwat, and the time of lockage is thus mado up: Entrance, arrangements, and securing the boats, $\because 0$ to 25 minutes; closing the gates, 30 seconds; filling the lock chamber (13, soo cubic meters), 15 minutes; opening the gates, 30 seconds; unfastening and hauling out the boats, 1. minutes.

We see that for the largest train which the lock can contain, and which may cary 4,500 tons. the iotal duration of the process, from the time of entrance of the towboat to the exit of the last boat, is 56 minutes, and that of this time 40 minutes are taken up in the entrance and exit arrangements.

The small lock can pass eight boats per hour. The traffic in 1888 through the Bougival lock exceeded $3,000,000$ tons, and the appliances would serve for twice that amount.
(54) Cost.-The total cost is as follows:

	Franes.
Cost of land damages.	164. $3+2.41$
Earthwork and masonry for the cut-offs and lox-ks	3,240,000. 00
Four pairs of gates	T2, 314. 64
Stockades above and below the loxks.	20, (0) (()
Hydraulic appliances.	2*T, 087.50
Total	3,774,330. 57

The annual cost of working the hydraulic appliances is about \boldsymbol{t}, eno francs.
(35) Conclusions.-From a thorough examination of the working of these hydraulic appliances we may conclude:

First. That the introduction of hydraulic appliances in the great lock at Bougival constitutes, in respect to operating by hand or by horse power, a considerable improvement, without which this lock would be very inconvenient, and limited to a traffic of about $3,000,000$ tons per annum, while this figure was exceeded in 1888.
Second. That the cost of establishment and maintenance is compensated by an economy nearly equal in amount made by the boatmen, so that in a general point of view these appliances are adrantageous, since they allow without increase of cost the working of the locks with a traffic of $5,000,000$ or $6,000,000$ tons, while the ordinary appliances would not suffice for the transit of such a tomage.

These works were directed by M. Boule, chief engineer, and De Preaudean, assistant engineer. The hydraulic appliances were constructed by the Fives-Lille Co.
Figs. 12-33, inclusive, are taken by permission from the Portefeuille des Ponts et Chaussées.

Chapter V.-New movable dam at Poses on the Seine.

(56) The movable dam at Poses on the Seine, 202 kilometers below Paris, is the most important of those recently constructed between Paris and Rouen to realize at all times a minimum draught of 3.20 meters. In virtue of its exceptional height, it maintains this draught in a bay extending from Poses to Notre Dame-de-la-Garenne, a distance of 41 kilometers, while the areage length of the other bays is only 23 kilometers in the canalized portions of the river between Paris and Rouen.

In the preliminary project for the works requisite to give a minimum draught of 3.20 meters to the lower Seine, it was proposed to erect at Poses a Poirée dam having a height of 4 meters above the sill; but even this would be insufficient to cover the shoals of la Mare and Tosny, without requiring excessive dredging, and a second

Movable day at Pobes on the Seine. Uprights and ctrtaing for the weirs.

Fig. 35.-Longitudinal section in front of the uprights, along the line A B, Fig. 36.

Fig. 30-Transverse section along C D E F (Fik. © 3).
dam with a fall of 1 meter was provided for, near Andé, 10 kilometurs above Poses.

The new dam invented by M. Camere raises the upper bay at Poses tui) meters above the sill, and thus dispenses with the proposed work at Andé.

Plate IV shows an admirable model of part of the Poses dam, which was exhibited in the Pavilion of Public Works.

Before entering into details it will be well to indicate in a general manner the principles and mode of working this new type of dam.

Fros. 40, 41.--Details of the curtain hinges and show, cross section aud elpration.
Figs. 35-40 show the construction of Cameres curtains and their method of suspension. The curtains themselves consist of worden battens, hinged together (Figs. 40. 41) and resting against vertioal supports; these supports are suspended from a bridge, shown in Figs. $4 \because-48$. Fige. 37 and 38 show the construction of the windlass for handling the curtains.
(57) The jointed curtain consists of a series of wooden bars (Figs. 35 and 36) arranged horizontally, one above another, resting against the vertical supports of the dam ; the bars have a constant height, but their thickness varies with the head of water they have to sustain; they are joined together by two rows of hinges on their upstream side. (Figs. 40 and 41). A specially constructed piece is hinged to the lowest bar; this piece rests upon the flooring of the dam when the curtain is unrolled, and forms the center piece when the curtain is rolled up. It is called the rolling shoe; it is cylindrical in form, having for its base half the spire of an Archimedian spiral ; the uper surface of the shoe is plain, and sumoment by three flanges whose contour forms the second half of the spire of the same spiral.

The curtain is suspended by hooks fastened above the water to the fised portions of the dam, by two chains attached to a ring holted to the upper bar in line with the two rows of hinges; it is moved ly an endless chatin worked by a special windlass. This chaindescemdson the downstream face of the curtain, passes under the shoe and ascemds along the upstream face. The two ends prolonged above the curtain are carried by fixed guide pulleys to the curtain windlass.
The windlass is so arranged that for rolling up the curtain the two chains move together. The upstream chain rises, while the downstream chain falls, hut with different velocities; the upstream chain moving faster than the other, so that the chain slides under the shoe; the resulting friction added to the traction of the chain itself causes the shoe to turn ahout its axis, amd, successively, all the bars about their hinges, thus rolling up the curtain from below. It is rolled up wholly, or in part, so as to open wholly or in part the aprerFure which it closed. To moroll the curtain, the upstream chain is let go, and the downstream chain made fast.

When the lengths of the suspending chains are properly regulated so as to make the upper bar horizontal, the curtain rolls and unrolls between two vertical phanes; but, to avoidany error arising from defective constraction or regulation, it is foum best to have the cirrtain guided, so as to prevent lateral deviation. In the first application of this system to the Villier dam, the ends of the bar's resting on the upstram face of the frames were guided by a small flange on that face. At Poses, two rows of little angle irons are fixed to the downstream bars; one side of the angle iron, projecting from the bar, strikes against the side of the upright supports in case of the lateral displacement of the curtain. To avoid obstruction in rolling. these angle irons are only placed on the outer spiral so that the curtain is only guided for half its height, but that is sufficient owing to its transverse stiffuess.
Since the guidance of the curtains is assured without making use of the ends of the bars, the curtain may be prolonged beyond the up-

MODEL, BY REYNARD BROTHERS OF PARIS, OF A PORTION OF THE DAM AT FOSES.
rishts of the surcessive frames so as to project ore half the opening brtween the succeding fames, its width thas corresponding to that of two surcessive spans, so that it can in no case he carried obliquely botween the undights. These hatter curtains are called double, to

distinguish them from those which only elose one span. It maty be wherved, that in ronsequence of the hars projecting over the supports, they resist as it they were built in from these prints, and eonrequently med bot be stronger than the bars of the simple curtain.

(in.) Suspending bridge, - Figs, 40-4s show the sectional plan, two mevations, and details of the smspending and hoisting bridge. The aperture, shown in the plan, is for hanling the curtains through. emblwise, when they are to be taken off and stored or repaired.

The suspending bridge (Figs. 42 , ti and 48) is made up of two lattice girders, supporting a roadway and resting on piers. It is phaed high enough to alfow sufficient space under the lifted frames for an masy flow of the waters of a freshet, and in the navigable passes a free height sulficient for the passage of boats when the dam is open.

The frames used to support the curtain are suspended by joints to the roadway; they are formod of uphights braced, and having their lower ends resting against sequre stone posts anchored in the flooring and leaving a play between it and the foed of the uprights : their upper extremities rest agamst backets hailt for that purpuse just below the principal girders. (Fig. 3ia).

The open spaces between the frames are closed by the double cortains above deseribed, with horizontal hars extending from the

 mediate pirder.
midrle of one spantothe midlle of the seroml span beyoml it. The windlass for hamdling the rartans rolls on the serviou bidge, situated on the downstram side of the uprights and supported by them.

This bridge is formed of sections corresponding to earh frame and jointed to it at a distance of 1 mater above the upper bay. 'The roalway of the bridge to which the prames are suspended. arts like a horizontal beam, carreing to the braces on the piops and abutments the pressure of the water tramsmitted by the frames to their upper support.
(59) Hoisting bridge.-()n a secomd bridge, ralled the hoistines bridge, a second windlass rolls, which an be hooked sucorssively to each of the frames to raise or lower it.

To open the dam the curtains are rolled up above the water lowel: the sections of the service bridge are folded against their frame: then, by means of a windlass on the hoisting bridge, the frames ane raised to a horizontal position and fastened, so that the pass is rompletely free. (Fig. te).

To close the dam the operations are carried on in an inverse order
Finally, to provide for the eventuality of not being able to miar. the uprights towath the upstream side. their foints are placed in up. right gruides, which allow them to be mased to a height suffieiont to clear the hurter: the frames may then rotate in a downstrean dieection amb he mised if neressary in this direetion.
 the right hank, looking downstream, are the lockmens houses: noxt. the old lock and dam; next, the little lowk, x; then the wreat low next to Mouchouette Island, from whirh a dike $2 x: 3$ meters loner pro jects up the river, extemding beyond Pointe lslamd. Between Monichouette Island and the foft bank extends the new Poses dam. wh harrage, with the raised or non-navigable passes at the right. th. weir in the middle, and the navigable passes at the left.

The Soine is here divided into two branches. On the loft sidn of the cut-off there are two new lorks built side by side each assurins a dranght of 3.20 meters. The old lock on the right bank could mot be preserved on acomunt of the too great height of its tail miter sill. These locks are in all respects like these heretofore deseribed typiral Srime locks.

A jetty, ex: meters long. is built as the downstream prolongation of the left chamber wall of the large lock: it facilitates the hamdine. shelters the harges, and protects them against the prevaling winds and the curvents from the Poses branch.

Finally, to complete the closing wi the right banch, a part of the old Poire dam has been preserved, having its sill h.thmeters below the present upper bay level. The brameh on the left. called the Poses branch, is closed by the great Poses dam.
(6i) Dere primeiples.-With the new system, the hright heins (u) longer limited, the level eotuld be assumed at 8.ts meters above sea level, to a wod ronstructing the dam projected at Ande in the preliminary project.

The level of the sill of the navigable passes was fixed below a line passing through the tops of the regulating sills, amd having a doelivity equal to the mean dectivity of the waters of the river; it has thms been fixed at the level 3.40 meters, that is, meters below the upper bay.

- The situation as indicated in Fig. 49, just above Pointe Island. offers two adrantages; first. proximity to the locks and a satisfactory arrangement to all parts of the dam; second, a natural sill at the elevation of 3.05 meters. that is, at about the same level as the projected tlooring.

F:g. 43.-Map showing the position of the new movable dam at Powes.
The Poses dam. s:35.?0 meters betwen the abutments, is divided intoseven prases: five decp and two shallow ones. The comhination of the heights of the sills of the different passes was mad. so as to obtain a sufficient suprericial flow by uniting as well as pussible the transwere protile of the river at the right with the ehosen location. The dam is thus divided inte three distinet part-; two
corresponding to the two arms smroumding Pointe Island, am the other to the cross section of the island itself. The sills are phaed at the altitude $3 .+5$ metors above tide water in the first case, and 5.45 meters in the second. .

(62) Depth of foundation.-The exceptional height of the dam required a foundation to be laid upon a solid and impermoable stratum. thus avoiding all filtration which would compromise the stability of
the structure and absorb a portion of the flow during low water, when most needed for navigation. It was found best, as in the case

of the locks, to descend to a bank of solid chalk which is met at about 5 meters below the sea level for the whole width of the river bed.
(6:3) Diers cut abutments.-The piers are \pm meters thick: on the alownstream side, the starlings (Fig . an) project a considerahbe amount beyond the rombay, and support masses of masomry whin rise to the top of the bridge; these masses serve to resist the horizontal thrust which is transmitted by the suspended frames to the bridre.

The piers and abutments are piereed he full centered arehes $1.3 n$ moters wide and s.30 meters high, so as to allow the servioe heidge to be freely carriad through them. In the perssares niches are made to store the courtains and windlasses.
(64) F'lowing.-The surface of the flooring is plane at the leved
 the shallow ones. This surface is limited on the upstream side hes a sill curved up just above the level of the hurters, so as to protect them agranst the keel of any boat or the shock of bodies against them.
(i,5) Ilar lanto is are 1.16 metres apart. huilt into the flooring amd projecting 0.35 and $0 . \% 5$ meter above it in the deep and shallow passes respertively. They are protected by flanged iron plates fastened to them. A bolt, passing horizontally through each stome, is seromed ber a mut at the back. This bolt is also secured to the anchomare har of the flooring so as to transmit to the piers the longitudimal pressure of the uperights. The hurters rest against the plate hand of hewn stome.

To increase the solidity of the whole the two limiting walls of the fooring are united by ter rods sunk in the masomry and passing botween the hurters.

Finally: a row of cast-iron boxes and anchor rings have been sunk in the masomry fooming in front of and hehind the hurters, so as to permit a cofferdan: to be rapidly set up in case of repairs.
(bif) Cpfor briders. - The system adopted at Poses reduires the establishment of two upper bridges, acoording to the data of the late M. Tavernior.

First. The downstream bridge tohold the suspended frames, and, secoml, the upstram bridere to hold the windlasses while the frames are being raisel, and also smstain, a part of the weight of the raised frames themselves. The first may be called the suspending. and the second the hoisting hridere.
'The roanways of the two are for two difforent purposes and at different levels. The downstream longitudinal girder of the hoisting bridge is omithed, and its supporting coss girfers are attachod directly to the longitudinal upstrean girder of the suspending hidge. thus affording easy communiation between the bridges, and adding to the horizontat stength of both. The upstream roadway has an opening lof by don meters, hage enough to admit of passing the curtain through it endwise. (Fig. to.)

In the non-mavigable passes the facility of commmacation is insured by putting a thim rodway above the beams of the downstramm roadway.

The lattice girdors supporting thr rombay have their uprishts \therefore ? metres apat, corresponding the widthe of the mosinm parts.

Fit. an. View from below. The molling of a rirtain
The crose giders take the strain of the hanging fames be means of the howekets armaged moder them. These girders. 1.16 moters apart, are hraced by U irons placed on each side of the rods suspending the
frames. The brackets are trapezoidal in form, 0.61 meter high (Fig. 42). ("pon anch of their faces two angle irons are riveted, peopecting on "arh sidu and forming a guide o. 1 : 5 meter wide. The hears

at the end of the suspending bars rest upon these guides at a height O. io meter under the cross girders, so that the uprights can be mased to the flanges of these girders, that is, so that the uprights may clear the hurters (Figs, $5 t$ and 55).

The width of the upstream readway depemts on its height above the water. There mast be space emongh from the edod girder to the point where the chain comes through to work the windlass, ako to sive the chain "proper inclimation, to avoid too much temsion on it.

At Poses the chain is attached to the frame at 0.90 moter below the water level, and the chain is inelined 33 degrees at the begimning. The distance between the principal girders of the upstrem roalway is asis meters for the navighle passes and ise meters for the monnavigable.

The upstream roadway is paced halfway up the primeipal girder , suato allow sufficiont space below the corss girders to stome the rolled curtain when the frames are rased.

The eross girders are o.be metors apart, united by stringers. The beams of the upper bridges rest on their piers and abutments be a hinged joint. so that the resultant of pressure always passes throngh the center of eontact whatever may be the deflection of the beams themselves.

Expansion trucks are phaced vertically hetween the downstram sirder and the massive starling.
(bia) The "prights, which suppert the curtans, are wrought-iron beams with angle irons. having their mon fibers inclinedo. onis meter per meter, so that the vertical passing trough the center of gravity of the frame with its curtain and foot bridge is on the upstream side of its upper joint. The uprights have a U-shaped sedion whirh is constant in width o.someters above the uper bay for the same pass; this wilth is 0.50 , 0.60 , and $0 . \%$ meter for the three passes respectively. Above this level the width tapers to o. 2 m meter at the top.

The joint of the uprights with the suspending shaft is mado ber a rast-steel eye' wedged onto the shaft, amd terminated by a rhork which is riveted to the webof the upright. Lengthwise thr undights are arranged in groups of two and the axes of these groups are 1.11 meters apart. The object of this division was to reduer the width of the moving pieces to 1.16 meters in case the lemgth. 2,3 metors, of the curtains should be found too groat : but as this length has been found convenient the arrangement of the uprights in subsequent dams of this type has been simplified. At Port-Mort, for example, the uprights have a double T section.
(68) Fromes. - Each frame is formed of four uprights, united by ties 2 meters apart and having a width 0.15 moter less than that of the upright, so as to afford a passage to the hoisting chatas and a lodgment for those of the frames. One of these tire is on the lovel of the service bridge, and upon it is a cast-iron box which holds the slack of the curtain chans. The uprights of the same frame are also tied by three shafts, viz: first, the mpere suspending shaft; second, the shaft : meters above the service bridge, used for attaching the hoisting tackle of the servion bridge: and third, that to which the hoisting chains of the frames are attached.
(b:9) The hoisting chains.-There are two hoisting chains for eath frame: rach chain divides into two branches. so that the end of one hranchis attached to each upright, thas dividing the strain of lifting the frame into four equal potions (Fig. 3n). On the downstream sidr of the upnights a strong wrought imon hook with angle iroms is athacherl, for the purpese of rasing the frame in case of accident to the chains or to their attachments (Fig. 36). This can bo dome he lowering, along the upright, a chain, the bight of which will he heth secorely be the hook. Ringholts are attarhed to the upstream sime wi the uprights, so that the frames may be shang below the upure bridere whon an! repairs are reyuired.
(ia) Mrthen of suspentim! the firmes.-The methor indopten fon suspending the frames hats been somewhat simplified in the Port Nort Dam, and we shall here give the methon amplayed in the mone rextht dam. This mothon of suspension is shown in Figs. ot and in. Thr shepending rods are terminated heres-heals dithel onto the
 shaped section aml pass between the batere of the downstram roadWas, atose which they are mited two he two hy arosepiere having the seetion of a double T, whose extremitios can slide vertirally between the uprights of two cast-iron chairs bolted to the rombaty. In their normal position these extremities rest on chatis by meats of regulating iron wedges. Similar walges, placed botween the uppre face of the corspiece and the uper beatings of the chaire pre rent the frames from lifting.
(i) Font bridge.-The foot bridge, mate up of framed sections 1. 11 meters lomger. is constructed of U irom. to which the iron flome
 are laid. 'The "pistream side of the section is hinged to the downstream side of the uprights. The transerese bats of the sereton are pothonged, and strike amanst comels riveted on- the webs of the "unights. so as to kerp the sections of the foot hriger horizontal when it is lowered. (Figs. 31 and 43 .)
 homed torings attached to the two whtside uprights of earh frame
 the rattans are placed hetwen the intermediate undights. The lowir pulley bodding the downstrem chats. is shightly smaller than the other. This imemality insures a distancebetwen the chates rgual to the thickness of the first curtain hat. Besides rolling the
 pulley by a stop (Fig. B9), (arrying a finger, which antors the link of a chain when the lever is lowered. Fimally, the uprights have on their upstream faces iron chaws. which serve as stops to the rolled (curtain.
(i:3) Drtails of the rartains.-Dimemsions.-Warh rartain ronre-
sponds to an opening 2.30 moters wideand $\overline{5} .3 \sigma_{\text {meters high in the }}$ deep passes. The bars of yellow pine are all 0.0is moter hish, with aplay of $0.00 \cdot 2$ meter between the hars to allow for swolling : their length is 2.08 meters, giving a phy of 0.0. meter between two neigh. boring curtains: this interval is sufficient, and can be closed be a fuint cover it the dam regires to be made tight.

The thickness of the upper bar is o.04 meter, and it increases proEressively downward to (o, or meter for the deep passes. It is calcolated to resist a pressure of biokilograms per square centimetor. The upper har. exposed to shocks from floating bodies, is strength-- Hed by an angle iron.

The hollow castitun rolling shoes are heary mough to cather the "metain to sink easily into the water when momed.

The pows of hinges form a kind of chain resisting all offorts axerted on the ehain in the act of rolling. These hinges are of bronze. :0 as mot to rust: they have strong flanges, and their axtes are of
 rial on cars rolling on the service-hridge tracks.
 Which cath be produced hy this apparatus is at the tomanation of the lifting, and amounts to tano kilograms for the deepest passes. This +ftort, transmitted by the chans to the windlass. is exprted by fome men at the cranks. or by a small domble-cylinder steam enginn momated on the wimblass. A brake serves to regulate the velocity of the descent when the frames are lowerd.
(\%5) To roise the fromes.-- With the suspension above deseribud and in use at Port- Dont the operation is as follows: Lifting jacks. shown in Fig. ot, are plared moler the erosspieces miting the two shipending rods of a framo abow the downst ream matway. Fath back rests upon a phat form armaned for this purpers in thathorizontal bating of the rombay. After phating the fack and removing the werges which prevent the lifting. the jack is sorewod up, aro heing taken to worge the ends of the rexspiece as it moves up: this wedging servestosustath the lifted frames. The ehatins from the windlass on the upper bridge are then hooked on, and the frames are rotated to a horizontal position and made fast to the under sidn of the upper bridge.
(6) Execution of the work.--The fommlations were ladom a bank of chalk, from of to s.so metere below the sea lavel. Two system: Were employed: first a cofferlam pumped out above a layor of beton filled in an inclosure of artificial hooks (for the abotmont on the right hank, for piom Nos. 1.2 : and for the flomings of the passes. Nos. 1, ?. 3, aml 4.).

Secoml. Fomblations in catsons by compressed air for piors Nos. 4, 5 , 6 , the abutment on the left hank, and the flondings for passes 5, $6, \%$

The surface covered by the foundations of the Poses Dam and its
 of masomry were laid.
(ii) Wright of the iron work. - Weight of the iron in the bridges and frames. $1,316,991$ kilegrams; weight of a curtain with its chans fon the deepest passes, ! 11 kilograms; weins, 516 kilograms.

The final project was approved october : 6 , lass. Work on the foundation began the efth of May. ssion. the dam was eompleted on the Pth of September, 1885 , and has wiven entire satisfaction sine .
(is) (ost-Cost per rumning metar:

	Frames
Masomry foumdations.	13, 3.4.5
Iron work:	
Upper bridges	1.871
Frames.	Nis
(urtains, etc.	$4 \geqslant 1$
Total.	18.515

The project of the Poses Dam was drawn up by M. Camere and expeuted principally under his direction.

The figures 35-50 are taken by permission from the Portfeuille des Ponts et Chaussfés.

Chapter Vi. - Villez movable dam on the Seine.

($7:(1)$ The Ville\% Dam is situated on the Seine 145 kilometers from Paris. Figure aff shows the general arrangement of the dam, which consists of two navigable passes and a weir having a linear opening of :01. Lo meters, together with two locks. The total length of the dam is 22:3. 15 meters.
(so) System of closing.-The dam is closed by a system of frames and curtains (Fig. 5) . Each curtain is suspended by its upper bars from a frame over two adjacent Poire frames (fermettes). This suspending frame is completely indegendent of the fermettes, being only attached to them by pins (Fig. is).

The regulation of the height of the water is done be raising or lowering the curtains, the flow taking place underneath; the regnlation, at times of low water, mat be made without moving the curtains, by flash boards 0.30 meter high arranged above the curtains.
(al) Opening the dam.-The process of completely opening the dam is as follows: The curtain frames with their curtains are transorted over the service bridge to their storehouse on the bank; the flooring of this bridge and the rails uniting the dam frames ame taken up: and, finally. these frames are lowered ono after another. beginning with the one in each pass farthest from the bank. The time taken for these operations, counting from the carrying anny
of the first entain, is about ${ }^{2}$ hours. corresponding to the complete onning of one lincar meter in $11 \$$ minutes. When the freshet subvilles and the water temds to fall below the nomal level, the inverse "perations are made and the dam is. raserd.
(*?) Inseription of the dem.-'Jhe floming ermsists of a maised portion. forming the upstrem sill, united by a curven pertion with a recess whicli holds the lowered frames: ther sill is + meters below the upper bay: the reeses protects the frames from the keels of the passing boats.
The great prosure supperted by the frames reduires their bearings (in the flooring to be strong and secure: they are for this reason attarhed to iron double T bats as long as the width of the recess, and united transersely ly two other double T hars. This grating is anchored, as well as built into the Howing. In comstructing the floming for the deep passes arrangements are provided for setting up a cofferdam for repaiss. These arrangements consist of recesses made ill the pieres to hold joists, so as to separato aljacent passes: alsurom buxes and rings anchored in the masomry above and below in the flowing. To aid in pmoming out these temperary cofferdams. : wed! is sumk in each flome. These supphementary constructions were of ereat service in improving the sill of the dam alter its. comphetion.
(s:3) The fromes.-The frames are plamed so as to present the minimum of ohstruction consistent with strength. The upstram up-
 rights of the frames hatw a small T iron on their face the por freting wehof which servers a guide to the rartain bars mating on this upright. The bracing of the frames is callembated on the supposition that the pressure of the water is disurbuted over the whele
height of the uprights. instand of bing transmitted only at the tope as in the ase wi needles.

A backet phaced on the downstream mpright semers to willen the s-rive bridge rodway and allows fwo tracks to be lad, the mals
 in the older frames.

The great frames are mosed by moans of fat irom bats. wall in three parts, jointed together, and having a foint at earh extromits.

Fin, Bit. Lewering the frames at Villez Dami.
(st) Latrering the fromes. - When a frame is to be lowered the joint of one extremity of a bar is pimmed to the upper aross ban of the frame and the other estemity madr fast to a car movahloon the
 the drum of a windlass. the lattom beinge hed by amother chatim mate. fate to the next pion ab aboment (Fiy, bi). To lower the frame. it is anly medssary on push the rall forward and pay out the wind ass chan. When the frame is lowered the flat har fixed to the car is
detached and pimed to the side of the eross bar of the following frame still stambing; the operation is repeated, and while the second frame is lowered the flat jointed bar commeting the two frames folds together forming a V, the unequal branchescoming together between the two frames, without forming heaps like the chatins. The frames ar lifted by mersing the operation.
 is that of M. Camere. The dimensions of the curtain bars for the drepest passes are lom meters long. 1,0 ons meter high, and the thickness from 0.01 to 0.0 on meter. The frame supporting the rurtain, whichalso holds it when rolled up, is an iron frame (Figss 58 and 39),

whose upper bar holds the hooks for the suspending chains, and whose uprights are terminated by forks fitting on the horizontal pins with heads forming part of the dam frame.
By means of these pins the curtain frome may be set up directly over the uprights of two suceessive dam frames and kept in this pmsition by serews, or disengeged and turned about these pins and depsited upen the curtain car (Fig. है ${ }^{(9)}$).
The curtain frame has in the midde two guide pulleys which carry the curtain chain, and a box to hold the slack of this chain.
(sis) The curtain is rolled or unolled by an emdless chain as follows: Each line of the endless chain passing over the guide pullers forms two bights, one to the right and the other to the lefte of the curtain frame (Fig. 5) ; the one passing around the cortain regulates the amount rofled up. To operate the curtain, the two lines of the chain of the downstrem hight pass over the chain pulleys of the windlase; the combined motion of these pullegs produces an elongation or centraction of the other bight.
H. Ex. +10-vol, 111 ——3
(sio) The wimblass for hamdling is momated on a car rolling on the rails of the fort bridge to bring it in front of the rurtain to be moverl. When phaced it is clamped to one rat of the thack: on the other side a mosable buffer on the upper part of the windlase rests asainst the curtain lrame and resists its temdence to turn in the upstreatm direction.

 put men these amd maintamed in their places ber ratines stops whichean be lifted to allow the chains to be taken off or put on.

Tha: pulleys are kerod to shafts driven hev the wind hass gearing; the Jown pulley may he ongaged or divengited. When engaged it turns in an oppositredirection from the uper puller, and its diremformial relocit! is a fraction of that wf the other. 'This heings so. (o) foll up the cortan the lower pulley is angaged. and the uper pulley exerts an effert on its chain while the lower pulley pars out its (hain; on aceome of the difference of the velocities of the two pullegs a shortening of tha hight passing rombl the curtain takes place, amb the curtain rolls wh. To moroll the rartain, the lower pulley is disengated, its ehain is made fast besastop on the grudu pulley of the curtain framm. the uppor pulley turns. latting ge the chain. the bight lenghems. and the curtain motols.
(ss) 'The cortain frame is shipped on a special adr carring an inclimed phane furnished with a windlass and (hain (Fig. E!). This car is brought in front of the erntain, the serews fastrming the comtain liame to the dam frame are removed. so as to allow the formme to torn aroum its jommals. The windlase chain is lowked to the upper har of the curtain frame, and the later turns remad its jourmals matil it rests upon the inclined plane: then by the contimum action of the wimllass it is hoisted upon the rai he moving upon rellors fixed to the inclined plame. The curtain frame. thus complefoly separated from the dam frames. can be carried off on the rat. It is replaced hy the revorse procers.

The project for the Villar dam was prepared under the direction of M. Lagrent, chiof emgineer. Wy M. M. Chesson and Camere emgineers; the latter superintended the work and invented the system of curtains.

Chapter Vh. - Movable fish way ermeted at Port-Mort Dam oN THE SELNE.

(s:9) I fishswimming up) a river merting a dam, and moleavoring to ascemble serks that print where the water is freshest: this is in the

 if we wish them nsed. shomblow hatod aceordingls.

Starting from these principhes M. Camere proposed. in 1 sis, to sulstitute for the fixed masomry fish ways hitherte constructed near the piers or abutments of movable dams. pertable fish ways. mach formed of a long trough of wood or sheet iron with eross partitions. resting its downstrem emb unona floater and its upstram end upon the upper bar of the curtain dam properly lowered. With a construction of this kimb, arramed so as to be casily shiftel, it is possible to seek in the dam the best pesition for the way so the fish will go up naturally and the route which the chomse shall not be concumbered by any fixed obstruction.

Fira. tho, -Mowabla fash way at Port Mort. This dam is similar to that of Poses.
(soi) The amexed figure indiates the arrangements adopend at Port-Mont. The dam is a curtan dam, like that at Peses. The worlen troughof the way is formed in two sections; the prine pal seation rests on the flometer. and is hung above on a shaft arranged on the outer faces of the uprights so as to deseillate as the fown hay rises and falls. Thesecond section, which is tixed, is placed between
two uprights. Its extremity opens into the upper bay, and it joins the other section upon which it rests. Its length has been determined by assuming that its inclination should not be more than . We per meter when the dam is at it.s full height. The length of the principal section is therefore 10.15 meters; its width beyond the frames is 1.46 meters; the partitions, 0.43 meter high by 0.30 meter wide, are 1.20 meters apart.
(91) The principal section rests upon a little iron bridge. The downstream floater is formed by two little covered boats arranged on each side of the way and firmly mited.
The little section arross the dam frame rests above on the upprer bar of the curtains properly lowered, and laterally against the upstream face of the uprights of the dam, secured by angle irons fixed to its exterior sides. Below, it is bosed in by two cheeks arranged at the end of the principal sections, and rests on a cylindrical surface, so as to allow oscillations. The portion situated at the entrance of the trough in the upper bay is movable around an axis phaced at its base. This allows the regulation of water flowing down the way according to the level of the lower bay.
(92) Erection.-The way is set up between two frames. Tolower it it is sufficient to lower the upper bars of the two curtains on which. it rests by lengthening their suspemding chains. We thus obtain sufficient space above. The pertion of this space not fillow by the way, is closed on each side by two little hand sluices. Tho chains holding the suspension axle of the way are hooked in the uprights of the dam and the axle is made fast by other chains attached to the frame shaft. The fish way is brought into place with its upper extremity resting on a pontoon, while its lower extremity rests on the floaters. By attaching then the upper end of the way to the top of the service bridge the bearings placed under the beams are put upon the axle, and the floater is held by guys from the neightoring piers. The curved piece comecting the two portions of the troughs is put uf a arss the dam frames. To remove the way the inverse operations are performed.
The movable fish way for this dam was planed and executed under the direction of M. Camere by M. Clerc.

-Chapter Vili.-Torcy-Nelf Reservoir for fehing the Central Canal.

(993) The great improvements for derpening the Central Canal, required the establishment of a new storage dam near Crensot. The new reserwir received the name of Torey-Neuf to distinguish it from amother called Torey:

Torey-Nruf is 5 kilometers northwest from the summit level of the Central Camal.

The reservoir has a surface of 1 tif hectares, a perimeter of 15 kilometers, a height of 14.50 meters; it contains s.itif,000 cubic meters. and doubles the amount of water heretofore available at this level.
A waste weir 12 meters long is at the left and of the dike. The supply conduits start from a tower which is built in the reservoir at the foot of the dike, and which allows the waste water to flow over the top.
(94) The dike, well rooted at both ends in the side of a hill, consists of a great filling of sand and clay (64 per cent of sand to 34

Fig. 61.-Map of Torry Neuf Reserwoir
of clay) 436.20 meters long. 5.50 meters wide at the top, and 53.40 meters, at the base; its maximum height is 16.31 meters, and its volume $1: 9,0(0 n)$ cubic meters.
The slope toward the water (Fig. f;?) is protected by a sories of masonry pitchings 1.50 meters high, inclined $4:$ degreess and separated by berms 0.90 meter wide, two intermediate ones being \geqslant meters wide.

The exterior slope. without revetment, is planted with acacias for a distance of in meters in height. The slope is ?.73 base to ? of height.

The upper phatform of the dike is 1 . so meters above the water level; it is of masomy. like the slope toward the water. and surmounted by a parapet 1.00 meters, to stop the waves. The foot of the slope rests on a revetment wall 1.01 moters thick, built in a distance of 1 meter into the solid rock (red sandstome) for the whole length of the dike. The maximum height of this wall is : meters.

The dike. below the revetment and the platiorm, rests on bare rock. To incrase the tightness at the base there were three layere of pudded clay laid down within the reservoir parallel to the axis of the dike and penetrating l^{-1} meter into the rock foundation.

The earth of the dike was vigomosly rolled in successive layers, after adding water and powdered lime acoording to their degree of dampuess: the layers being eompressed from 0.10 to 1.0 on meter alter the operation. Corrugated rollers drawn by horses and weighing 750 kilograms, and also steam rollers weighing 5,000 kilograms wore used. A horse-roller compressed so cubic meters per ray moasured after compression, while a steam roller compressed ofo meters. The cost, including leveling. watering, addition of lime, rolling, ctr., was $0.2: 3$ franc per cubie meter.

That part of the dike under the outside slope was rammed in layers of 0.20 meter thick, reduced to 0.15 meter after rollings it rests on a natural bed carefully prepareal.
(95) The gute tower.- - The water, insteal of being convered in mans or culverts through the dike. is let into a tower built in the reservoir at the foot of the dike. It serves to discharge the waste water and dispenses with the waste weir: this weip has been retained through fear lest the large amount of water flowing through the tower should undermine or dislocate the masonry. These apperehensions proved groundless. The experiment of passing the waste water through the tower. combined with the gate closiner the tailrace, has been perfectly suceessful.

The grate tower is square on the outside and has in the interior a well 1.00 meters in diameter through which the mouthpieces pass. This well opens below into the tail race.
'The eoping of the tower is on the same level as that of the dike, that is, 16.30 metrers above the bottom of the lowest mouthpiece. It hats a platiorm :3.no moterss suare, on which is phaced the apparatus for moving the grates. The faces of the tower have a bater of one-twentieth.

The well terminates in a cglindrical chamber or meters in diameter and 2 meters deep, kept constantly full of water to break the destruc-
tive shock of the water upon the masomry. Foumded on red sandstone, the tower exerts a pressure of 3 . as kilograms per squane centimeter.

(96) There are there mouthpieres, situatod vertically were cach other at a distance of 4.80 moters apart. The orifices are (ast) by 0.40 meter and are closed by suctial cerlindrial valves. The midde
and upper mouthpieces are simple ducts of rectangular section opened in the walls of the tower; their bottoms are curved so as to intersect the walls at an angle of 45 degrees, so that the stream at the moment of opening shall strike the masonry obliquely.

The water is let into the tower by four openings, each d. 20 meters long, made at the top of its four faces; the sills of these openings are 0.t() meter below the standard level. Each of them is summonnter by an oaken gate kept in its place by U irons fastened agramst the sides of the openings. These grates are taken off in caso of a freshet.

The tower is aceessible from the dike by an iron foot bridge. The ribbed plate floming, ol.fo meters long, $1.1+$ meters wide, is sup-
 The now system of valve towers has the advantage of economy, combined with greater security and stability for the dike, as well as affording groater facilities for repairs.
(9i) The passage of the water mains through a mass of masomry in an earthen dike destroys the homogeneity of the latter: on both sides of this mass the eath has tobe hand-rammed, and consequently batly done, no matter how much care is taken. The settlement of this arth leaves spaces which may caluse filtations and become sources of real dimger.

With the tower, the dike is only cut at its base; the hand-ramminer is reduced to a minimum; as soon as the top of the waste culvert is reached, all the ramming is done with rollers, and consequently much better. A notable economy results from dispensing with the heary masses of masonry through which ordinarily the mains ron, from the omission of the waste weir with its tail race, ant from rolling by stam and horse power instead of ramming by hand.

The slaices are rery difficult of access in the long culverts ordinarily used, and are consequently rarely repared. With the tower, on the contrary, when the mouth of a main has been stopped by a worden plug, placed within the tower in a chamber arranged for this purpose, a diver can easily take down the valves and valve rods, and replace them after they have been repaired in the shop.

The long calvert under the dike can be easily inspected and repained. The gutard sluice boing raised, one is notentirely cut off from the upper end ; light and air come in from the tower.
(9s) Shuces.-Rectangular sluices have tho great inconvenience of moving with very considerable friction for great heads of water; use has to be made of powerful and costly jacks, whose friction increases the effort to be made; they have to be fastened by heavy irons to solid pieces of masomry, that they may not give way.

At 'Worcy-Neuf the יmdeavor has been to kiminish the friction as much as possible and consequently to employ simpler moving apparatus.

The sluico (Figs. a:3 and (64) is not phane but eylindrical, and firmly attached to a rigid horizontal concentric shaft; it has no opening. It turns at a short distance from its seat, which is eglindrical and concentric, without resting upon it. It includes a movable frame which it carries with it in its motion. but the latter is not attached to the shaft. The pressure of the wateron this frame isexertox only at its edges : it rests and rubs only against the valve seat. The joint

Fios. 63, 64. 65.-Torey Senf reserwoir, Section, elevation, and details of the sluice.
between the frame and sluice is packed with a rubber ring, which does not sensibly interfere with the independenee of the frame: this ring is inclosed in a slot and protected from shocks.
Comparing this with theordinary flat sluice, the theoretical frietion is reduced 92 per cent. This system, which gives entire satisfaction, is due to M. Fugme Resal. The thee sluices are moved by jacks placed on a single post in the middle of the phatform of the tower;
the motion is transmitted to the rods by endess chainsand horizontal axtes.
(99) Ciuard sluice.-The guard sluice, at the bottom of the towrer. to close the waste culvert is upen the same principle. It was devised by M. Hirsch, chief engincer. It is principally of iron, 1.80 meters high and 1.10 meters wide ; it consists of a strong plate irom wagonette with two pairs of wheels, rolling on vertical rails set into the walls of the masomry well (Figs. bif, lit, (is, and is!). The wagonett rises without resting against a cast-iron frame fixed in front of the

 gratel gate, with details.
culvert. The contact takes pace along a slighty inclined plame by a border formed of jointed bronze rules independent of the sluice, but carried along with it in its motion. Like the other sluace, it is packed by rubber between the jointed rules and the wagonette; the faces of contact of the rules and the rubber are galvanized. The jack moving the suspending rod is placed on the platform of the tower.

The head of water on the center of the guard sluice is $1: 3.60$ meters while the pressure on a simple plain sluce having a surface of $:$ square meters would be about 2 ratoo kilograms; the rules are only pressed against the seat with a force of 3,000 kilograms. Admitting a coefficient of 40 per cent for friction, the weight of the sluice being 1.000 kilograms, the effort to raise the sluice does not exceed s.eno kilograms, which is easily managed by a jack with a theoretical power of iso.

This sluice was set up in 1 sss and works perfectly. It affords the means, as it is rased more or less, of keeping the water in the tower at such a given eonstant height as may be found most advantageous. Wromay thus diminish at will the height of fall of the water inte the tower.
(1010) ('ost.---The total cost of' the work was $2,033,183$.st frances. The cost of the dike, tower. and waste weir together was 5 bs.s.atisis frances. The fest was spent for land, buildings, and the removal and reastablishment of the roads and railroad passing through the location.
The project was prepared by MA. Desmur, engineer, and Fontaine. chief engineer.

(hapter 1X.-New high lift hooks on the Central Canal.

(101) The French (forerument has just completed a number of
 lift. Tho new locks have a lift of 5.20 meters with chamber wall $\therefore .20$ meters high. The flooring is 0.8 meter bolow the hear miter sill and 2.sa meters below the normal level. The cylindrical supply
 dor a full centered arch of 2.30 meters span and 2.5 meters height. 'Two small recesses serve to support a little joist dam allowing the sluce chamber to be emptied and the sluice inspected and repaired without stopping the traffic. A grating is ordinarily phaced in these recesses to stop floating bodies.
(10\%) The lift wall is 5.20 meters high and 1.00 meters thick with the downstream face corved. The eylindrical sluice pits, 1.40 metors in diameter, are sunk in each chamber wall to a depth of tas moters. From the botom of these pits on a level with the tail miter sill, the full centered culvert begins, for filling and emptying the chamber. It extends lengthwise through the entire chamber and diseharges into it by four rectangular openings equally distributed, from d.f0 to $0 . \operatorname{so}$ meter Wide by 0.80 to 1 meter high. The largast armits the passage of a man for inspection or repairs. The chond of the invert is :.fore meters below the normal level, 2 meters, of the tail bay. (Fig. fo.)

Under the flooring, two files of drans begin 10 meters from the lift wall, emptying into the riprap of the tail bay. All upward pres. sure is thus avoided besides facilitating the foumdation constructions.

Fach chamber wall is 3.60 meters thick at the base, and 1.20 meters at the top; it is s.on meters high. Two life lamers formed of iron hars are phaced in littereresses in the walls.

To resist the thrust on the tail grates, the tail walls are 4.34 meters at the top and 6 meters at the base, terminated by wing walls having a batter of one-twentieth (Fig . it).

Two recesses allow a cofferdam to be set up to separate the lock chamber from the tail bay.

A short distance upstream from the tail fuoins, the lateral culvert in each chamber wall rises and empties into a large pit 2. 30 meters sumare and 6.25 meters high, in which the cylindrical emptying valve is placed (Fig. \% 6). This pit, and the lock chamber form two reservins communcating by four rectangular oritices equally for filling and amptying. The water reaches the pit and escapes at the bottom molor the bats without producing any current in the chamber. The valve seat is 0.05 meter below the level of the tail bay, so as not to make a siphon of the discharging culvort, and also to allow the inspection of the sluice by a slight lowering of the tail bay.

Figs. \%is and 7 i. . . Half cross sections through the axes of the upstrean and downstrean pits,
This sluice opens a pit 1.40 meters in diameter and 1.95 meters high, at the bottom of which, at the level of the tail miter sill, the amptying culvert begins. This latter having a grat section, 1 meter wide and from 1,60 to 2 meters high, makes a eirenit of the hollow yuoin so as to empty into the tail bay at right angles to the axis of the lock, thus avoiding the introduction of the water with great velocity into the tail bay and eonsequent erosion. One of these high lift locks has a bridge erected on the tail walls; the rodway being 1.30 meters below the coping, it is 6.80 meters span and covers. beside the boat passages, fwo staircases each $0 . s 0$ meter wide.
(10:3) Description of the cylindrical sluices (Fig. Bo.-Whe lock has four cylimbical cast-iron sluices of equal size, two for filling, and two for emptying.

Fach shace consists of fixed and movable parts. 'Phe fixed parts consist of a sat $1 . f 0$ moters in diameter, built in and fastened to the masomry, and carrying three uprights in the form of flanges mited by an uper crown; a hollow eylinder fixed upon the crown receiv-
ing the sluice when it is raised: a cover bolted to this eytinder and surmounted by a pipe for the passage of the lifting rod and the escape of air. The seat is phaced horizontal and maintained so be means of three regratating screws embeded afterwards in cement.

The movable part is a cast-iron crown 0. 4 fa; meter in height, ame 1.4: meters in interior diameter maved by a jack. It slides on a fixed part and opens or closes the space between the seat and the upror cylinder. 'The vertical pressure of the water is supported be the cover. The movable portion only is expesed to lateral presures which are in equilibrium. The only weight to be raised is the

FIc. 7 .--Cross section of Fontaine seylindrical sluice: the sluice closed.
weight of the shace, which is about : Ba (kilograms. The distance rased is 0.385 meter: the thine of mising twelve or thinteen seconds

 head of ende metros.

The closed sluice rests on a littlo rubber ring, fastencel mon a shot in the seat. The upper foint is mate tight by a leather band, kept in place by the pressure of the water. This shice, which has been in hese for the last six years has worked perfectly. It has the following advantages:

First. There are no resistances except the weight and friction of the water on the iron, without any pressure of the water.

Seeond. The whole seetion of the cireubar orifiee is ntilized by raving the shime a hright $h=\frac{\prime}{8}$.

Third. The head is greater than upon an equal orifice made in a vertical plane. This sluice has been adopted elsewhere for Paris and for sea locks. It solves the problem of high-lift locks with saving basins. For great reservoirs, a single cylindrical sluice of small diameter will advantageously replace the usual, complicated and expensive systems.

The use of cylindrical sluices enables all others to be dispensed with, which is an advantage with respect to tightness and repairs. The hamd rails, for this reason, can be placed on the upstream side of the foot bridge, and thus sheltered from the shocks of passing boats when the leaf is opened.
(10.f) Gates.-Whe head gates consist of two leaves of galvanized plate iron. The tail gates are 9.25 meters high, including the hand rail ; they consist of two leaves of galvanized phate iron and steel. Each has a frame strengthened by eight horizontal beams so spaced as to supportabout the same load, and by ten uprights united by the first sot. These pieces (onstist of a weh and four angle irons of mild steel. By the use of this metal the weight of the frame is rechered, making an economy of construction, and facilitating the setting up and the working.

The heel and miter posts, as well as the uprights, are strengthened by three wide iron bands on their downstream faces, to give them morestiffoss. Theskin is formed by eighteen iron phates 0.0 or meter thick, huilt in at the eflges, curved so as to have a flexure of 0.0 or meter, and riveted to the upstream face of the steel frame. They show no change of form under pressure.

The pressure of the laf against the heel post at the bottom is spread over seven iron disks upon friction plates; these last, furnished with three adjusting serews, are arranged so that all bear and worls.

The collar, fixed to the anchom straps by two strong serews and nuts, has a joint besides. It can move horizontally in all directions and give the axis of rotation an exact rertical position.

Galch leaf is furnished with a gridiron value formed of two hollow cast-iron cylinders mited by flanges to be used in the case-which may neror happen-when the water is so low as to uncover the sills of the cylimerical sluiers.

All the gates are mover easily, wen by chilhren, by means of little simphe and comvenient windlasses.
(10:5) T'ime of locketef.-The lock, containing 1,200 cubie meters, is filled in 3 mimutes 10 secomds and emptied in 3 minutes 15 seconds; the time for lockage, $1+$ minutes, being thus distribnted:

Fintrame of the loat	$\begin{gathered} \text { Min. See. } \\ .4 \quad 10 \end{gathered}$
('losing the gates	1140
Filling the chamber.	310
Opening the gates.	1) 40
Exit of the brat	20

(106) Cost. - The rost of the lonk was 190.000 francs, made up as follows:

Earth work.	Franes. 8,000
Masomry work	919.0010
Lock gates.	11.100
('ylindrical sluices	3.400
(imatings amd windlasses.	1. 50
Total.	120. 11010

Thr new lock appears to be very satisfactory: and promises to become the type to be adoped in future. The rapidity of lockage without injury to the bats from the motion of the watere and the mase of operating all the appliances, are thoroughly apperiated.

The group of locks, of which this was one was designed and exerated mader the direction of M. Fontaine, dhef engineer. by Messrs. Rasal. Momallon. and Variot. assistant enginemes.

(tor) The prineipal diftioulties in able towage arise from the foll lowing circumstances:

First. That owing to the obliguity of the towrope, the irregularity of its motion, and the displacement of the joint between the rope and the cable, the cable can not have a stearly motion.

Second. Whenever the towrope passes over the groove of a gruide pulley it is canght there. It mast pass the pulley without dragging the cable, which is a difficult mathor, espectally ita groing around concaveroures.

Thim. The joint between the towrope anci the able should be surh that the former can not be twisted upon the lattre be the torsion of the rable, otherwise the towrope will be womd upen it, besides being very difficult to dotarh from it.

Fourth. The towrope must be asily detached from the cable at amy instant-an operation of some difliculty, as if is dome by a cord
 the gromid the thagh the water.

Fifth. Encoupling should be progressive, although we rouple wademly to a cable in motion.
(10s) System adoptal. --The system of cable towage introduced by M. Mauriere Levy solves all these difficultios as follows:-

The fisst condition of sucerss was, aceording to the author, to avoid all irregular motions of the cable. For this purpose, insteal of detomining the weight and temsion of the cable aceording to the usual rules governing telolynamie transmission, he determines them by the double comdition of maintaining the oseillations of the cable,
H. Ex. H10-vol HI- 10

Whether horizontal ov vertical. within certain preseribed limits, Which ean be mate as small as mat be desired. This refuires that the cable should be heary (about : kilograms for meter), and that it should be set up with an initial tension incomparably wrater

than that usually andoper in tedolymamie rabhes. This tobion, at:
 the spered required for the bemats.

The vertical supporting palless are 0. so meter in diamerar, and have a depth of groove of 0.20 meter. A roller on the top of the puley prevents the cable from leaving it. but the tworope attachment would catch between the pulley and the guide roller. To obviate this openings are made on the wator side of the pulley groovers, consisting of notches extending the whole width of the groovo and haring their edges curved in the form of the involute of a direle (Fig. (川)

The towrope joint. or coupling. remains in the groow matil it is (anght by the first noteh, which it follows: then, on ateonme of the whliguity of the towrope it descends along one olge. is carriod up on the other, and passes oft.
(100) The passage around convex bends in the banks presents no diffeculty: it is acomplishod with the aid of a horizontal pulley, or rather one slightly inclined in the diredion of the two sides of the embless cable. Twotypes of pullers are alopted: ono 1.40 moters and the other \because meters in diameter at the botom of the grooves, with ". 10 meter depth of groove. The first. for canves from :outo 300 meters radius. and the second for those we smaller ratia. 'These phllers have no need of notehes. as the cable, with its towrope coupling. only passes on the water side and thus resapes. On aceount of the wreat tension of the able there is mo danger that the fowrop will pull it off.
(101) The passige aromul concave angles is. on the contrary an extremely delicate pohbm. In that ase, the cable passing round the pulley on the land side. the fowrope joint can not elear itself monse we adopt very secial and precise armagements.

The following method was adopted (Figs. st and se):
In the elesation, the plame of the lewer pulley is suppesed bobere ralsed toroimede with that of the upper ome.

Two vortical pullegs are taken, having a common tangent. the the botom of their respective growves, ome of the pulters beime in the Hant of the part coming on, and the other in that of the pat gening

 then passes ent to the serond.

This solution pomits any rhange of direction whaterog be the ad of tworetial pullers. and consequently it suffices to moththes.
 "ap". But it subjeets the rable to fon eonsecutive bends at right
 are teot, and on aceoment of their great dimensions thr mamber of the motehes is increased.

The expernse of such pullers with their suppots would berone siderable if they had to be used wherever there is a concate amge,
and this armagemont is only suitahle for comers with exceptionally -hort ramia, or at the ontrance of tamels. Where it may be comronimat to suddenly change the direction. For the usual deviations a lane pulley is used of the type of 1.4 on ? metars. fumished with motches (on the upper face (Fig. s:3). This solution is derived from that of the two vertical pulleys.

Ftos. 4 and אe. (iahn townge. Elevation and plan of a donble pulley for a concave angle. The

The principhe of the two pulleys is very elastir. We may. fon instance, take toth pulleys inclined, or one vertical and the wher inelined. Then we may arrange so that the first shatl he an ordinary
 inclination of the latter, its direction relatively to that of the cable.
as it comes on and goes off, and the length and width of the moteher. -hould be determined with the most pertect precision he coptain ruhs which have heen established hy theory and experiment.
 mot be made fast directly the calle, hecatase the latter being sub. jowted to comstant twisting motions would caluse the formur to twist around it. therely losing comsiderable of its length, and rendering its detachment impossible during the jomrner. This detachment should be capable of being instantly done in case of an acocident, or When the boat is fo be stopped. Fon this reason cable-road grips are inapphicable: hence mairsof rings are placed at intervals on the cathle (Fig. sti). (Ont. ting serves as a tixed axis of iotation to ther where ring which is movable about the cather 'The latter ring hats two hrar-

Fir. 43, -single pulley fur moname 1112rles
 therefore have two rotations, one aromed the abhle athe the where around an axis perpendicular to it.

 and the other agatise the pistom.

A frame $P(Q)$ is phaced in a diametral phane of the extinder and
 of the finger fit: into a colindrical cavity in the piston (if (i. If 1) in put in the cavity it is caght there. If the reed pispulted the piston follows it. compressing the sumes the finger D) then heromes for en turnon its asis.
The emd of the towrope on the lowat is permanently attachen les a
 other permamently attached to ρ (Fig . sit).
The cord is for relnasing the finger aromal which the hight in a hash is phacel: this hash passes thromg the ring on the rathe and is prmamenty fastmal to the grip at Q. By pulling on the (and. the finger is refonsed and the lasishaps out of the ring on the cable.
 muter in diameter which may be called the leash, is permanditly attached at (d. The otherextremity is frem and tomimated by an ex.
Toblowk on a boat, the grip, lying on the tow path, the finger () frees, a man takes the free end of the leash amd awaits the arriad of

Fig. Kit. -The grip with the towrope fastened to one ond hy the ring P .
the shackle $A(F j g$. SV), and passing the leash therough the sharkle he slips the ring on its free end on to the finger () which he makes fast, so that the grip is arranged as in lig. sif. A is the townene. and The latash, erong through the cable shatekle. This dome he poturns to the boat which he has plenty of time to reath hefore the

 the ervit eord the spring is compressed, the finger becomos frem.
 the repe on a bitt. But it is mone eomronient fo have a wind. lass with a brake under the steersmans forst the bake lewn is sn armaged that he hats mly to press his foot down to tightern.
 phare. by a slight motion of his foot mem the hakerasts off fom the cable. Tos sacken sueed when in motion. the townop is shakrened. but can be hanled in again he the windlass. The windlasis "spectally useful for this furpos.
 or passing umber hideres are immediately mate upand the jomeres is made with mathematical regularity.
 may cover without diffoult! a distano of fom his to kilomoters.

 apart.

The mathines thas phated. two amd two in the same shod. cath

 with

 horse pemer for lightom loarls.

If we adopt the relocity of and metor per semot, we mast malti-

(11:3) 'The rest of the phat depemis an the dimensioms of the hateres their momber and rolority.
 meter per seromd. and atrathe al lownown tons per your, we may retimate the cost of the plant at li fance per rumbing meter.

The cost per moter of workinge ander the sevorest comditions. and imelmling a sinking fond for therapital. amd the cost of romewing

 tolls.

This system hats bern devised and aphled bedwern Paris and Join-

 inventol hy M. Oriville. is on trial on the Saint Quentin ('anal. at Sorgnims.

IESS ENGNE.

(114) Tha summit hood at Mantiage lies botwern the two shoro
 are in : flomel.
 onte side of which is continued he a curved latemal wall: on the other

 with tewboats driven be the Francy-Lamb, system capable of working without smoke. The Francy-Lamb systom, the invention of Lamb and imporead be Francy, as it is qememally emplovedon tramwats. comsists in wing stome porluced from water at a high tomperature containod in a reservoir fed at some peint on the roal form a fixed soures of supply. It includes. indelemdently of the loenome tive. a statiomary boiler. with a reservon of superheated stoam which may be used at starting. of at somerpoint on the roald, to feed the fire. lese locemotive This sestem thas aroids filling the tommels with smoke, which would be a serious incontenience.

At the same time thessiom has been moditied by placing the stran
 mont, would not be thought of for a locomotive but it presents no
 amd the anditiomal waight is umimportant.
(111i) Iossoription of the loots (Figs. sio and sis, A. B, D). - At the bow and on the stern are two guter pulless for the rhatn. 'Two boilers. (6 with safety appliances. rated for l° kilograms of effective pressure. Ahaft the engine are the receivers for the superheated Watere be which the engine is driven, when the beat is in the tumel. Above the engine are the drums aromel which the chain passes.

Fig. ss shows the plath and Figs. A. B. and D) the (ross sertions through the reerivers, through the engine and chain drum, and therough the boilers.

Eatch of the two towhats is en moters longe to meters wide, and 2. 30 moters derp. The hall is of steel phate: itsolranght is 1.10 metres inclading coal and water for a trip of 3 kilomoters wach wat.

The engine is phaced in the midhle of the beat: at one end are the bribersand at the wher the reepparless for the superheated water.
 1s horses. It is a comperman omblasing angine with two inclined rylindors furnished with reversing sear.

There are two tubular brilers rexistered for la kilograms offortive perssure: rach of these is surmomoted by a long horizontal stame chamber united fo it be large opmines: the water level rises just into these chambers which wall all the safoty apparatus. (On the other side of the angine are the superheated water receriere which. with the gemerators. furnish the stam requisite for working the brat theoterh the tombel. They are steed relinters surmounterl by a dome and commmatate with thr gernarators by a stamen fipe amd cock mated to the interion of the reservoir with a perforated pije for heating the water.

Before it is sent th the relimbers the stemm in the receivers is bromeht (o the usual pressure of is or kilograms. The reser-

roir for the expanded steam is placed in the interior at the merphacle for the sumpormed water, thus always affording very dry steam for the cylinders.

The expansion apparatus (for regulating the jnessure af the stram to be almittel into the (9linders) is mosed by a working beam att
 expabled stram.

 of being stationary
 boats makes a trip. Its spred is : kilometers per hour: in the tum-

Starting at is selock in the moming. with a pressume of in of kilograms, it eros an hour in the open canal, during which the
 the lome is very heary. Doming the passage theomgh the tumber. Which is about thours, the fire is allowed to fall, alld the hat is: driven only be the stemm in the reroivers. On (omming wit of the tumel the pressure has fallen to t or $\dot{0}$ kilograms. Which in sutticient to finish the journey in the open camal. which usually takes an hour. Aftor an hour for rest the boat retmrns to the orimimal starting point.

During the passage through the tumarl no smokr is rmitted. an that it can be sem through from one end to the othere

The beat maly tows from twenty to twent - five harges ware

The coal hurned with a file of sixtern bateres attached does but exered: kilograms per home pewer per home measmed on the thw. rope of the first harge.
 The nomber of hamds employed is six-two moginerrs, two stokers, and two sailors: one of the four in the engine room take a daty of to rest or work in the repatir shop.
(11:) (onst.-. The total cost is as follows:

The cost of working is about oloron francs. which is latgely ensared by the tolls. Which amomat to about : aton frames derived from

('HAPTER XII.—SY'TEM FOR SOPPMMNG THE ('ANAL FROM THE Marde tu the Rhane and the Easters ('anal.
(11!9) 'Two important groups at fumps some to supply the canal from the Mame to the Rhine and the Eastern Camal. in that pertion Batwern 'Tonl and Matusese the summit level of the first ramal. These establishments are these of Valeourt. Piame-lat Treidere, and Vitconl.
 mated on the Mosedle. near Toul: they use the falls of the dams come Aruted for the camalization of that riverand semedosuphly during the dry seasom. the great pool. Pagers-sur- Monse, wh the canal from the Marme to the Rhine where the nowh hrame , it be Fatern ('anal takes its rise.
 thee herizontal promps. The eomberetion bedwed the twhines amd pmons is mate direct her araks on the hollow shat tis of the motors to which the comereting rools of the promps areattacherl. (Figs. xat ame!! ! (10)

The six pumps of each astahlishment semed their water lo a simele air reservoir from which the main eomelnit issues.

The data applicable to these wablishments are as follows:

The heights to which the water is mised are for, in meters aml 41.0 0 meters.
(1:1) Cost.--

Marhine and workshop applian	Frames. $\because 24.600 .010$
Cont of haying the cast-iron jipes themselters	294, 173. 3 3
P'ump homses, lamd ate	$569.19!.93$
Other expensise	24? 29\%.i.
Total	1;34. 2 P: 31

 Allowing if per cent as interes and simking fund. We find 1 . ds frame

 1 meter.
 comsists of fire boilers, two horizontal steam engines. and two homizontal piston phager pumps, raising to,000 cubic meters per day a height of 3 m meters. The cost of the estahlishment was 1.2 onerain

franes. Makine the same caldulations as before we find the total cost of raising 1.00 rabir metrers of water 1 motre be steam power to be 0.93 franc. The two setsof wisk were aredel under the di-
rection of Inspector-(xeneral Freeot hy Messrs. Poincare, Holtz, Bizalion, and 'Thoux. chiof' enginmers. and M. Picatrl, assistant

Fig. 90.--Plan of the pamping station at Pierre-la Treiche.

Chapter Xill.-Oscillating bride ofer the Dames Canal Lock.

(12:3) A very common armgement in cunals consists in placing it permanent bridge on the lower emb of a iock, using the tail walls: in abutments.
This arrangement, though economical in construction, is an ohsticle in working, especially in ascending. be obliging the driver t. antackle. that is. to suspem the traction precisely at the moment when the traction should be greatest to overcome the resistances 1 . the boat's entrance to the lock.
To momedy this difficulty a new type of movable bridges has heen introduced, called an oscillating bridge. One of these has latels been built oyer the Dames Lock on the Nivernais Canal, which gives great satisfaction to the boatmen.

Fig. 91 shows the principle of the

Fif: a - - Diagram of the bascule bridge. bridge; the hatched edges are sece tions of the bridge abutments: A B is the iron roadway movable around a horizontal axle O, placed a few centimeters back from the abutment face (on the side opposite the tow path), and divided by this axhe int two unequal parts (A and OB, the first about double the secomb. When the roadway is in its normal position the extremity A restson the abutment on the towpath side, while the other is held on a leved with the coping by a particular system of sliding bolts. This ahme ment contains a little depression, so that the roatway may, by tijping, take the position $A^{\prime} B$ '. The towrope passing betwern A ant A' obviates the neressity of untackling. and thus renders the traction continuous. An oscillation in the contrary direction brings batk the realway to its nommal position, A B. The roadway has a fixer! and a movahle combterpoise, and when these aro properly adjustend amd the sliding bolts pulled out be means of a lever arranged for the purpese dhe bridge is opened hey the weight of a man at B. amd he his weight at A dosed and lowked bey the sliding bolts.
'This system is due to M. B dre Mas. chice' engineer of roals and bridges.
(hapter XIV.-BALAN(GE) (iATES ON ThE RHONE AND) CETTE Canal.
 cirrular basin of meters in diametor, $1,0,0$ moters from the month of the river in the Meditermanam.

Cont last the 1 wo branches of the camal, one the protongation of the other through the hasin. were terminated by two openings
matured to f．fio meters in wilth．called semi－locks．which were elosed with ：plank dam dheing the time of freshets in the river．These firshots．though shom and infreefuent，could mot be foreseen：they rame frepucontly at night．

The elosing of the camal reguibed a momber of hambs．which were Ind assily whatum at a shomt notiow，and the work tow from there
 time large quantitias of silt wore deposited，which on some orea－ sims hato introrupted the trathe for a month．The ammat amomot

川い・カings．
 wator．driven in begales of wimd，is forme up the river like at tide． ami．spanding through theropenings intotheramal．leaves athlitimal maseses of simul to be dreelged out．

The frequency of these stomes together with the impossibility of kepping the openinges elosed．on acoount of the tratlic，has led to the

 ing a chaty work，utilizing the existing masomry walls and fultilling Hu following comditions：

Fibst．The openinge must be closed at any height of the water hy one manl in a vere shote time．

 will be ：3．fo motors high：the maximum heal of water from ： frestet lobe 1 meter．

 lime．

Fillh．A fimal romdition for thepreservation of the work was that
 athes，shond be momally out of watere and that when immorest

 ahome its right section，It is rivared on four horizomial donble T

 sitmblat ：mg！

The slaice thas constructed is supported at rach end by a mumbor of irom double T arms coming together in eath side of the openinu in the hollow quoin prepared in the masomry for the axte. fo whinh they are mited by a cast-irom hub. These arms, fone in mumbur an fach side, are mited at right angles to the eorrespombing flange. The jumetion of the arms with the outer skin and flateres is combpleted be an iron plate cut in in the form of the segment of a direne and riveted flat upon the amms, and ederewise on the projerting skin. bey means of a curved angle iron.

The wroughtiron axles, 0.25 moter in diameter, ate inseltal 1 meter above low water into cast iron habs. and adelome pests on two pillow blowk, whe, the bearing pillow block, close to the masome. the other esm metors behind. These axles are perpembicular to the chamber walls.

Tor balance the gate around its axle a 'ast-iron segment of a bim
 (allenlated. Each combtrepoise is united to the hub by two armas in lime with those commecting the meres of the slacere This armanment hatances the structure if it is completely immersed in air on water. In rality, part must be in and part out of water. At the moment when the lower side of the slaioe enters the water, and Where the comntripoise emerges there is produed. in virtue of the Arehimedean principle, a thrust on omesideand adiminutionof thenst on the other, the moments of which ald and constitute a remsinerable resistance to the motion, attaining as a maximum sonn of

6,000 kilograms at the distance of 1 meter. This effort, eight or ten times the passive resistance of friction, would destroy the advantages of the system. The following simple armagement removes the whole difficulty. The additional resisting moment due to the upward pressure of the water at any instant will evidently be ammalled, if an equal and upward thrust is produced symmetric with the axis "if rotation; the total resultant will pass through the asis and tend to lift it, and thereby diminish the friction.
A woolen rim completing that formed by the counterperise and the sluice calculated so that the moment of its volume per mit of angle shatl be egual to the mean moment of the sluice, including the arms, etc.. solves mathematically the case of the platie of flotation passing through the axis, and approximately for the case of any plane of flotation.*

Each portion of the wooden crown, formed of two segments of onesixth of the circumference, is united at one end to one of the outside arms of the sluice; and at the other end to an arm of the counterpoise. It is strengthened in the middle by another double \mathbf{T} arm fixed to the hab perpendicular to the mean radius of the sluice.

Iron hanging ties, strongly stretched, complete the comnection and give great stiffness to the wheels thus formed, which are contaned in the hollow quoins and thus protected from the shock of the biluges.

With a view of rendering the closing of the sluice easier than the opening, the theoretical equilibrium has been voluntarily broken, by hollowing those ends of each counterpoise which emerge first during the closing.

Finally, the intermediate ams sustaining the woolen crowns, which are horizontal in their nommal position, can be fastemed on the upstream end by movable wooden wedges, and on the downstream side, by strong wrought-iron bolts so as to prevent the gate from being accidentally displaced. In closing, the cylindrical sluice strikes its lower edge against an oak hurter 2.10 meters below lowwater mark, and the upper edge is at 1.50 meters above that limit.
(127) The opening and closing are easily effected by means of two chains passing around a groove in the rim of the wooden crowns and counterpoises and pulled in one direction or the reverse by means of chain pulleys worked by windlasses. Generally the windlasses are thrown out of gear. To start the gate, the wedges are removed, the bolts opened, and one of the windlasses is put in gear and worked; by one man, who makes the opening in forty or sixty seconds; to open the gate under a head of 0.50 or 0.75 meter, both windlasses are used, and twomen, one on each side, offect the operalion in five or six minutes.

[^45]H. Ex. 40 (0-vol $\mathrm{HII}-41$

This apparatus solves completely the problem, and assures mand opening and closing of the two openings in times of freshet or high tide. Although recently established, there has been considerable diminution in the silting. ahd in the interruptions in the traflie. These intorruptions were formorly for several consecutive days pro year, now, they amount to a few hours for each freshet, and genombly the boats can pass motwithstanding an ordinary freshet. Tho solution is therefore perfectly satisfactory.
(12S) Cost.-The iron frame-work of the two gates with their accessories, hurters, wimhlasses, etc., including the cost of setting
 in 188%

The plan was made, and the work executed by M, Guibal, engineer, under the direction of MM. Delon and Lentheric. successive chief engineers.

Chapter XV.-Braye-en-Laonnols Tunnel.

(129) An ertomple of the wse of rommerssed air in tumel construetion. - The canal between the Oise and the Aisne passes through the ridge separating the basins of these two rivers, by a tumel 2,360 meters long, the bottom being at a distance of low meters below the highest point.

The geological formation is that portion of the Tertiary known as the Eocene, and the stratum the Suessonian. This Suessonian stratum is made up of a layer of plastie clay between two layers of sand, viz, the Soissomais above and the Bracheux below. Above the Soissommais stmel comm the Paris chalk which const itutes the ridge.

The tumel is driven through the lower layers of the Suessonian: but near the head on the Oise slope the layers form a pocket. the point of which. 300 meters from the hear, penetrates the crown of the tumel for a distance of 0.30 meter into the layer of Tertiary Soissommais sand. The water filtering through the uper sands acecamulates upon the layer of clay, and at the beginning of the work filled the ground for a height of 1 or 16 meters, and rendered these sands, which are very fine, liquid. Also, the water soaked into the upper part of the layer of plastic clas, which, besides the impermeable clay beds, contaned permeable beds of lignites and agglomerations of shells.

In these formations on the Oise slope the driving of the tumel presented the greatest difficulties. increasing as the thickness of the clay roof, which served as a protection agranst the fluid sand, diminished. At each instant thin layers of clay, intercalated between the lignites and the shell agglomerates, kept breaking, resulting in carings in and inpourings of sandy mud, stopping the work.
(130) Cse of rompressed air--To remedy this state of things it was proposed to use compressed air, and the plant for this purpose
was thus set up near the hearl. It consists of seven portable engines of worse hower. driving eight compressors, which furnish to the working chamber, every at hours, 50.000 cubic meters of air under a pressure of 1 kilogram above the atmosphere.

Fta. 03.- (ieologieal section of the range of hills betwern the (ise and Aisne valleys through tho axis of the tumel. The upper loyer is miry chay: the next is limestone rock; then toissommis samb down to the dark stratum; the curved line. marked 101, denotes the water level. Below lha sand is a stratum of dark clay contaming lignites, which ignited when the water was driven off. Below this is a stratum of compuct bhe clay, and just in a pocket projeeting down into the tummel is a mass of Soissomais sand. Below the blue day is a mass of Brachenx sand. The portion of the tummel giving the groatest liftoulty and requiring the ase of compressed air is situnted betwen las and 450 meters from the head.

In front of the machinery building a series of reservoirs was set up of 91 cubic meters' capacity. with the air at a pressure of from t to a kilogrammes (absolute pressure) which served, especially in the beginning. to drive out the excavated material, as will be explained wesently.

The working chamber at the face of the tumel was formed by a masonry wall, perforated by air locks (Fig. (9.) giving admittance to and exit from the chamber.

(1:3) The first wall or dam was 10 meters thick and 120.50 meters from the head; but the secoml, which was at 1 si meters from the head, will be here described, as it was an improvement on the first:

This dam was formed by a wall 6,70 meters thick above and 8 meters below, so as to contain the lock and pieces of frame work, which had to project into the working chamber. It was constructed of béton held by masonry walls. Five openings were made, three below and two above, the lower ones only being supplied with locks, the upper ones being closed by a stone wall.

Fig. 95-A, air-supply pipe: B, pipe enclosing the electric wires: (', pipe inclosing the telephone wires: D, pipe for discharging the excavation spoil: E, drain pipe: F, entrance of the high-pressure air mpe, used to blow out the excavation spoil. Fig. 4 隹 is the section through the broken line A B. The lower cylinder is the air lock : the curved tuber. marked F, at oue eud was used to blow out the excavation spoil.

Each lock was 8 meters long, 1.60 meters wide, and 2.20 meters high ; it was provided with a lining consisting of wrought iron rings, with India rubber washers, bolted together, and with two air tight doors closing against seats faced with India rubber, one opening from the outer air into the lock, and the other from the lock into the chamber; the latter could be opened from within the lock or from the working chamber by means of a double set of levers for that purpose. Above each door, cocks wore placed, one on the interior and one on the exterior of the lock, for the introluction or escape of the compressed air.
(132) Mode of removing the ercavation spoil.-The lock had a small raihoad track, and cars could be carried through it; four pipes also passed through it, two above and two below. These pipes, 0.40 meter in diameter and inclined 0.05 meter per meter, ended in the working chamber by an upward bend into which the spoil was thrown. Each end of this pipe was tightly dosed by a stop valve. The exterior valve being closed, the pipe was filled from the interior, then closing the interior valve, opening the exterior, and at the same time opening a cook, putting the courver portion of the pipe in connection with the pipe bringing air from the reservors at a pressure of at least 4 kilograms, this pressure drove out the spoil in a few seconds. The exterior valve was then closed and the operation repeated.

Two drain pipes 0.35 meter in diameter passed through the lock on the floor: they had cocks which served for the dramage of the chamber, the water being driven out by the compressed air.

Gramme dynamos, driven by a ho hore-power engine, supplial the Edison lamps for lighting the ehamber. and a telephone united it with the central oflice.

Great diffeculties were found in keeping the working ehamber tight. The compressed aiprereel its way out over the extratos of the areh, between the masomry and the eath, along poling boards required for supporting the groumd. and also through the masomry joints. It was only by building a masomry buttress, from folo 50 centimeters thick, that the pressure in the chamber could be brought up to $1 . s^{\text {s or }}$: kilograms, under which condition the areh was completed, for a distance of 200 meters from the head, at the rate of $1:$ or 15 meters per month.
(13:3) Accidents by fire-In August, Issit, the work was arrested by an accident which cost the lives of seventeen workmen. The compressed air had penetrated into the pyrites lignites, driven off the water, and oxidized the pyrites; the heat thus produced had ignited the lignites, and the gas from this combustion had asphysiated the victims.
(134) Accessory constructions.-Wo reëstablish access to the lock another issue was opened for the products of the gas combustion, by making six vertical bore holes, starting from the outside and carrying them to the points where the fire was most active. On the other hand, the finished part of the tunnel was ventilated by compressed air carried into the air lock and allowed to escape. After awhile the air became pure, and on the th of October the ground in the working chamber was shored up, and on the 3oth the forced ventilation b^{\prime} compressed air was discontinued. The surface water, no longer kept hack, penetrated to the seat of the fire and extinguished it; hut this water remained hot a long time; six months after, that which trickled through had a tomperature of $30^{\circ} \mathrm{C}$. It was at this time that the lock was transferred from 120.50 to 1 sia meters from the head, as above described.

As the combustion of the lignites was always to be feared, provision was made for securing an active ventilation through the whole of the open tunnel, by sinking a shaft a little on one side and connecting it with the crown of the arch by a short inclined drift log meters from the head. This shaft was closed at the top and provided with a Pelzer fan 1.80 meters in diameter, with a minimum exhansting capacity of 15 cubic meters per second. (See Fig. ai).

That the suction of the fan should be felt in front of the lock the tumel was divided into two mequal parts hy a vertical longitudinal wall 1.80 meters from the right wall of the cumbel surrounding the ventilation mouth, and prolonged to within f meters of the lock.

The work with compressed air was reeommenced. but it was very diffent to keep up the pressure, amd it was determinm to interupt the construction for a certain length and berin ? meters farther ons. \therefore as to leave a massive dam of umboken ground betwern the ohd and new chamber. For this purpose both compartments of the old working chamber were closed by masomry walls.

To permit the continuation of the work, there arehed sallerias were driven, two below on a level with the flooring. and onn above

 of leaks. The lowe galleries being driven through clay, moleaks were perceived after they had been lined with masomry. one for

The pressure went up as the work alvanced from ?.3 to y.t kilograms with two thirds of the motive power. amel this was the normal pressure used in completing the work. In this way the driving of the lower galleries continmed until the bottom of the poeket, Boo meters firm the head, had been passed, then they thrned back

Lowad the head and constructed the areh upon the abotments huilt by the aid of the lower gallerins. This step was successful. amb allowed the work to be finished.

Detuils of the worl.--While the lown arehed galleries were beinge driven the lower store of the abutmonts of the areh between the references $18: 20$ and 65.5 meters was built: then, when the galleribs were recommenced, hy means of timbering they constructed in the same way the lower story, which formed one of the side walls of the gallery. In the begiming, the other wall on the shaft side was simply protected with poling boards, hut theswelling of the clay which broke the timbers, reduced the section. and stopped the rumning of the cars, obliged them to build on this side a wall 0.60 meter thick. strengthened by spurs 1 meter thick and 1.50 meters apart. Thess little walls were constructed for the whole length of the lower gallories. These galleries also servel to construct another story of abutments between the references (50.85 and (is. 40 meters, which was built be means of a gallery driven astride the lower abutment: see Fig 94, section KL. The communication between the two galleriss was made hy the space between the timbering. by taking out the horizontal shores between two frames.
This upper gallery was open for a length of 10 meters at a time: they laid the masonry abutments at one end, and drove the gallery at the other, changing the comecting apertures with the lower gallery as they adranced. As soon as the masonry work was finished. they filled the rest of the gallery with blocks of dry stone so as to allow no space. This work went on at the rate of 1.60 meters per day. ocomsomally interrupted by the ignition of the lignites. When they arrived at a point 390^{2} meters from the head a rise was put in. and a length of 4 meters of the arch completed. From this point the work was carried on in both directions, but principally toward the Oise, at the mate of $1:$ meters per month.

The layer of fluid samd extended (1,o0) meter into the top of the upper gallerg. but it had become so dry by the action of the compressed air, that they were able foput in the cown packing planks. one at a time, after making a space with a spade and driving it in with a mallet. The water did not begin to run until these planks were put in, and owing to the opening of the lower gallerios its level had fallon is or g moters, which fiacilitated the work.

While the work of tinishing the arch towath the ©ise contimued. it was showly progressing toward the disne. On the 2ith ol September, lsse. the areh having been complated to qug. of meters, the use of compressed air was diseontinued and on aceobnt of the rising of the beds of clay. the rest, up to tol moters. was finished without it. by taking proper freautions.
(135) ('0st.-The tirst fiol mete:s of the tumel were finished in

The work was dome umber the direction of M. Boeswillwall, chief mosineor of roads and bridges, and M. M. Gruillon and Pigache. assistant engineers.

(hapter XVI.- Navioaton of the Seine from Paris to the SEA.

(136) At the begiming of the century har natigation of the Lower Seine was ofteninterupted by low waterand by freshets. Great difficulties and even dangers were ancountered in passing the bridges and dams. Ascending only he horse towage, consuming from Rouen to Paris fifteen days for ordinary freight, and four or five for aceelerated freight, the boats were rarely able to be loaded to their full depth, from 1.80 to 2 meters. The cost of freight was 16 francs per ton from Rouen to Paris, and the ammual traffic did not exceed ra.000,000) kilometrie tons.

Without undertaking to describe the improvements made in the navigation of the river hefore 183 s , it is sufficient to say that with the works recently constructed, many of which have been described in letail. the river between Paris and Rouen has been divided into nine reaches by the construction of locks and dams, with a minimum draught of water of 3.20 meters, and no difficulties are experienced either from low water or the passage of locks. The towpaths are in order, but they have been abandoned, the transport being made by steam, either by freight boats or towboats; the journey is made by the former in 28 hours, and by the latter, towing a convoy, in 3 days. The price of freight, which was from 12 to 15 francs per ton in 1840 , 10 to $1 \because$ in 1859, 8 to 9 in 1869 , is now from 4 to 5 ascending, and from 2.55 to 3.50 francs descending, and will diminish progressively as new boats are built to utilize more completely the improvements of the route.

Indeed, the traffic* since the completion of the camalization, has considerably augmented. The total tomage between Paris and Ronen, including that taken on the way, was in 1881. DRA, 30t. 2 git kilometric tons, and in 1888 it was $38!1,668,34 t$.
(13i) Cost.-The cost of the works of camalization amounts to s8, 553,006 francs. If we compare this total expense with the actual traffic; we find the interest at a per cont on the first cost. divided by
 per kilometric fom, and it is cortain that the cost of freight hats diminished vory mueh more than that.

All the works constructed from lisisto lsis were directed by MM. de Lagrent, Boulf, and C'amere, whof rngineero.

[^46]

(hapter XVII-Embankmext works for the mpronement of the thal seme.

(13i) The object of the improvement of the tialal Seine is to fineili-
 from the sea. Of this distancohalf required improvemonts torender it mavigable, and this comprised the parts hetween la Matlerate amd the sea below Honflem'. The bradth of the river bed between La Maillerayeand Vilhaguier was 1.000 meters, at Lat Vacyuere 1.500 meters, at Quillebeuf 3.ono. below La Roque , omo, and above HonHour 10.000 meters (Fig. !s).
(13s) Depth of "oter.-This vast extme of watme was filled with banks of shifting samd, which were constantly chamging place through the action of the strong enremts of the ehh and How of the tide, and it often happemed that in the comse of a frew dats the position of the chammel would be shifted from ond side of the river to the other. The depth was also variahle and insufficient. During the highest tides there was a depth of t.30) meters below Quillebeuf, and only 1.76 meters at high neap tides, and many dangerous rocks and shoals impeded the navigation above this point. These perils encountered at intervals of the voyage were considmatbly atgmented by the tidal wave or bore, and vessels were st panded by its powerful action without the possibility of receiving assistance. Under these circumstances the navigation was confined to vessels of from 100 to 200 tons burden. The voyage from the sea up to Rouen occupied four days; a great number of wrecks marked the route, freights between the sea and Romen rose to 10 francs per ton, and the rate of insurance was one-half per cent.
(139) Improvements.-Such was the state of things in 184s, when the improvements were begun, which consisted in building training walls, sometimes on one side. sometimes on both sides, extending from La Mailleraye to the mouth of the Risle, a distance of $4: 3$ kilometers. The distance between the training walls was 300 meters at La Mailleraye, and gradually increased to boo at the Risle. Towpaths were built between La Mailleraye and Rouen. The works were finished in 18 ain and cost about $1+0$, ow, ow frances.

These training walls are constructed of random work built of blocks of chalk taken from the cliff's on the banks of the river : some are raised above the level of the highest tides, while others are capable of being submerged. so that they may have less influence in promoting the accumblation of deposits. High walls are used on the right bank as far as Tancarville, and on the loft as far as Lat Ropuer Beyond these points the walls are low. At La Roque the top of the wall is 1.34 meters above low water at noap tides, and 2. 10 meters above low water at the spring tides. The right embankment is 0 . to meter higher than the left.

The stones from the neighboring quarries were soft and sulject to the action of frosts. currents, and particularly the tidal wave or bore, a powerful volume of water preceding the flood tide, rushing up the river, and dashing against the banks with great violence; this has undermined and sometimes destroyed the original walls.
(140) New improtements. - Very extensive repairs, or rather ruconstructions, which are yet going on, were necessary, which bring up the total cost of the walls to the sum of $28,000,000$ francs since the begimning. In these reconstructions the same materials are employed, but to protect them against the frost and the bore they have

- been covered by a facing 0.25 meter thick. To defend the hase against being undermined at the places where the bore is violent, a concrete apron was built, 3 meters wide and 0.40 meter thick, secured with piling and planking on its outer edge.
The cost of the walls thus reconstructed amounts to 250 francs per ruming meter. These reconstructions, begun in 1880, are rapidly progressing, and already from 25 to 30 kilometers are fimshed : they were indispensable and will make the walls last a long time.
(141) Alluvial land.-Behind the training walls, and in parts formerly occupied by the shifting sands, alluvial meadows have been formed to an extent of over 8,40 hectares in 1880 .
They are divided into three classes: land made over to the riverside proprietors; land belonging to the state, and land in the course of formation.

First. The state mate over 2,613 hectares to the river-side proprietors and received an indemnity of $1,398,200$ francs.

Second. An area of $3, \hat{i} 10$ hectares yields a profit to the treasury every year by rent of the pasturage, which in 1 sis amounted to 205.50 s francs.

Third. An area of $2,07 \%$ hectares is in the course of formation.
These meadows are of excellent quality, and they are actually worth 4,000 francs per hectare. When all the alluvial lands now forming are definitely constituted, the total value of the lands thus reclaimed will be $: 33,600,000$ francs. Finally, it should be understool that these calculations only include the lands above the actual limit of the training walls, and that the influence of these works extends a long distance beyond them into the estuary.
(1+2) Results.-The results have surpassed all anticipations. The chamel has become fixed and deepened between the walls more than 2 meters, so that vessels of 2.000 tons can mavigate the river, the depth being at low tide 5.50 meters and at high tide (i.50 meters. The charge for freight between Havre and Rouen has been reduced one-half, that is. to is francs per ton, and the insurance for Rouen is the same as for Havre. The traffic has consequently increased from 5он, (\%) tons in 1sfo to $1,600,0 \%$ toms in 1 sss .
(143) The effects of the training walls have been confined to the chamel between them, but their deepening influence extends little
beyond their extremities. The estuary chamel is constantly shifting. In M. Vautier's report he traces on the chart of tho estuary welve totally different locations of the main chamel beyond the walls, from $18 \% 4$ to 1880 .

A prolongation of the southern hank below the Risle was carried out in $18 \pi 0$, but a proposed prolongration of the northern bank was rofused. and the works finally stopped, for fear of andangering the apmoatches to Havre, the socond port of France, be the silting up of the estuary.
(14.4) The following account by Prof. Vermon-Harcourt, the emiment hydranlie engineer, of his experiments on a model of the lower Seine created great interest among the members of the Congress for Inland Navigation at its Paris session in 1889, and its author made, hy speoial invitation, a Report on the Canalization of Rivers and the Different Systems of Movable Weirs.

THE PRIN(CIPLES OF TRAINING RIVERS THROU(GH TIDAL ESTUARIES.*

The conditions affecting the training of rivers in the nontidal portions of their course by jetties, or rubble embankments designated as training walls, are well understood. Training walls substitute a straightened uniform chamel for irregularities and varying widths, improving the flow of the current and rendering it uniform, so that scour oreurs in the shallow, narrowed portions, and more uniformity of depth is attained. In very winding rivers, the additional precaution has to be taken of somewhat reducing the width where the derpest chamel shifts over from the concave hank on one side to the concave hank on the opposite side at the next bend lower down, so as to reduce the shoal which is found near the point of $^{\text {wom }}$ trary flexure by concentrating the current at this place.
The training of the outlets of sediment-kearing rivers into tideless seas is determined by the same principles: for a definitedischarge is directed and concentrated between training walls or piers. so as to seour a chamel across the har formed, in front of the outlet, by the accumulation of deposit dropped by the enfeebled issuing current. The increased volocity of the current through the contracted outlet carries the silt into deeper water, where it is either torne away by any littoral eurent, or again forms a bar, after a lapse of time depending on the dep, th, which can be removed by an extension of the training works.
The training also of the upper part of the tidal pertion of rivers has been effecterl on similar principles to the nontidal portion, with satisfactory results, even though the problem is, in this case, complicated by the changes in the direction of the current, and the requisite maintenance of the tidal capacity.

In the lower parts, however, of tidal rivers, where the tidal flow predominates, it is difficult to determine the proper width for a trained chamel, which, while narrow enough to secure an adequate depth, should not very materially check the tidal flow to the detriment of the outlet. Moreover, where the estuary is large, considerable doult may exist as to the leest direction for the training walls; and the estab)lishment of training walls in a wide estuary, where the flocel tide ischarged with silt, has resulted in extensive accretions, f and corresponding reduction of tidal capacity, by the concentration of the tidal flow and ebb) in the trained channel, and a conseguent enfeeblement of the currents at the sides, favoring dejosit. The principhes, indeed, upon which the training of tidal rivers should the based are in a very un-

[^47]defined and unsatisfactory comdition, as exemplified by the confticting opinions of engincers whencer important training works through estuaries are proposed, as exhibited with reference to the schemes for training works in the upper estuary of the Morses,* for which the Manchester Ship ('anal promoters sought powers in lss:; aml 1884, and as at present exist about the extension of the training works in the Ribhle estuary.t This is due to the various conditions involved, which differ monor less in each case, and thus render it diffocult to lay down general rules for guidance from arguments based on analogy. One of the most important considerations is the form of the estuary ; and in this respect no two estuaries are alike, as their form is the result of complex geological and hydrological conditions; and it suffices to contrast the Mersey and the Ribble, the Dee and the Tay, the Clyde and the Tets. the Seine and the Loire, to indicate the varieties of forms which may have to tre dealt with. Other circumstances affecting the problem are the rise of tide, the tidal capacity and general depth. the fresh-water discharge, the silt introduced by the floogl tide or brought down by the river, the condition of the sea lootom in front of the mouth. and the direction in which the tidal current enters the estuary. The positions also of ports established at the sides of estuaries require special consideration in determining the proper line for a trained channel. These numerous and variable conditions have often led engineers to monciate the opinion that each river must be considered inderendently by itself. This view, however, if strictly alhered to, by excluding the experienco derived from previous works, would prevent any progress in the determination of general principles for the improvement of navigation chamels through estuaries; ach training work would form an independent scheme, based upon no previous experience, and might or might not produce the results anticipated by its designer. Unfortunately also it is impossible to proceed with training works by the method of trial and error: for besides the cost of modifying the lines of training walls, if the desired results are not produced. these works gemerally effect such extensive changes in an estuary that it would be. impracticable to restore the original combitions, or to monlify materially the altered fesition.
(145) It might be pessible to deduce general rules for training works from a care ful consideration of a variety of types of estuaries, especeially those in which training works have been carried out; and I have commenced an investigation of this kind. This methos of inquiry, however, reguires a varioty of data which it is difficult to obtain for most estuaries, and must depend upen a careful estimate of the relative influence of ath of the variable conditions, and a train of reasoning from analogy which might not be accepted by engineers as conclusive. Accorlingly, it would le of the very highest value to river engineers, and of considerable interest from a seientific peint of view, if a method of inverigation eould be dovised which might be applied to the special conditions of any estuars, amd the results of any soheme of training works determined approximately beforehand in a mamer which could be relied upon from the fact of their depending on an assimilation to the actual conditions of the case investigated, and not on arguments based upon the effects of similar works under more or less different conditions. The following lescription is therefore given of the results of investigations, carried on at intervals during more than two years, with reference to the propesed extensions of the training works in the Seine estuary, which appear to afford a fair assurance that a similar methol, applien to any estuary wonld indicate the offect of any scheme of training works, provided the special conditions of the estuary were known.

* Evidence lefore select committee of Lords and Commons on the Manchester ship canal bills, sessions 188.3 and 1884, and Instit. Civ. Engin. Proc., Vol. 84, p. 309, Fig. 7.
+ Instit. ('iv, Engin. Proc., Vol. 84, p. 960. Fig. 1.

INVESTIGATIONS ABOU'T THE SEINE ESTEARY.

(146) The training works in the lower portion of the tilal Soine, commenced in 1sts, hat reached Berville in 1870, when the works were stopped, in the interests of the port of Havre, on account of the large unexpected acoretions which were taking place behind the training walls, and at the sides of the wide estuary below them.* The original scheme, proposed in 184i by M. Bounicean, $\begin{gathered}\text { comprised the }\end{gathered}$ axtension of the trained chamel to Honfleur on the southern side of the estuary, and the prolongation of one or both of the training walls towards Javre at the northwestern extremity of the estatry, as in any scheme the interests of both these ports, on opposite sides of the estuary, have to be considered. The works are acknowledged to he incomplete; and great interest has been evinced, particularly within the last few years, in the question of their extension, so that the shifting channel between Berville and the sea may be trained and deepened, and the access to Honfleur improved, without endangering the approaches to Haver. The objects lesired are distinctly defined, but the means for attaining them have formed the subject of such a variety of sehemes that hardly any part of the estuary below Berville has not been traversed by some proposed traned channel, except the portion lying north of a line between Hos and Tancarville points, which is too far removed from Honfleur to be admissible for any scheme. Altogether, including distinct modifications. fourteen schemes have been published in France within my knowledge, seren of them having appeared within the last five years. The sehemes also exhibit great varieties in their general design \ddagger (Figs. 99, 101, 10?, 103, and 105), illustrating very forcibly the great uncertainty which exists, even in a special case where the conditions have been long studied, as to the principles which shomble tre followed in designing training works. It is evident that no reasoning from analogy eould prevail among such very conflicting views: and having had the subject under consideration for a long time, the idea oceurred to me in August. 1886 , of attempting the solution of this very difficult problem by an experimental method, which might also throw light upon general principles for guidance in training rivers through estuaries. The estuary of the Geine is in some respects peculiarly well adapted for such an investigation, for ohd charts exhibit the state of the river before the training works were commenced, and recent charts indicate the changes which the training walls have produced, while the various designs for the completion of the works, proposed by experienced engineers, afford an intereresting basis for experimental inquiries into the principles of training works in estuaries. If, in the first place, it should be possible to reproduce in a model the shifting channels of the Geine estuary as they formerly existed, and next, after inserting the training walls in the model as they now exist in the estuary, the effects produced by these works could tee reproluced on a small scale, it appeared reasonable to assume that the introluction, successively, in the model of the various lines propesed for the extension of the training walls would produce results in the moded fairly resembling the effects which the works, if carried out, would actually proluce.
(147) When the third Manchester ship canal bill was being considered by Parlia ment, in 188i, Prof. Olorne Reynolds constructed a working model of the portion of the Mersey estuary above liverpool on lehalf of the promoters of the canal, with the object of showing that no changes would be produced in the main channels of the estuary by the canal works, which have been designed to moxlify very slightly the line of the Chesire shore above Eastham. This model was, I believe, the first experimental investigation on an estuary by artificially producing the fidal

[^48]action of floox and ebbon a small scale, and Prof. Revnolds's experiment showed that a remarkably close resemblance to the main tidal chamels in the inner estuary conuld be produced on a small scale.
As the Mersey modeldid not extend into Liverpool Bay, the tidal action protuced was very definitely directed along the confined channel representing the "Narrows" between Liverjool and Birkenhead; and this tidal flow was not perceptibly infludened by the relatively very small fresh-water discharge. In the Seine, however. there is no narrow inlet chamel to adjust exactly the set of the flood tide into the esthary ; and the fresh-water discharge of the seine, with a basin about eightern times larger than the Marsey basin, forms an important factor in the result. The tide in a model of the seine hats to be produced in the ofen bay outside the estuary at a suitable angle which had tobedetermined ; and it was essential for the success of the seine experiments that acretion should be procluced in the model of the Sheme estuary under certain circumstances. which was a condition which did not enter into the Mersey problem. Aceordingly, the very interesting and valuable results oltained by Prof. Reyolds. in his model of the Mersey. could afford no assurance that experiments involving essentially different and novel conditions would lead to any satisfactory results. I therefore restricted the requirements for my "xperiments within the smallest possible limits, and contented myself with the simplest means, and the limited space available in my office at Westminster.
(1.f8) Description of monlel of the Sime estuary--The model representing the tidal portion of the river soine and the adjacent coast of Calvados, extending from Martot, the lowest weir on the Seine, down to about Dives, to the southwest of Trouville, was molded in Portland cement ly my assistant. Mr. Edward Blundell, to the scales of andion horizontal and shij vertical. The first is the scale of some of the more recent published charts of the seine-and even at that scale the model is nearly 9 feet long-whilst I made the vertical scale one hundred times the horizontal, as the fall of the leed of the tidal seine is very slight, and the rise of spring tides at the mouth, being $2: 3$ feet 7 inches, amounted to an elevation of the water in the model of only o. 71 inch. There are two hanks at the mouth of the estuary, between Hawre and Villerville Point, known as the Amfard and Ratier lanks, which emerge between half tide and low water, and divide the entrance to the estuary into three chamels. Through all the changes in the navigatle channel at the outlet, these hanks always appar in some formor other in the low-water charts, either connected with the sand banks inside the estuary or detached. On examining the large chart drawn from the survey made by M. Germain in 1880, I found that rock and gravel cropped up, to the surface over a certain area on these banks, and accordingly I introduced solid mounds at these places to represent the hard portions of the Amfard and Ratier banks, which are permanent features in the estuary. As a rocky bettom is found near Havre, and also at Villerville Point on the opposite side of the outhet, Amfard and Ratier banks are doubtless the remains of a rocky harrier which in remote agess stretched right across the present mouth of the river. Where the rocky bettom lies bare, near Havre and Villervile, the model was molded to the exact depths shown on the chart of 1880 ; but in other places the cement bottom was merely kept well below the greatest depth the channel had attained at each place. whilst the actual bed of the estuary in the moriel was formed by the flow of water over a layer of sand.
(149) Arrangements for tidal and fresh-water flow.-The mouth of the Seine estuary faces west, but the tilal wave comes in from the northwest, and the earliest and strongest flosx tide flows throngh the northern channel between Havre and the Amfard bank: whilst the influx through the southern Villerville chamel cecurs later, and is stronger toward high water. Accordingly, the tidal flow had to be introluced from a northerly direction, at an angle to the month of the estuary : and the line of junction of the hinged tray, proslucing the tidal rise and fall, was made
at an angle of about 50 to a line rumning from east to west in the model, so that the tidal flow approached the estuary from a point only about 5 " to the west of northwest. The tray was made of aine, inclosed by strips on three sides to the height of the sides of the estuary ; and it was hinged to the model, at its open end, by a strip of india-rubber sheeting along the bottom and sides, so as to make a water-tight joint with sufficient play at the sides toadmit of the tray being tipped up and down from its outer end. The rise and fall of the tray was effected by the screw of a leiter press, from which the lower portion had been detached, by raising and lowering the upper plate of the press, half of which was inserted under the tray. After the requisite amomen of sand had been introduced to raise the bottom to the averare level, the monlel was filled with just enough water for the surface of the water to represent low water of spring tides when the tray was down and the screw at its lowest limit ; and the tray was made of surh a size that, when the serew was mised to its full extent. the water in the model was raised, by the tipping of the tray, to the level representing high waterof spring tides. The water representing the freshwater discharge of the seine was admitted into the upper end of the moxdel from a tap in a small tin distem; amb the rfflux of a similar puantity of water was provided for at the lower extremity of the estuary, on its northern side near the tray, hy a cock with a larger orifice placed at such a level as to allow the water forlow ont into a second (istorn, of similar size, during the higher half of the tide.
(1.50) First results of working the monlel. - The construction of the model was commenced in Oetober, isso, and its working was commenced in November. Thongh the Porthand cement waseonvenient for molding in a small space and in the absence of applances, it did not prowe satisfactory for retaining water at firs. The model Was purposly made in two halves, and the straight joint was subsecpently made Water-tight; but, nevertheless, era-ks oceured at various places through which the water leaked, and they had to be repaired as they appored; and the bottom of the mond was eventually coated with thick vamish, and after a time the leaks coased. The flexible india-rubber hinge, from which I had anticipated some trouble, leaked very lithe from the begimning, aml on being fitted with greater care in introducing a tray of somewat different form, ba leakage oceured.
Silver samd was used in the first instance for forming the hed of the esthary. From the outset the bore at ('ablehere indieated by a sudden rise of the water, and the reserse current just before high water near Harre, called the " verhanle," were very well marked. The rerhome is evidently a sort of back eddy, on the northern shore, oceasioned be the intlux of the tite, and by the final filling of the estuary from the southern chamel: whilst the bowe apmars to result from the concentration of the tidal rise by the sulden contraction of the estuary above Quillebeuf. The period given to ablh tide in working was almitt twenty-five seoonds, which appeared faily to reprobue the eonditions of the ostuary.* After the momel hat ben worked fora little time, the chamels near Quillebeuf assmod lines resembling those which previously existed, and a small chamed appeared on the northern shore, by Harfleur and Hor Point, which is clearly defined in the chart of 1834 . The main chammed also shifted about in the estuary and temded to break up into two or three shallow chamels near the meridian of Berville, where the influences of the flow imd photides were nearly balanced. Themodel, aceordingly, fairly reprodiced the oonditions of the aetual estuary previous to the commencement of the training walls, thongh the chanmel in the estuary did not attain the depth, as represented by the propertionately large vertical scale, which the old chanmels pessessed, owing, doubtless, to the comparatively small seouring influmere which the minute currents in

* According to the formula in the paper ly Prof. O. Ke yooldson his Mersey mondel. read at the Frankfort Congress in August, 1898, the tidal period would be nearly twenty-three seconds.
the model possess. The sand, in fact, can not be reduced to a finemess corresponding to the scale of the model, whilst the friction on the bed is not diminished equivalently to the reduction in volume of the corrent. Silver sand has beren used on account of its being readily obtainet, its purity, aml absence of cohesion, as it was hoped that the water by percolating freely through it would more readily shift it. A film, however, semed by degrees to form over its surface, reducing considerably its mobility, and as the action of the water on it consisted merely in rolling the particles along the bottom, this samd did not prove satisfactory for producing the requisite changes when the training walls were inserted in the model. It became. therefore, essential to search for a substance which the water could to some extent carry in suspension for a short periox.
(15) Trial of various substances for forming the bed of the estuary. -Some substance was required, not necessarily sand, insoluble in water, easily seoured, and therefore not pasty or sticky, and sufficiently fine or light to be carried in suspension to some extent by the currents in the molel, and not merely rolled along the bottom like the silver sand. A variety of substances of low specifie gravity, and in powdered form, were accordingly tried in succession during the first half of 1887. Pumice in powder proved too sticky, and flour of sulphur was ton greasy to be easily immersed in water. Pounded coke was too dirty to be suitable, and particles of it floated. Violet powder became too pasty in water. and fuller's earth and lupin seed exhibited similar defects. The grains of coffee grounds were too large in water, and moved up and down in the currents too readily. whilst fine sawdust from boxwood and lignum vita swelled in water and was carried along. so very easily by the stream that no definite channels were formed in it. The powder obtained from Bath brick, which was experimented upon for some time in the model, both without and with training walls, yielded more satisfactory results, as, besides affording shifting chamels like the silver samd, it accomulated at the sides of the estuary when the training walls were introduced in the model. It, however. gradually lecame $t(x)$ compact, so that the current could no longer probluce much effect on it ; but as it is probable that some sticky material is used in the manufacture of bath bricks, it is quite possible that if I had succeeded in my endeavor to obtain the silt of the river Parret. from which the bricks are made, in its natural state, the material might have proved more subject to scouring influence.

At last, in July, 1887, I found a fine sand, on Chobham (ommon, belonging to the Bagshot beds, with a small admixture of peat. This sand, besides containing some very fine particles, was perfectly clean, so that water readily percolated through it; and it acoordingly combined the advantages possessed by silver sand with a considerably greater fineness.
(1:2) Results of working model with Bagshot sand. -The bed of the estuary having been formed with the sand obtained from Chobham Common, after the model had been worked for some time, the channels assumed a form very closely resemDing the chart of the Seine estuary of 18:3.* Accordingly, the first stage of the investigation was duly accomplished by the reproduction of a former state of the estuary in the model, with the single exception of a decidedly smaller depth in the channels, except in places where the seour was considerable; which is readily accounted for by the circumstances of the case. It is grobable that with a larger mondel, and especially if the bed was not so nearly level as in the Seine, the depth would approach nearer to the proper distorted proportion as compared with the width.

The close correspondence of the channels in the model with an actual state of the estuary in its natural condition, confirms, in a considerably more complicated case, the results previously achieved ly Prof. Reynolds with reference to the upper estuary of the Mersey, and affords a fair certainty that, with mbepuate data, the natural condition of any estuary could be reprolued on a small scale in a model.

[^49]Introduction of the existing training urall: in the model.-The second stage of the investigation consisted in the introduction of training walls into the model, corresponding in position to the actual training walls established in the estuary down to Berville. These walls, formed with strips of tin, cut to the corresponding heights at the different places, and bent to the proper lines, were gradually inserted in sections; and the model was worked between each addition, to conform, as far as practicable, to the actual conditions. The tine particles of the sand accreted behind the training walls, and the chamel between the walls was seoured out, corresponding precisely to the changes which have actually ocourred in the estuary of the Seine. The foreshores at the back of the training walls were rasised up in some parts to high-water level, whilst in other places the aceumulation was somewhat retarded by the slight recoil of the water from the vertical sides of the molel, and by the wash over the vertical training walls, these forms being necessitated by the great distortion of the vertical scale of the model. On the whole, howevar, the accretion and scour in the model correspond very fairly to the results produced by the existing training walls in the estuary. The accretion, moreover, in the model, extended beyond the training walls on each side, down to Hoc Point on the right bank, obliterating the inshore channel close to Harfleur, which had been reproduced in the model, and down to Honfleur on the left hank, corresponding in these respects also to the actual changes in the estuary.* The main channel also, beyond the ends of the training walls, was comparatively shallow, and was unstable, reproducing the existing conditions in the estuary.
The experiments relating to this stage extended over a year and a half, taking up all the time that could the spared to them by myself and my assistant during that period; they formed the turning point of the investigation, and have the interest of being, as far as I am aware, the first attempt at putting training walls in a model, and obtaining the resulting accretion on a small scale. Without the accomplishment of this stage, it would have been useless to continue the investigation; and its satisfactory attainment proved so difficult in actual practice, that for a long time it seemed probable that the attempt must be abandoned.
(153) Application of system to ascertain the probable effects of any training works.-As the first and second steps in the investigation, by the aid of the model, had furnished results which corresponded very fairly with the actual states of the estuary of the Seine before and after the execution of the training works, the final stage of the investigation, for ascertaining the probable results of any extensions of the training walls, could be reasonably entered upon. In selecting the lines of training walls to be experimented on, it appeared experdient to adopt those which have been designed, after careful study, by experienced engineers. both on account of the results from these being far more interesting than those of a variety of theoretical schemes, and also in the hope that some assistance might thereby be rendered to French engineers in the prosecution of this important work. Moreover, the schemes exhibit sufficient variety to admit of their being taken as types of schemes for throwing light upon the principles on which training works should be designed in estuaries. Accordingly, the third stage in the investigation consisted in extending the training walls in the model, in accordance with the lines of some of the schemes proposed ; and, after working the model for some time with each of the extensions successively, the several results were recorded, as shown in figs. 99-106. The lines of training walls expremented on in the molel were taken, with one exception, from five out of the seven most recent sohemes proposed, as these five schemes are, I believe, the only ones whichare still put forward for adoption. The lines shown on Fig. 107, represent merely a theoretical arrangement of training walls, inserted for a final experiment in the model, to aseertain the effect of

* Instit. Civ. Engin. Proc., vol. 84: compare plate 5. fig. 1, and plate 4, fig. 1.
the most gradual enlargement of the trained channel which the physical conditions of the estuary would have admitted of at the outset, whilst maintaining the full width at the mouth.
(1i)4) Scheme A.-The first arrangement of extended training walls introduced into the moxel taken from a seheme. some of the main features of which were proposed in an earlier scheme in 1859,* and which was put forward in an amended form in 1886. \dagger The design, as inserted in the model, consisted of an extension of the paral'el training walls from Bewville down to Honfleur, and the formation of a breakwater across the outhet, from Villerville Point. on the southern shore of the estuary out to the Amfarl bank, thus restricting the mouth to the chamnel bet wean Amfard bank and Have. The lines of these works were formed in the model with strips of tin, as shown on Fig. 99; the morthern training wall was kept low. and the southern wall was raised to the level representing high water of neap tides: whilst the strip representing the breakwater was raised above the highest tille level, thus forcing all the flow and (oh) water to patse through the Hare (hamme. The results obtained in the model with these armangents, attor working it for athout six thonsand tides, are indicated on the first chatt (Fig. 99). The chamel between the prolonged training walls had a fair depth throughout partly owing to the concentration of the fresh-water discharge betwen the walls, abd partly from the retention of some additional water in the chamelat low water, by the hindrance to its outflow offered by a sandbank which formed in front of the ends of the training walls. A deep hole wats som scoured out in the narrowed ontlet by the rapid flow of the water filling and emptying the estuary at every tide. The absence. however, of comection between the direction of the flowl tide current through the outlet and the ebbing curent from the trained chammel, aded by the accretion of sand in the sheltered recess behind the breakwater, lon eventaally to the formation of t wo almost rectamgular bends in the chamel, one just beyom the training walls and the other near Hor; Point, in the mondel. This tortuons chamel, moreover, was shallow, except at the bemls and the ontlet, and a har was formed a short distance beyond the outlet. The contraction of the month of the estuary by the breakwater interfered so moch with the influx of the tide inte the estuary as to render it imposisible to raise the tide inside to its previons hoingt, and the reduction in height of the tille was clearly marked at Tancarvill Point in the model. Sediment accumalated in the estuary beyond the trained chamel, being brought in by the rapid thod current, and not readily removed by the ebh, except in the trained chamel and near the outlet; and this accretion, by diminishing the tidal capacity, gradually reduced the corrent through the outlet, and consequently the depth of the outlet channel. A considerable accumulation of sand took place outside the break water, along the southern seacoast, so that the bank opposite Trouville in the model was conneeted with the shore, and the foreshore advanced towards the end of the breakwater (Fig. 99).
(155) Scheme B. - The second arrangement of training walls inserted in the mosdel below Berville, was taken from a scheme proposed in 1585 , representing a modification by another engineer of the design from which scheme A was copied. \ddagger It comprised the retention of the breakwater from Villerville Point to the Amfard bank, the most essential feature in seheme A; but the extension of the northern training wall was dispensed with, whilst the southern training wall was prolonged,

[^50]in a continuous curse. from Berville to Honfleur (Fig. 100), and eventually to the Amfard bank, connecting it there with the extremity of the breakwater (Fig. 101.)

A slight widening out of the existing trained channel by an alteration of the end portion of the northern training wall, completed the arrangement of the model.

Fig. 10)-Scheme R.
The results obtained be inserting the training wall down to Honfleur, and then working the model for about 3,500 tides, are shown in Fig. 100; and those obtained

Ft: \quad " C -heme B_{2}
aft.r the prolongation of the sonthern training wall to the breakwater. and working the monel for about $3 . \delta$ on tiden. are shown in Fig. 101. The channel followed pretty nearly the concave line of the prolongeal whithern training wall. Between
*The existing training walls stop at Berville.

Berville and Honfleur in the model, except near Berville: but the depth of water was less regular than in the previous experiment, owing to the diminished concentration of the ebb from the absence of the northern training wall. The channel between Honfleur and Amfard was tortuous as before, but its direction was different. The deep hole at the outlet, the-bar beyond, and the advance of the sonthern foreshore beyond the breakwater, reappeared again with very similar features to those in the first scheme, except that the sandbank did not quite reach the cutside face of the breakwater at low water. (Compare Fig. 100 with Fig. 99.)
(156) The results which followed from working the model with the southern training wall prolonged to Amfard are shown in Fig. 101. The main alteration from the former experiment naturally occurred between Honfleur and Amfard in the molel, a continuous channel being formed along the new piece of concave training wall; whilst the general depth inside the estuary was improved as far as the meridian of Hoc Point. The channel, howerer, above Hontleur was not improved, owing apparently to the want of uniformity between the directions of the flood and ebb currents in the model. The other features remained very similar to the former case, except that the end of the sand bank beyond the breakwater was slightly eroded, whilst deposit took place between the extended training wall and the breakwater. (Compare Fig. 101 with Fig. 100.)

Fig. 1א:--Scheme C
(1.5) Scheme (:-The thirl arrangement of training wails experimented upon in the monel was chosen from a de-i;n published in 18x.).* It consisted of an enlargement of the original trained channel below Quillebeuf, by a modification of the southern training wall from quillelenf. and of the northern training wall from Tancarsille, and the extension of the northern wall to Amfard and Havre. and the southern training wall to Ratier, as shown on Fig. 102. The trained channel was thus given a curved, gradually enlarging form, and was directed iato the central channel of the molel, leetween Ratier and Amfarl, the Villerville and Havre channels ineing practically closed near low water. The affectsof working the model for abont 6.50 tides with this arrangement of training walls are indicated on the ciart (Fig. 112). The main channel kept near the concave southern training wail for some distance below. Berville, and then gradually asomed a more central course between the training walls towards the oatlet. passing out just to the south of the Amfarl hank. The channel thus formed had a comel tolerably uniform depth, together with a fair width, owing apparently to the flowl and eib tides promeduced in the monlel following an unimpeleel and fairly similar course. Deposit occurred behind the training walls on each side: and the foreshore advanced in front of Trouville in the model. in consequence of the shutting up of the Villerville Channel.

* La Seine Maritime et eon Fotuaire. E. Lavoinne. Paris. 1No., p. 140. and Instit. Civ. Engin. Prox.. Vol. Y, p. 2ts, and Pl. 4, Fig. 9.
(158) Scheme D.-The fourth arrangement of training walls adopted in the model was selected from the most recent design* proposed by an engineer who had previously submitted schemes in 1881 and $1886 . \ddagger$ The trained channel was widened out by an alteration of the southern wall from Quillebeuf. and the northern wall from Tancarville, more than trebling the width between the training walls at Berville in the model: and the walls were extended in sinuons lines to Havre on the northern side, and Honfleur on the southern side, as shown on Fig. 103, thus forming a winding trained channel rapidly enlarging near its outlet. The model, with

Fig 103.-Scheme D.
these lines of training walls, was workell for about 5,000 tides. with the results indicated on the chart. Deep channels were scoured out close along the inner concave faces of the training walls in the model: bui shoals appeared over a considerable area of the newly trained channel: a bar stretched across the deep channel where it shifted over from the south to the north training wall, about half way between Berville and Hontleur: and a large sard bank. emerging alove low water, occupied the center of the outlet opposite. Hontleur. Deposit also occurred at the sides of the estuary behind training walls.
(159) As it was of importance to arcertain to what extent accidental monlitications in the arrangement of the sand in the preparation for an experment might affect

the result. the lines of trainin: wall-dereribre 1 above were inserted a serond time in the mondel, after the sulnequent wherme E had lwen experimenten upen. render-

* Deposition de. M. Vauthier devant la Commiswion des Portset Voies Navigablede la Chambre des Députion. Paris. 1 No, p. 1i, and Pl. 4.
+ Kappert sur les Amelioration-dont wont encore staceptilas la weine Maritime ${ }^{-}$

© Dire a FEnquite onvert. -ur flvant-projet den Travaux dAmelioration de la Basse-Seine, isag, L. L. Vauthior. I'ari- Il. 1.
ing it necessary to replace afresh both training walls, and to remodel the sand so as to represent approximately the present condition of the estuary. The modei wat prepared for this second experiment in the usual way, without any special endeavon to secure coincidence with the first experiment in the initial arrangement of sand lanks and channels. The condition of the low-water channels in the model, after working the molel with this arrangement of training walls for the second time for about 5.400 tides, is shown on Fig. 104. The main features of the trained chann-1 in the charts of the two experiments exhibit a very fair resemblance, considering the moxtifications which any alterations in the initial condition might produce. and the naturally variable state of the channels in a wide outlet. The deep channelreappar in the second chart at the inner concave faces of the training walls, with intervening shoals: a large sand bank is again visible at low water along the north training wall opposite La Roque and Berville in the model: and the sand bank in the center of the outlet of the trainel channel opposite Honfleur emerges again. though smaller in extent owing to alterations in the channel: and the deep place at the end of the southern training wall close to Honfleur is the same in both chart-
(160) S.heme E. -The fifth arrangement of training walls introluced into the model was taken from a design* published in 1sss, which is a moditication of a

Fig. 103.-Sch-the E.
scheme, presented in !saf, by a committee of experts appointed by the French Gorernment to consider the question. + In the seheme as laid down in the monlel the trained channel in the bend between Quillelneuf and Tancarsille, where the deptin was greatest. was enlarged in width by setting back the southern training wall: ther original width of the channel was retained at the point of inflection opposite Tancarville, and the channet was widened out below La Ronue by a motitication of the lines of loth training walls down to Berville. The training walls were also extended In.yond Berville in sintous lines, as shown on Fig. 105, the southern wall being carriad down to Hontherr. and the northern wall not quite so far. The portion forming the last lwend of the northern training wall was kept low. whilst the others were made high, according to the design. Buth in this and the preceding arrang... ment of training walls experimented on the expanding trained channel was some. what restricted in width along the portions near the changes of curvature. to makeit conform to the principles which experience has laid down for training winding risers in their nontidal course, as previously mentioned. The results ohtained.

* In. IAmelioration du Port dil Havre et des Pases de la Basse-Seine. Baron Quinette de Ruchemont. Paris, 1ros, excerpt Mémoires de la Société des IngénieurCivils, 1 Now , p. :3:4. Pl. 162. Fig. 1.
tCommission dÉtude des Ameliorations a apporter au Port du Havre et aux Pases de la Bass-Seine-Raport de la Commisoion, Paris. 1ss6. 1. 61, and chart.
after working the model for about 3.700 tides, are represented on the chart (Fig. 105). The channel between the training walls was somewhat shallow in places, and though a deep channel was formed along the inner concave face of the southern wall between La Ronue and Berville, a shoal emerging alove low water appeared along the concave face of the last bend of the northern training wall. This bank appeared to be due to the protection the extremity of the bend afforded from the action of the flood tide in the model, whilst the ebb followed the central flond-tide channel, instead of passing over to the concave hank, as would have occurred with the current of a nontidal river. The main channel beyond the training walls, which. though of fair depth, was somewhat narrow and winding, was also unstaHe. for in the early part of the experiment its outlet was in the central channel betweren Ratier and Amfard in the moxlel, whilst at the close of the experiment it had shifted, as shown, to the Havre Channel. Accretion occurred behind the training walls in the molel. and some silting up took place in the Villerville Channel and along the foreshore in front of Trouville, owing apparently to the preference of the man channel for the other outlets, and the diminished capacity of the estuary resilting from accretion.
(161) This arramgement of training walls was further investigated by working the moklel for alout 6.3no tides more. with the results shown on Fig. 16\%. The chief features of the estuary in the model showed only slight changes from the state previ-

Fig. 1wi -Scbeme f: his.
ously recorded (Fig. 10.). with the exception of the main channel, which had shifted again to the central outlet. whilst the northern foreshore above low water extended over part of the former site of the channel. The two conditions of the estuary. represented byigs. i0.5 and 106, have therefore the interest of exhibiting in the moxlel a shifting channel such as actually exists at the present time in the Seine estuary below Berville.
(162) Schome F.-The last experiment was made on an arrangement of training walls inserted in the noxel. making the trainel channelexpand as zently as practirable between Aizier and the sea. whilst retaining the natural width at the outhet (Fig. 108). This is the form of chamel which theory indiates as the mont suitable.* for whilst it facilitates the inthu of the flown tide. it prevents. as far as prosible, the abrupt changes in the wellecity of a river in passing from its estlary to the sea, which are so prejudicial to uniformity of depth in a channel. It was :herefore of interest to ascertain what results would ln . prombed hy this theoretical arrangement of training walls in the mombel. which. in order to leave the outdet free. and thus avoid facoring a progression of the foreshore out-ide. had to provide a wide channel near Honfleur compared with the restricted width availah': at Quillebeuf. The direction of the channel betwen.n Aizier and Quilletn-uf, together with the cliffs bordering the river at Quille-menf and Tancarville. Points, detormined the maximum width ohtainable at Quillehnuf and the dirention of the channel from Aizier to Tan-

[^51]carville: and the extension of the training walls in the model from this point was regulated by the necessity of passing close to Honfleur at the south. and not impeding the approach to Harre on the north. The effects produced in the model b y working with this arrangement of training walls for about $\mathbf{~} .3 \mathrm{3n}$ tides are indicated on the chart (Fig. 10\%). The southerre training wall was kept above high-water level all the way to its termination at Honfleur in the mond.l. but the northern training wall was gradually reducel in height from nearly opposite. Honfleur towards Havre. The trained channel had a gonel width at low water throughout. in spite of the dis-tance apart of the training walls in the model, the whole channel leeing below low-water level, except near the southern wall between Berville and Havre, and against the northern wall nearly opposite Hox. Point, where banks emerged slightly above low water. The channel, moreover, was distinctly, though slowly, improving with the continuance of the working, and the banks diminishing. There was abso a fair depth in the channel, the shallowest place leing opposite Berville, whilst a deep place was formed just alove, near the sonthern wall between La Ropue and Berville. The depth in all the outlet channels was well maintained: and though deposit naturally took plaw. Inehind the northern training wall, no accretion was visible along the foreshores outside.

CONSIDERATIONS AFFEGTING EXPERIMENTAI. TKAININ: WORK-
(163) The value of experiments resembling those just deseribed depends enirely upon the extent to which they may be regarded as prowinging effectsappoximately corresponding, on a small scale. to those which training works on simiar lines. if carried out in an estuary. would actually produce. If the effects of any trainings works coald be foreshadowend his expriments in a monlel. the value of such experiments, in quiding engineers towards the selection of the mont -uitable dexign. could not l_{n} overestimated.
Some of the influences at work in an estuary can mot pensibly ine reproluced in a mondel-such as winds and waves. Winds coming from different quarters ate variable in their effects: but the direetion of the prevailing wind indicates the line in which the action of the wind hats must intluenee. which may lw exerted in reinforcing the flowe or ebbe currents, and maty aid or retarl aceretion by bowing the siltbearing stream more into or out of the ontuary. Waves are the main agents in theerosion of cliffs along open seacoasts, and i: stirring up sand in hallow places: and the material thus put in suspension may \ln. tran-portell bey tidal currents.aidel by wind. into an estuary, and be depmitedi under favorable comditions. These cir-
 ally, as it is imposible to reproniuee in a menlel the propnertion of silt in suspension. which, morewer, varies in any entuary with the state of the wether and tide. and the volume of fresh water dischargel. Inside ath "-thary, abw. waves in stormmay eronle the shores at high tide, and monlify th. low-water chamn-l-. l,ut the first
effect is very gradual, and the'second is intermittent. only occasionally oceurring.
The main forces acting in any tidal estuary are the tidal ebb and flow and the fresh-water discharge, which are constantly at work; and they regulate the size of the channels in an estuary, and for the most part their direction, as well as the limits of accretion. hese are the forces which can be reproduced in miniature in a model, as proved by the close concordance in the channels obtained by experiment with the actual conditions of the Mersey, and with a previous state of the Seine estuary; and this similarity of results would not have occurred if the other influences noticed above were at all equally potent.
Training walls mainly modify the direction and action of the tidal ebb and flow and fresh-water discharge: and therefore it is reasonable to suppose that the results in a model, due to these alterations, would correspond to their actual effects in an estuary provided the important element of accretion could be also reproduced. This was satisfactorily accomplished in the second stage of the investigation, proving that the miniature influences produced in the motel corresponded. in this case also. with the forces acting in the estuary. decretion is promoted be traning walls in an estuary where matter is carried in suspension: but the action of waves in moklifying the chamels is stopped by the intervention of traning walls. Aecordingly, the further the training walls are extended, and the more an estuary is protected by works such as those imdicated in Figs. 90-101, the more is the modifying influence of waves eliminated, and therefore the more are experimonts in a model likely to correspond with the comelitions of estuaries under similar conditions.
(16.t) Other considerations also afford grounds for suppesing that the effects observed with training walls in a mored fairly eorrespond with the results which such works would pronluce in an estuary. The charts of the experiments show that definite results followed from certain lines inserted in the model, and that modifications in these lines were followed hymodifications in results. (Compare Figs. 96-101 and Fig. 103 with Fig. 105.) Moreover, the results produced with the model agree very closely with the results which. in the two earliest schemes experimented unon, it was stated. lefore the experiments were hegum, would follow, if the works indicated by lins in the charts were artually caried out in the Seine estuary.*

* Compare the observations relating to Soheme A and Fig. 9n, with the following extract from Instit. ('is. Fngin. Proc.. vol. 84 , p. 3 . 6 : "The narrowing of the mouth of the estuary of the Seine would at first promote seour, and increase the depth in that part of the.ehammel and for a little distance abowe and below. This contraction, however, would impede the influx of the flood tide, and catuse changes in the velocity of the corrent through the narrow neck. and in the wide estuary above, promoting the deposit of silt brought in by the tide. This aceretion would be greatly aided be the prolongation of the training walls to Honfleur, so that eventually the greater portion of the estaary romprised tretwen Tancarville, Here Point, and Honfleur would be ratised to high-water level. This latge reduction in tidal caparity would redued the tidal current through the marrowed ent ance and consequently diminish agath the depth in the chamol. Moreover, this reduction of tilal fow in and out of the lower estuary would favor the matural heaping-up action of the sea on the samls ontside: se that eventually, not only would the initial leepening of the narrowed outlet be lost, but the good depths in the bay outside the estuary would be imperiled."

Compare also Fig. 10N, with the following extract from Instit. Civ. Engin. Prex., vol. $84, \mathrm{p}$. 250: "The contimuonsly concave southern training wall, whilst very favorable to Ionfleur. will umblaly keep the ebl current to that side. and therefore away from Havere. Alse, the extemsion of the wall along the Ratior Bank will act like a groyne. amd, arresting thr silt bearing southern current. will commet Trouville Bank with the shore aml lead to a large aermmalation of deposit in front of Trouville. * * * and also the low walls propesed will not prevent acertion."

It would be impossible to determine by experiment the time any changes in an estuary would occupy. The figures, in fact, giving the number of tides during which each experiment was worked, are not even intended as an indication of the rate of change in the model, and much less as any measure of the period required for such changes in an estuary, but merelyas a record of the comparative duration of each experiment. It was observed, however, that the changes were most rapid where the modifications effected by the lines of walls inserted in the model were greatest (Figs. 99-101), and slowest where the lines in the model produced the least alterations. (Figs. 102 and 10\%.)

PRIN(IPLES FOR TRAINING TIDAL IRIVERS DEDU(OED FROM EXPERIMFNTS.

(165) The foregoing investigations, viewed merely as experiments, without any reference to their bearing on the Seine, mayserve for indicating some general principles applicable in training tidal rivers through wide estuaries. Direct experiment for each estuary is undoubtedly preferable to abstract reasoning, where suchexperiment is possible as it reproduces the special conditions of the estuary to be investigated. Nevortheless general principles may be of value in guiding the choice of hesigns to be investigated, so as to avoid waste of time in testing unfavorable *- hemes, and also in cases where the conditions of an estuary are not sufficiently known to afford a correct hasis for experiment.

The experiments may be divided into three classes, namely:
(1) Outlet of estuary considerably restricted, and chanmel trained inside toward outlet. (Figs.90-101.)
(?) Chamel traned in simous line, cxpanding towards outlet, but kept somewhat namow at chamere of eorvature. (Figs. 10;3-106.)
(3) Channel traned in as direct a course as practicable, and expanding regularly to orutlet. (Figs. 10: and 10i.)

The experiments of the first class exhibited a deep outlet, and a fairly continuous channel inside, where the training works were prolonged to the outlet. The channel. however, was irregular in depth near the outlet; and a bar appeared in front of the outlet outside. The breakwater also, extending across part of the outlet, favored deposits both inside and outside the estuary, by producing slack water in the sheltered recesses.

The second class of trained chamel was designed to profit by the seour at the concare face of bends, so clearly exhilited at the first bend of all the charts, and to continue the depth thus ohtained by restricting the width leetween the bemds. on the principle adopted for winding nontidal rivers. Experiment. however, did not bear out the advantages anticipated from this system, probably owing to the variable direction of the floorl tide at different heights of tide, its leeing checked in its progress by the winding course, and not acting in unison with the ehb from the difference in its direction and the width of the trained chamel near the outlet. The main stream in a nontidal winding river always follows a tolerably definite course: whereas the flom tide temds gralually, as it rises, to assume as direct a course as persible. The difference, therefore, in the comditions of a montidal and tidal river, in this respect, is considerable.
(16i6) The third class of trained chanmel atforded a wide, tolerably uniform channel in the experiments: the Hond tile was less impeded in its progress than with the other forms of traning walls, and aperared to act more in concert with the ebb.
The experiments, acoordingly. indicate that the only satisfactory principle for training rivers, through widi estuaries with silt-bearing currents, is to give the trained chammel a gradmally expamling form. with as direct a course as possible to the outlet. The rate of increase of width between the training walls must lee determined by the spectal conditions of the estuary. If the outlet is very wide and the gradual expansion in width can not be commenced a considerable distance
up an estuary, some restriction in width at the outlet may be expedient to avoid a tox-rapid expansion. It is evident that the widening out adopted in the last experiment (Fig. 10i) was carried to its utmost limits, from the continuance of sand banks inside the trained channel, and that, regarding merely the improvement of the chamel. it might have been preferable to restrict its width at theoutlet as effected in Scheme C (Fig. 102). At the same time it must not lue inferred from the existence of these sandbanks that the distance apart of the training walls was much $f(x)$ great in the last experiment; for the wilth apart of the training walls necessitaten the inclusion of a greater extent of sand banks within the trained chame at the outset, and also rendered the rateof improvement in the chamel more graduat, so that the improvement in the chamel leoth in direction and depth was still progressing at the close of the experiment, and the sand hamks in the chamel wore in processs of removal and not being formed. The choice in such cases, where the widening ont can not becommenced far up, appears to lie lextween the utmost improvement of the chamel at the expense of aceretion on the foreshores outside and the maintenance of the depths over the foreshores beyond the outlet, accompanied with a somewhat less grow chamel in the estuary. In some cases, deposit on the foreshores at the side leyoud the outlet might be of no importance, and then the river chamed should be primarily considered: but if. on the contrary, aceretion on the foreshores outside is undesirable, the outlet must be maintained by a greater widening out of the training walls. The adtualdirection of the training walls must Ine determined, in each case, by the general diredion of the chammel abres the situation of prorts on the estuary, the position of the outlet, and the set of the flow tide at the entrance.
(16i) Concluding remarks.-In terminating this recore on my investigations and the general principles for training works which they seem to indicate, I desire to acknowledge the care with which my assistant. Mr. F. Blumdell, has carried out the tedious task of working the tides in the medel, and prepared the charts of the experimental results from which the illustrations acompanying this paper have been drawn ont. Eddies at sharp edges, due to distortion of seale, appear to have excessive seouring effect in a model; whilst the action of the more regular currents axhibits a deficiency in seouring power, as previously noted. Though the actual depths of the channels, however, are $t(x)$ small for the distorted vertical seale, reliance, I think, maybe placed on the general forms and relative depths of the channels obtained in a model. It is jossible that the inadequate depth might be remedied by the employment of a finer or lighter material for forming the led of the model, or by using a liguid of greater density than water: but sand and water have the unquestionable advantage of being the substances which artually effect the changes in estuaries.

PART II-TIDAL, COAST, AND HARBOR WORKS.

Chapter XVIII.-Calais Harbor Works.

(168) In 1875, before the begiming of the improvements just finished, the condition of the port was as follows: The depth in the outer channel on the bar, maintained by the action of the littoral currents and that of the sluicing basin, varied from zero to 0.75 meter below the zero of the charts (this zero being the mean level of the Meditermean at Marseilles). The other depths below this datum were as follows:

Channel between the jetties, 1.50 to 2.50 meters kelow gero.
At the foot of the wharf built against the western jetty for the channel mail steamers, 3 meters below zero.
In the outer harbor, 0.72 meter above zero.
In the dock, 0.72 meter above zero.
Total length of the quays, 2,330 meters.
Area of the western dock, 2 hectares.
The entrance lock to this dock, 17 meters wide, had a single pair of gates, and could only be used by vessels during one or two hours of high tide. The rise of the tide is about 7 meters. The width of the quays did not anywhere exceed 30 meters, which was entirely too narrow for the traffic along the Calais-Dover route, requiring, as it did, branch lines, sidings, and facilities for transporting the freight bre ween the ships unloading and the Calais station.
Also, there were no adequate means of communication between the port and the network of water ways comected with it, so that in 1sis the total tonnage entering and leaving the port was 840,000 tons, hat the weight of merchandise imported and exported did not excerd who, (ow tons.

For want of sufficient depth on the bar the mail service between Dover and Calais was the only one which could be run at fixed hours day and night, and even this was more or less irregular.

The new works, created in virtue of the laws of December 14, 1855, and August 3, 1881, which are now completed, have wholly changed
the condition of the port from what it was $1 t$ years ago. These new works (see Fig. 10太) may be described as follows:
(169) Exterior and interior channel.-By dredging, and by the combined action of the two sluicing basins, a minimum depth of 4

meters below low water has been obtained on the outer pass and in the chamel between the $t w o$ jetties.
(170) Scouring or staicing busin.-The sluicing basin has an area of 90 hectares; it has been excavated to a depth of 5 meters above the zero of the charts, except iu the center where a deeper channel has been made to the opening of the sluicing lock.
The volume of available water stored at high tide above the reference $+\delta$ is $1,6(0,0 \% 0$ cubic meters. This volume can be dischargen, with a fall of from 4.25 to if meters, in from 45 to 60 minutes.
(171) The sluicing lock is made with five openings, each 6 meters wide, closed by balance gates turning around a contral axle The sill of these openings is placed at low-water level,-(0.7\% meter. The sluicing water is so directed as to strike upon the inner chamel, 2on meters from the extremities of the jetties, where agreat deal of samd is deposited, and where the dremping is difficult. The sam is carried to the har, whence it is easily removed by dredges.
(19:) Outer huther.-The new outer harbor has an area of of hectares; it is bordered on the northeast and southwest by duays which are comected by return walls to the entrance lock of the eastem dock. The mean width is hio meters, and the depth 4 meters below zero, except at the foot of the southwestern quay, where the chamel is cut 7 meters deep to allow large ships to remain afloat.

This quay is ato meters long, and its foumbations are sunk 11 meters below zero. Here sheds are built and rails laid for the nse of ocean steamships, so that they can call at Calais, and can load and unload without entering the dock. The northeast quay is for the steambat service between Calais and Dover, and contains the railroad station, and berths for four steamers from 100 to 120 meters long, drawing 3.50 meters. The quay itself is 3 (4) moters long and has a depth of 3.5 meters at its foot.
(173) Eustern dock. - Entrance to the castern dock is oltained hy means of two paralle locks whose sills are phaced l.is meters below zero ; their depth is 5.70 meters below the mean sea ievel (3.92 meter:) and their widths are 21 and 14 meters, respectively; they will lock ships 135 meters long, and are each divided by a pair of intermediate gates, so as to economize the water when locking small vessels. At high tide vessels can go through the locks. The gates, capstans, drawbridges, etc., are worked by hydraulic machinery.
The area of this dook is 10 hectares, including the inner basin, with which it communicates. Its width is 170 meters at the entrance, 120 at its southern extremity, and io in the inner basin; close to the locks the width is increased so as to give more room to vessels entering or leaving.
The depth is 0.50 meter below the sills. The total length of the quays around this dock is 1,500 meters.
The imer basin is excavated to low-water level, and the effective length of the surrounding quays is 350 meters. The width of the western quay is 100 meters and that of the eastern 140 .
(1it) Sheds are constructed on the west side by the chamber of commerce and all quases are provided with railroad tracks be the Northern Railroad Compans.
 a lock, can accommodate vessels low moters long. It is provided with promping machinery armaged so as to empty the dock in 3 bomis.
(1afi) ('emal dork-Between the east and west docks is a camal dack. covering thectares. for the uso of hanges it is sumommed be a guay 1,600 meters longe and extemberom the new rastern doek. with which it is commected by two locks, to the ditaled camal. by which it communicates with the citalel lock and the ohd pert.

Commmaication between this dork and the witadel lock can be cut off by meats of a guatd lock. the grates of which may be moed whaterer may be the fore of the current, thas forming a dam in (ase of acoblent to the citadel leck, either against the sea or against the water in the dock.
(1ai) The Pierrettes camal rums into the citatel lock below the guad lock. It may be used to separate the ohd slaberag hasin lom the dranage camal. The gates of the guard lök are dosed agatnst the water in the basin. When the Pierreters camal is used todiseharge its flood waters into the soa through the ditadel lock. the leved of this canal heing 1 meter below the Calais canal. The Pierretes (amal is usually kept closed by a movable dam.

Five hridges. two of which cross the locks, frovide for the trathe between the two sides of the cimal.
(1is) The Marck camal, which rereives nearly all the surfare water from the lowhands on the right of the Calatis camal. formerly discharged through a bridge dam inte the ('alais camal, in the remter wit the town of St. Pierre. The watererold run inte the seat theough the ritalel lock only when the latter was heing emptiod. These Waters were so abmelant as tor reguire the lever in the (Galais camal to be frequently and excessively lowered. To aroid this and pro. serve a constant level in the ('alais camal in times of freshet. the Marek camal has hern diverted so as to diseharge diredy inte the outer harbor. The Calais camal has alsoloem straightemed, omareme and leeperned su as to allow the passage of vesselsof 300 tons burden, the largest that can be aceommorlated on the northern water ways belwand Bolgimm and Franer.
(10!) The ('alais improsement works began in 1sit. Thesluicinge hasin and its lark. the onter pert. the lock of the astern dork : and the northern pat of the hasin itself, had to he comstrabtel on the beach. The southern pertion of the same dock hal tolorexavatorl acposs the line of downs and the works which protereded the town of
 tide. All the rxarations had to lo: madre in the fine beateh sand
H. Ex. $110-$ Vol. $111-4 ;$
and downs, and upon it the harbor works had to rest. Again the foundations could not be malle without protection agminst the sea.

Fortmately the contour of the port and the general arrangembit of the works permitted the formation of a series of coffer dams, corresponding to several groups of projected improvements, which combl he umbertaken separately. The utilization of the first fillinge for the quats and promanent dikes as coffer dams. greatly reducent the amomat of temporary arthwork. The slopes. slighty expesind to the sea, were eovered with rocks from the rhalk formation and held hy wattling. When mone exposed, they were covered with samb resting on straw so placed that the stalks lay in the direction ot the greatest slope and were held by horizontal linesof watting: bet ween these lines the straw was loaded with had limestone, printed and lad in courses with their tails downward, and strongly rammed to grether. In the most exposed portion the revetment of the slope was formed be stome pitching. The foot of the sloperested against a lime of shew piling which was reintored by a mass of beton sunk 1.01 motere in the samd. The stone pitching was laid upon a bed of well rammed clay 1 . 30 meter thick, spreal upon the slope to prevent the samd from heing washed away. This pitching was 1. on meter thick and set in Porthand cement. A curved form lecreasing in declivity was given to the new sea front of the dike to better protect it against the action of the watres.

The angineers, seeing the great difficulty of driving piles through the sand, hat recourse to the method of sinking them by means of water jets.

Before using the water jets, to drive a panel of sheet piling 2.50 meters high and 180 long required 900 blows from a ram weighing 600 kilograms, and oceupied from $3 \frac{5}{5}$ to $1+\frac{1}{4}$ hours, or an average of $s t h o u r s$. The resistance of the sand was such that the thickness of the piling had to be increased from 10.08 to 0.12 meter, and even then the wood was frequently broken.

The first trials of the jets give such remarkable results that the methon was subsequently emphoyed to sink most of the fommation walls of the quays.

The water jet was forced into the sand by means of a hand pump thromgh an iron nozale $0.0 \geqslant \hat{*}$ meter in diameter, comnected to an India-rubber hose (seo Plate V). This so facilitated the work that a panel of seven or eight planks was sunk in one hour and ninu minutes, and in many cases the time was reducod to fiftern minutes. The number of bows did not exceed fifty and were only necessary to overcome the friction between aljacent panels, which were tongued and grooved to make a tight joint. The weight of the ram on a single pile 3 meters long was sufficient to sink it immediately, and the former thickness of 0.0 meter for the pancls was restomel.

This dike was finished without accident, hat several vears later,

CONSTRUCTION OF THE QUAYS OF THE DOCKS AT CALAIS. PROCESS OF SINKING THE PILES BY MEANS OF WATER JETS.
during the high tide of an equinoctial storm a great breach was mate in it: this was dosed and the profile of the dike modified as shown in Fig. 109. The height and thickness are the same as before,

but the top had a slope of one-tenth from the edige of the stone pitehing, for 10 metors lack from this corest, with at stome farginer prolonged by a belt of pudded clay from 1.25 to 0.30 meter thick.

At :30 metrers from the edge a turf banquete 1.50 meters high formed the last harrie to the water. Finally a masomry berme 10 moters wide was constructed at the foot of the dike, following the declivity of the beach. Thus recomsiructed, the dike has resisted the must violent storms.
(180) Dedrding of the chamul.-The work of deepening the outne chamel was carried on at first by a Duteh eompany and then bey he. Fives-Lille Company. The gmantity extracted at the ond of 1 ssishe both companies was $1 . t a x .933$ cubic meters and the price last paid was 1 . 9 g france per cuhbe meter. wised and carried 1 mile. A carefui study of the phan of the soundings made from month to month

Fia. 110.-('ross sention of the wall of the northeast quay of the onter harbor.
during the last seven gears shows that, he dredging out ammally. 1o(o)w colbie meters. the outer and inner chamels may be maintained at a depthof 4 metris below datum: this, at the prive of os? frame per cubic moter, amomats to s.anon frames.
(1s1) The sluicing lock. which serves to discharge the water aceu-
 ters wide, separated hy pieps 3.50 meters thick. The wetted perimeter of these openings has been arranged so that a discharge of
 ing from 6 to $4 \frac{1}{2}$ meters.
(189) Outer harbor qua!f.-The northeast quay. Biometers long, shown in section by N Fig. 109, is for the Calais and Dover mail steamers. The station and lines of the Northern Ratroad Company are placed here.

The quaty wall is nearly vertical and flush, exerept that at equal distances along it there have been mate four meesses sis meters fong and from is to ! meters deep). In these recesses the iron landing - hages are arranged in three stories, for the landing and embarkation of passengers and freight. The two central recesses, which are opposite the railrom station, are $1: 0$ meters longe: the others 100 ; the rest of the quat maty be used for a difth steamer, or for the dredges and tugs belonging to the port.

The phane portion of the wall betwern atch recess has a miform section of o meters thick at the hase and \because ato moters at the top.
 meters below the hottom of the outer harbor, and the total height is bisis moters. Near the base the fate of the wall is vertical: above it has a hatter of ondenth. 'The thickness of the vertical portion is a moters, but above it is reduced hy stops as shown in Fig. 110.

At the right of the lamding stage the total thickness of the wall

 thick. The botom of wah reeres shopes slighty to keep it clear of water. 'The depth of the lower is s.as meters, and that of the upper \therefore : \because meters. The quate is formed of two parallel walls: the outer, :an extemsion of that of the quay and f moters thick. comes up to the level, \because es meters: the ather, fon meters thick, extents to the top of the quay; the two walls are commeded by an arehway parallat to the quat. Thre second wall. hollowed out behind by little arehes, contains a stairease betwen the middle and mper landings.

Each lamding sage is formod of six frames perpermberolar to the fare of the wall, which, with the lateral walls. wary the floor beams of the middle and upper lamlings. Eath frame consists of three "phights. one inclined and the other fow redical ; the hases of the two latter rest upon iron plates imbedded in the masomry the colmmas are stiffened hy arose haces. These columns support the middle deck, and the "pper deek is supported in a similar mamer, as shown in Fig . Io!-N.
 the orean steamers calling at Calais. It has a depth of of meters below low tide: the foundations wore sunk to a reference - 10 moters: its coping is $+!$ meters, and its total height 1 ! meters. This foumdation was acomplished in a sectal manmer, which will now be explained.
(1st) Foundation of the mortherest and senthure st incuyse of the outer Lertor.--The width of the fommation wats a metere: to make a
trench f meters wide and is moters derp) in the fime sand and lay the guay walls inside reguired the eonstruetion of a costly eofferdam. and aren then the results were mot absolutely sure. The method be compressed air was equally expensive but sumer.

After somo very sucessful experiments it was decided to apple.
 the process sosucerssfully used in driving the wooden piles at Cabais.

These curbs were placed side by side. The exterior walls are

Fici 111.-Vortical seetion of a curb.

Fla. 11\%.-Lower jan

Fig. 113.-- Cpper Ilan.

Vertical. the interior walls are vortacal for a distance of o.an netere They are 1 meter thick, and are shown in Figs. 111 to 113. Thr hase is of comerete mate in a mold, which is taked off when the concrete is set : the rest is built up of masomer laid in coment. Tha blacks thas formed (Pl.VI) are not sman mot ten days altor ther are finished. This aperation consists in exposing the sand berneath the Whok to the action of pewerfal water jets. thas throwing a misture of water and samd from without intothe atity

Figi. 11f.-Arrangemont of the jets. Within, and pemping the mixture of samel and water thus ohtamed in the midlle of the erorld. For this purpese a contrifugal pump. drivon hy a pertable robine of bohorse power. was employed: thesuction pipe was suspended fiom high
 the level of the buttom of the block. Fomr directarding forer pumps were nsed to drive the water into the sathe rach pump throwing ti00 liters promimute, with a pressure of $:$ kilograms. through three mozzles commederl to the fump by India rublur hose. which passed wer a light. portahle staging above the corb.

Tha whole plant was momited on four platform cars and ran upen mals laid paralled to the face of the quate.

Phate Vt shows the ereneral armagement, and Fig. 11tshows the arrangement of the twelve jets. Eight of them were arranged aromal the sides of the ortagonal opening. and the four others around the suction pipe of the contrifugal pump. Three of these played arommd the mouth of the surtion pipe dileting the samb, angmenting the eflicirncy and diminishing the danger of choking. The twelfth pipe was united to the suction pipe, into which it discharged just above

CONSRTUCTION OF THE OUTER HARBOR QUAYS AT CALAIS. PROCESS OF SINKING THE MASONRY FOUNDATION CURBS BY MEANS OF JETS OF WATER.
its lower axtromite. This armagemont. devised hy Mr. Dolanoy, kept the pempe clear. The jets from the mozas, all working simmlfameonsly. mixed the samd and water together. and this mixtmo was drawn out hy the rentrifugal pump. ('are was taken during throperation that the plantity of water fored in should be the sathe as

 in. amd only a puantity of same not mon greater in bulk than that wf the embl was taken out.
 top, be which it was ease to ser whether it was sinking vertically. and if it was mot. it was rexulated simply he lowning of rasing
 sillle
 meters. the sathd was allowed to setter athd the oproning was filled with hedraulic betom. This laser whon hardemed formed at tight tamp, which resisted the umber pressum of the water : the ampty spare was then prompel out and filled with hatoll cement up the the ferel. where it could be filhed with matomer

Fin: 11:, ...s.ection of a finishoul curb.

 स्थमtive homeks fogether.

The mothorl adopted for the whold work was as follows: A erenral pan was propared imbleating the dimensioms amd pesition of ateh

 the ground.

Experiments hal shown that in sinkingsula a row of fommations,
 gromme was matfoctorl. 'The work was begon hes sinking all the
 matil all were sunk. The curbs were nome of thom dilled matil all
 the displacement of the sambl maler the fommhations. Whan all the chrls were sunk they worr filled and then thes conserolive hor ks were cemented terofhere as follows: (ln the front and bark of the
 meatre of water jots. These plates elosed the space brotwern two
eonsedutive blocks. the sand butween the bocks was then cleared out by the nozales and pump. and the spare filled with biton, mate. of hỵdranlir mortar.

Upen tha borks thas matmel togrther tha fommlation of tha wall was huilt in masomry lat in Portham emment. Pl. VI shows this whole operation.

The facility with which these block wore sunk promiturl the rngraters in ehatge to allement the dimensions of the blocks for the fomblation of the sonthwest quay, as well as the depth to which they
 weighed son tons. These blocks were sunk with the same areuraly as these of smaller dimensions for the motheast quat, but some difli-
 of the water foreing its way under the ironplates. Tha timeof sink-
 moters variol from tent thirty-tive hats. the mban time was res ducen to about twentr-three hours, and the mean volume displaced per hour was f.9: cubice meters.
 fo 119 hours. with a mean of tio.
'The sinking of the still smallow hlorks. f be f be t.t. metors, was
 (ralic meters.

The total lengethof thequay wallsof theroter hartere comstrueterd mader the shelterot the dikes betwere last amd tsis, is "ill meters.

 frames. This expense eomesponds to atotal rolumb displamed of

 the sand bet ween the sunken horks and replacing it with heten was
 wall: to :3.st frames per cubic metor, incluming the labor ame the rost of the plant.

 the samb length hat unequal widthe. The larger has a deald width

 at the where and one between. 'The maximum lenerth of the lork chamber is lation moters. This lenerth ran be divilem int wo parts.

 14 mutors. On the left side of these lows two arohed lomeritulinal culterts are made: one, : 10 meters wide and 30 got meters high,
forms the prolongation of the colvert of the western guay upen the dock. and is intended to carre off the flood water from the Calais canal. the water from the dey dock, and that from the boat locks.
 tal pier mal in the chamber wall on the right side of the smallere
 the height, $:$ meteres is the same in both.
(ommmanation is made hetwern these outlets and the loeks hes transerse brambes, and the fow of the water regulated by valves :and sluices.
 amd 1.10 meters thick for the food and 1.30 for the ehb wates. The irem frame comsists of aight horizontal givelats spaced from 1.34 to
 fome intermediato stambards :. 3 ? meters apart.

The leaver pes on pisots at the bottom. and at the fop they are hral hy iron trumanos passing through conlars anchored in the masomry.

 He larser and ont for the smallor lock.
 arpose these locks to proville for the publie trathe. twa the tower

 *ingle span thoning on a piont set in the lock wall.

 is carrial on brackets memeded on the ontside of the main gimbers. Which have the form of a parabotit abovand below. The height of

Whan the briler is apermed the lockinger brackets ate withtrawn
 onthe brath rollors. During the rotation the mollors bear a maximum loat aif itoms and roll on a rast -irom track.

 fotilt the bridur. so at tose free the supperts. The werisht wf whe
 tolls.

1se. Apfuralus for hamillin!...-The shaces. gates, bridges. (apstams. etc.. ate moved hy hedranlie power distributed froni a contral station remeded neat the lack.

Tha ereent heat word slateres slide in grooses cat in the granite facing of the pelished walls. The lork wates are operned and chased
 ly sidr. whe for opening and the oflor for exsing the wates. The "pening and dosing rhans pass over two pulless one above the othere in the wall near the here pest. They pass wed a sertes of grade pullers attached to the 1 phere part of the leat. and are secured twa ring bolt in the wall. The eomtrolling valve. worked be a hand laver, is suampaged as to make a commmication between ome of the celinders with the presure main and the other evlinder with the exhathet main. 'The armonement of the almission and exhansi ports is such that it is pessible torary at will the relation betwen
 the one which errerspomes the thererse movement. A smatl
 - losing pisten to the end if its stroke during the process of opening the gates. so as to facilitate the monoling of the slate of the chata hetween the walls.

By this novel armagement the opening and closinge of the gates (amber dected he we operatore who ean always hold the leaf in rither direction against the fore of the waves.
(1s: The mathinery for working the turning briges moves the
 lerking presses. and the two rotating timekle presses.

 molling joint which server for the tilting.
 principal girulers of the bered.

When the hedge is raisell he the tilting presses the lowking presses theow on or wf the breech brackets which support the bridge when it is ill llat.

The chains are coiled aronnd an iron drum phared undre the superstructure on a level with the supperting bex-girder.

Four l-ton capstans areplaterl along eath of the outer siles of the
 rentral wall betwen the two boeks fon hating the vessels. These capstans are driven by small homerelimher hydranlie angines su arranged that they ath be worked ley hand if the water gives ont. They ate se phated that they (ath be utilion for openine the gates or torning the bidges in rase the acoumblator gives ont. and in such a case a hand pump sereially constructed serves to work the shares and the tilting presses.

The contral hydranle machinery which smplies the water maler presure. for working the presses which hav bern described, is contained in a buildings sitmated to the nonthof the locks. It comsists

 ('ommeree with water undor pressure amd to drive other herdratia mathehnery sithated on the guases.
 M. Barret. arimere of the Marseilles docks. whe prepared the phans.
 tion of the empineress of the port.

Fli. 11: Profile of the wall of the eastom doek.
(190) The quay watls of the eastern doek have a total lemgth of 1.50 moters. These walls pes on a héton foundation : motersthick. (arried down twadepth of - 3. as meters. The bormal profile of the

 fremere in thickness is ohtaned on the ontside be a batter of one to

 smaller besin beyond, where the beight of the wall is omly i. is meters, the thickness is reduced to 4.20 moters at the hase and at the
top. These profiles aremorlified for the western quas, on acoont of a culvert $\because .10$ metris wide and :3.bo meters high, placed at the back and used for carrying off the flow waters of the Calais Canal inte the whter hathor, as well as the water from the dey dock amd the boat loreks.
(1:n) Foumdutions.--The winth of the fommation upon which the walle rest is biso metors. It comsists of a mass of béton sumk to a depth of : meters within a coffer dam formed of piles and sheet pil-
 in length: the phanks forming the sheet piling were 1 . 10 meter thick.

The estimated eost of these eoffer dams was 4inoon frames. The applation of the water jet process mabled these dams to be eonstructed not omly in very murh less time than had bean ostimated. hat reduced the cost to dia, ofou franes. thas realizing an eeomomy of

This eronomy resulted not only from the diminished cost of sinking the piles and shoet piling. but bey allowing the wse of smallor pilas and thimmentanks. Pl. I shows the operation of sinking the pilas.

The total eost of ronstructing the quaty walle of the dock and the imber basin was fomo, (ron frathes.
(19:) The western quay is specially reserved for handling and storing valuahle merchandise which has to be peotected against the weather, amd which is only allowed to remain a rory shont time. It is provilled with ralwats and sheds. 'The mommal width of the quat is 100 moters, divided as follows:

First. An upen $\%$ one 11.00 meters wide axtending the whole length of the quat. atrying a tatek for hyemalie travoline rames, and two other tracks for freight tratlic.

Seromb. A zome of th metere wile including a great rentral hall fo meters wide formed hy 1 wo parallal roofs tach on metors wide. and two exterion awnings each + meters wide.

Thind. A collection of tive tracks, ond phad maler the awning next to the doek. the remaining fone oreupying an uncovered space is moters wide. Tou track standing matest the sheds is used chicfly as standing room for wagons to be loaled or malowled. The four others sure as sidings for full or empty cats and the making up and dispatehing of tains.

Fourth. A pared road 16.00 meters wide. including space for a track which will subseguently be lad along the outer sidewalk.

Fifth. A sidewalk f_{g} meters wide ruming alomer a series of blocks for a depth of all meters along the quate to be reserved for the construction of stores. depots, and other establishments required for a matrine station.

Beyond the quay proper the public domain extends along a zome fo meters wide, includine the belt of in meters aceupied by the hocks resepred, just referred to. and he an outer street oo metors wide. upon which railway tracks will be lat to aceommodate the stores when they are construbted.
(193) The matern quay is reserved for the stomge of a low elass
 can remain expesed to the weather without damase. The total wielth of this puaty is $1 \not+0$ meters, divided as follows:

First. Three lines for loading and unloading ears. The midnle line is reserver for a traveling erame.

Third. Five tracks ocoupying a total wilth of :l meters.
Fondth. A macalamized road $1:$ metors widh.
 lines commecting the central Calatis station with the maratime tromillus.

Sixth. An otiter street 15 meters wide.
 starting from the contral hydratie etation and extemding aromal the

 and f0.000 kilograms.
 mastern dock amd a patere hats bern mesemed alongeside for the eomstruction of two similar dows when they shall hereguired. An unlothling stage for timber ocenpies powisionally the space reserved for these twodocks. This work comprises three different parts-1 he entrance lock. the dock itself, and the culverts.

The antraner lock is ? 1 moters wite. like the ereat lock of the mastern dock. lts side walls hate fworeosese for the pereption of the caisson gate which eloses the entrathere
 the flooring from the immer rexese of the catiseoth gate for the hase af the roumded elge. The maximmm thickness of this gate heing t
 ronding as the gate takes its bearing agatime the immer or the ontor reress. The wilth of the floming betwern the bettom altats is ! a ; moters. including the side draming rhanmels which run renal the floor of the dork.

The first four altars starting from tho bottom are o. 3a motre high and 1.30 moters wide. The wilth of the doek at the lewel of the fourth altar is thas 19 atomers: a width requisite for the arome modation of the lightedraft pathle stammes used for the chamel
service. From this level to that of the coping the dock has two intermodiate steps 1.8 meters wide, to serve for shoring, and to facilitate the passage of the workmen. The width at the copeng is ?i.fu meters.

Sovoral stairways are placed along the walls, and a timber slide is prosided at the extremity of the rounded end.

A (rulvert 1.25 meters wide and 2.50 meters high, opening into the lower mbl of the dock near the inner recess of the catsson gate is built behime wach wall, and small transverse culverts run from it to tho lateral ehamels on each sido of the floming. 'The culverts carry of the water to the pumping well when the dock is emptied or drained.

The well undre the engines and centrifugal pumps is arranged $=1$, as to serve in future for the filling and draining of the two other doeks not yet built. The engines and the pumps are calculated to femp out the dock in 3 hours at the most.

A set of small centrifugal pumps serve to keep the dock clear while in use.

The great pumps are driven by belting from two upright engines which together develop son horse power.

The cost of constructing the dock amounts in round numbers to $\therefore, \hat{\theta}(0,000$ francs
(1!s) The burefe dorli forms the prolongation and end of the Calais (Comal, and communicates on the eastern side with the castern dock and on the west with the old port. The flooring is placed at the refarence 1.95 meters, that is to say, 3.80 meters below the normal level of the canal (t. 6 meters). The boats never draw more than 1. se meters.

The quay walls of this dock are of solid masonry, set in hydraulie cement upon a bed of beton !!. 0 meter thick. The height of the wall is t.tin meters; its thickness varies from : meters at the base to 1.10 meters at the top, with a batter of one-fifth or one-sixth.
'Two locks connect the eastern branch of this dock with the new fastern dock: they abe 38.0 moters long and $;$ wide separated hy a wall $\begin{array}{r}\text { meters thick. The rates are of oak and worked directly by }\end{array}$ hydraulic pressure.
(198) The gucerl lock is built at the lower emb of the western branch of the boat basin, and is armored so as to form a dam either against the sea or against the canal. Its rates must not only be able foresist the pressure of the water in both dimetions, but they should also be: apable of being opened and closed against the stream, whaterer may be the direction or the velocity of the current. The length of the lock is Di meters. amd its clear width $\%$ it is closed by two pairs of mitor grates, each of which consists of two vertical wings of megual width united to the same heedpost. When these are closed they form an angle slightly less than a right angle: when the lock is open each wing comes into its appropriate curved recess-in plan the quadrant
of a circle-formed in the side wall of the look. and corresponding in shape to that of the sutte.

The lock is closed when the namower wings of the gates are brought together against the mitor sill. In opening and closing. the second wing of eath leaf rematns within the ramed recess, in which it moves with a slight phay betweon itself alme the curven wall. On each sideof the lock aro two separate culverts. stating from the lork
 to. 'These culverts ran her operned or chosed at will hey asstem of slaces, in such a mamer that the pressure of the water diseharged from them can be exerted agatnst the exterion face of the wider wing of the leaf. at the head or tail emb, whemever there is a diflere ence of level at the two conds of the lock. If the collert commmieating with the lower end is chsed, the gates will shat themselves if the direction of the fall is from the upper to the lower emb. If this state of things is reversed, the shace controlling the upper emb of the rulvert mast be closed amd that at the lower and opened.

Five bridges have beon constructed over the Calais ('anal amd barge dock to mantain the railroal amd boat commmaications.
(198) ('ost. -The cost of the beat basin was as follows:

	Frames.
Earthwork amd matomry	3, 500. (10\%)
Lonek gates and apparatus	29\%, 00\%
Bridgesi	310.0\%
	4. 4000.1800

The designs of the works above described were prepared under the direction of MM. Stoerklin. Plocy, and (inillain, chief engineers. and M. Votillart, engineer of the port of C'alais.

I wish to ackoowledge my spectal obligations to M. Vétillart for descriptions and photographs.

(hapter XIX.--The NEW olter harbor at Bollocine.

(199) 'The situation of the port of Bombegne in lsis. when it wats decided to make a deep harbor here was as follows:

A bat was formed near the ratrane to the jedtese rising to at height of 1 meter above the zere of the whate. The entrance to the intreron chamel, betwern two jetties all :aters apart, exposed to all the winds from the west, was inarerssible at high tide for shipe drawing more than is moters.

The bottom of the imme hathor, with a surfare of l: hertares, was : meters above zero. The dork, areessible through a lack 21 by low metrers, amd having a surface of b.si hectares, hat its bottom 0.60 meter above zero.

The difficulties of access and the insufticient depth in the channpreventel this dock from doing its full service.
Notwitstanding all these difticulties the ammal tonnage exceeded

 rent of 3 knots per hour in tront of the pent betwen the two renky points of Heurt and Crowhe, where the sand was always washel away hut mo shoal made. If, therefore a brakwater sor 3 meterdeep be erected from north to south. through shath parallel to the. direction of the current, and in a line with these two pints. it will be expesed to erosion rather than to silting. If this brakwater in. comected with the conast at its two extremitios and a principal entrance reserved toward the west, this pass will premere its depth and he serious disturbance will be made in the regime of the coast.

 s. the inner hasin. r. the inner hartwor, thern ont through the jettiess

The prot thus formen will be in no danger of silting up. The project of M. Stoneklin. prepared acording to the atore principlen. is represented in Fis. 11 s .

It consistend in making. in fromt and to the sonth of Bondegne a new hartor nearly retangular in shape. with ath area of :3n hee tares, hav-
 landings and quays are buitt ancersible at all times for stomers drawinge 5 methers of water.
(? 3) The frerimeter of this hariner is formed of then dike. one paraliel and the other marly at right angle to the shore. The tirst has a total lengeth of 1.16 meters divided into two protions bey
 north branch. \cdot. comprised betwen the west pase and the north pase
which separates it from the northeast jetty, d, is to form a mole boo meters long, and separated from the land. The southern hranch, b, 600 meters long, unites with the southwestern dike a by a curve of 300 meters radius. This last dike is nearly perpendicular to the shore, where it is united with the rocks. It is 1 , 6 bo moters long, including the curved portion.

The northeast dike, d, which completes the inclosure, is the prolongation for 1,440 meters of the actual mortheast jetty. Its northwest extremity is separated from the isolated molo by the north pass, 150 meters wide.
(20:) The ohject of the proposed improvements was as follows:
First. To furnish a harborof refuge for the fishermen and coasters.
Second. To facilitate the access to the immer harbor by protecting the entrance into the chamel against the wares at all times, and providing apporaching vossels with a shelter where they could awatit in security a favorable time and tide.

Third. To provide quats aceessible at all times for chamel steamers as well as for coasters and fishing vessels.
(203) Work done from 1siato 18s9.-The work besan in July, 1879. At the foot of the abrupt cliffs bordering on the sea between Boulogne and Portel they huilt two wharves, having a surfacoof $\%$ hectares incluled between two retaining walls, and these wharves were connected by a road with the city, and by a railroad with the northern railroad station. Quarries were opened at the foot of Portel cliffs and united with the whares by inclined planes. They then constructed a little haven, inchuled botworn the shore end of the southwest dike and two jetties low meters and äto meters long, to facilitate the loading of the materials intembed to form the sub)structure of the propesed dikes. It was only after these first works were finished that the could proced with tho construction of the dikes. The part of the inclosure of the deep-water harbor alreaty finished includes the branches a and b. These for branches const i tute in reality ome and the same jetty, oberiming jerpendicular to the coast, b paralled with it, and the two united by the are of a cirele of 350 meters malus. (Fig. 11 a).

This jetty, which forms a hroakwater in the direction of the southwest and west, begins at a peint on the coast hetween Bonlogne and
 bor. Its total length is 2,110 moters, including 1.0 at moters for the dike a from its begiming, 3 go metres for the emve, and fas metors forb.

The profile of the dike comsists of 1 wo distinct parts correspoming to the substructure and the superstructure. The substructure is formed by a mass of natural and artificial ripnap, composed of a central core of stomes weighing loo kilograms apiece, resting on tho bottom and rising to a level of 1 meter above low tide. The slopes of
H. Ex. 410-VoL HI——4t

this first mound are covered on the shore side, for a thickness of 2.50 meters, by what is designated as "rubble of the first category." It is a stone pitching made up of rocks weighing 500 kilograms each. On the side toward the sea the slope is protected, first, hy a revetment of rubble work, made up of rocks weighing 6,000 kilograms apiece, called "rubble of the second category," and, second, by beton blocks of mifform dimonsions weighing 33 tons each. (Fig. 120).

Between the references +2 and $+t$ meters rises a mass of masonry 9 meters wide, serving as the foundation of the masomry wall which constitutes the superstructure of the dike.

The profile of this wall is trapezoidal. 6.90 meters high, 7.66 meters wide at the base, and 6 at the top.

The upper platform rises to the referonce 10.90 meters, that is, 2 meters above mean high water. It is surmounted by a parapet 1.40 meters high and from 2.50 to $?$ meters thick. On each side of the

Fior. 120).-Cross section of the parallel dike h.
wall and on a level with the lower platform the slopes are consolidated by masonry bermes formed of isolated blocks, each 6 meters long, which serve to protect the foot of the wall and also afford a path for the workmen and materials at low tide. The thickness indicated for the wall was adopted at a distance of 1,300 meters from the heginning of the dike.

The width at the top is only t meters for a distance of 1.120 meters from the shore; then it is made 5 meters for a distance of 1,350 .

All along the curve which forms the part of the dike most severely exposed to southwest winds and storms the width is 6 meters: the outer slopes have been loaded with several layers of artificial blocks, and the exterior bermes raised to the reference of 5 meters. A slope commmicates between the upper platform of the dike and the interior berme, to facilitate the supply of materiais during the comstruction, and increase the time of the work for ach low tide. Tho dike is tominated by a provisional pier-head signal, and by a laminous buog. The field work includeda double organization corro-
sponding to high and low tides. The sinking of the artificial blocks and the rocks for the revetment took place at high tide. The latter were transported amd sunk by mums of hopper barges towed by a little steamer ; each of these barges carried a weight of 100 tons.

The artificial blocks wero unloaded at high tido by means of a special wrought-iron barge having three vertical pits, with which at cach trip of the barge they could sink three blocks, but this operation required a certain precision, and generally only one trip could be made at each high tide.

The loading and discharge of the riprap was possible, on the comtrary, with waves 0.50 moter high, which allowed the use of more than half of the tide. At low tide the stones required to eomplete and even up the eentral core were sunk, as well as a great portion of the natural and artificial blocks which were to form the peretmont of the side slopes. For the heavy rock work they made use of tip wagons; for the great blocks they employed three-wheeled trucks. the platform of which could be raised and tipped by means of jacks. These trucks ran upon rails laid on the bermes of the walls already constructed,

They were able to utilize, at low tide, four-fifthe of the number of tides; during the winter they could only succeed in preventing the dispersion of the interior mass by the action of the waves. The advancement was difficult at first, and to avoid the loss of material they were obliged to stop the riprap work from November to April. Experience showed that the only way to prevent accidents, and to extend and preserve the advancement attained during the good soason, was to construct, as soon as the phatform emerged to a sufficient height, isolated blocks of masonry which loaded and consolidated this platform. These blocks were ta make a part of the bermes and the foumdation of the walls, but they rested sometimes as isolated boreks, and could settle until they had attained a state of stable equilibrime. At the end of about a year the blocks situated in the central part of the dike were anited so ats form the foundations of the wall. At the moment of stopping work all the joints expeosed to the waves were filled with rapid-setting cement. When the work recommenced this mortar was removed, the joints were cleaned, and new cement was placed on all the parts agatast which new masomry restod.

The total cost. from 1879 to 1 ssis, of the organization of the works and the construction of the southwest and parallel dikes (a and b),
 were expended in constructing the first part of the wharf, and 2,0oo,oof were used up in dredging in the interion harbor and the entering pass.
(204) Ressults oblaimel-Improremerits to be made.-- Althourh the programme of lats has not get bern completed the following results may be considered as already obtained.

First. The entrance to the interior chamel is completely sheltered against the sonthwest winds and tempests, which are the most frequent and violont in this region; it is even partially sheltered against the tempersts and winds from the west.

Second. The régime of the currents at the entrance of the pert has been completaly modified. The corrent of flow passed fommery at the head of the jetties, at the moment of high tide. with such velooity duringe certain tides as to remder the antry of the pert impossible for great ships: it is carried to-lay beyomd the dike and is only felt at the entry of the port as a fooble edrly.
'rhird. The protection ohtained at the entranceot the port aganst the waves and currents, has permitted the deepening of the exterior pass: and the chammel. and the maintenance without differulty of the depths already whained. These depthe are to-day more than t meters below \%יow in tho exterior pass, and \because meters hetween the jetties. 'They are sufferient to allow the regular serviee of' stemmers between Bonlogne and Folkestone, a service organized more than three yours ago.

Fourth. The dike already forms a litte haven of sol ares sulliciently sheltered from the southwest and west winds, which will be of great service as soon as the drodging eriving it a depth of if or z meters shall be finsherl.

With regrarel to the modifications of the beathes. it may be stated that the antiopations of the anthore of the projert are matizerd. There is a temdency to erosion at the botom, in front of the parallel dike. indicating that the depth in the ,]asses of the harbor will he kept in order maturally if the primitive project is entirely realized. The beach situated on the south of the southwest hameh has risen motably in its upper parts, the slope has become more stang. but its foot does not appear to have changed, and the great comernt whirh follows the lateral hanch will not permit it to alvance. (On the interion of the harber. that is to saty, on the north of the dike, there is a little silting. produced on acomut of the calm obtained, but, as has heron foresern, this silting is of mo impertance and rath nasily be remosed by dredering.

These exereltent pesults have allowed the completion al the pros

 the grays and whares projected for the demp-water harbor. alwats acessible to the stramers alld fishermen, may be earried to the immer hatbor. The deperning of the harber and the construction of the new gaays will be immediately carrime ont.
(O(i)) As to the comstruction of the dikes. it is pessibhe that when
 for the secority of the harbore the complete closing of which had been migimally phamed: a simple prohngation of the actual paralle
dike for a length of 500 or 600 meters will probably be sufficient to assure an excellent shelter against great storms.

But the works must becompleted by important dredging, to assure, over a sufficient extent, the depth of x meters requisite for ship navigation.

The project for the deep-water harbor at Boulogne was drawn up by M. Stoecklin, general inspector. 'The works were carried out. successively under the direction of MLA. Plocq, Ginillain, and Vetillart, chief engineers, and Barreau and Mommerque. assistant engineers.

Chapter XX.-Port of Hayre-Bellot Lock.

(206) Bellot lock.-The Bellot hasin for the use of the transathantic: steamers commects with the Eure basin by a lock 30 meters wide. The lock is furnished with ebb gates separating the two basins. It. is crossed by a drawbridge of a single span and double track. Hydranlic capstans placed on cach wing wall are designed to facilitate hatuling the ships. All the working apparatus is moved by hy-

Fig. 121. Transverse section of the Bellot low k
draulic power. The chamber walls of the lock are vertical, and unite with the invert by circular arcs of 2 meters radius: their thickness is 7.70 meters, and the sill is placed at the roference - 2. gas meters, which gives a draught of s.30 meters at low tide.
 meters long-3if meters for the span. 17.25 meters for the breech, and $7 . \tilde{i}^{2}$ meters wide. It consists of two girders forming the parapots. with a variable height from the extremity to the peint where the temsion is a maximum. These girders are mital beross girders and wind ties. The lomgitudinal girders have a height of s. 10 meters at their extremities and + meters at the right of the piont. They are fomed of a trellis of (ehamme irom inclined at fis degrees amd spaced 0.8 meter between the axes. The uphights divide the wirder into fourteen panels $3 .+6$ meters wide. The platoriron transverse beams are 80 centimeters high amd $: 3 . f 0$ moters apart: they rest on the lower plate of the side girders, and are united hy stringers placed
under the rails of the railroad and under the phates of the roadway. The bridge is calculated to allow the passage on the railroad of the heaviest locomotives of the Western Company (14 tons per axle), or

the simultaneous passate upen rach of the roadways of two files of carts weighing 11 tons per axle.
(208) Lock gutes.-The lock gatos (see Plate VII) are of plate iron, each leaf 16.515 moters wide and 10.90 meters high. These gates retain the water in the Bellot basin at the reference 7.85 meters, that

is to say. at 10.50 meters above the lexel of the invert. They are calculated on the hypothesis that the lewel of the water in the Eure basin may by some accident fall to the zero of the charts. Thesys-

HAVRE. LOCK GATES OF THE BELLOT BASIN.
tem of construction adopted consists of verticals supporting the exterior skin and resting on two horizontal enossheams, one on the upper part and the other on the lower. The skeleton consists of:

First. A fame made by an uper cross girder, a lower eross girder, and two tubular pits forming the heel and initer posts.

Second. Nine vertical ribs spaced 1.393 moters apart.
Third. Two horizontal intermediate girders 6 orate the uprights.
Fourth. Horizontal U-shaped phates modually spacedamd serving fostiffen the skin which forms the two fares of the gate.

The space included between the lower horizontal wirder and the first intermediate, counting frombelow. constitutes aseries of watortight chambers intembed to ballast the lati: the rest of the spare included between the lower horizontal girder and the secomid intormeliate one forms air chambers. Above this seromd horizontal girder the compartments communicate with the water of the Bellot hasin.

Two vertical water-tight shafts, with manholes and lahlers comremiently placed, afford aceres to the difierent pertions of the gate. The pivot, which is plared in the invert. is of forsed stede. It is the same with the upper pivot of the leaf. The and hor which sepres as the hub of the pivot and which tramsmits th the masomry the pressure of the leaves, the pivot stepr and the two intermediate combtorforts which matatatn the direction of the here prest are of cats sterl. The anchorage staps which tramsmit the pressure to the masomry rest on steel phates 0.0 meter thick, and are ambedded in the granite forming the gunin. The air chambers, which are not sullidionly tight to avoid leakage, are chared by means of compressed air.
 hydraulic apparatus which works the bridge, the gates, the shions, and the hydranlic capstans. All these pieces are worked he water under pressure from a erentral station. The pressure is as kidoerams per square centimetere.
'The genemal arangement of the apparatus for operating the bridge is as follows: The two supporting beams of the bridere rest upon a box girder. which is itself placed mon a pivot comatamed in the (rylinhrical stop) restines on a motallir wedge. This wolder, actod on directly by a hedranlic press. gives a vortical movoment to the

The advantage of this morleof rasing the bridere is as follows: The piven undergos mo displacoment with respert to the eylimber. and a constant contact of the metallie surfaces subsists theomeh the wholemotion. A leak in the stufing bos wonhi not. conserpuntly, produce any acedent. the herdge being hold by the weder in its position.

The rotation of the bridge is effected by the adion of a pair of twin pullers. To facilitatre this motion and arod the wed friotion of the metallie surfaces in contact, the eylimdrical strp carries in
its upper part a stuffing box, forming a tight joint between the pivot, and the cylinder. Water under pressure, introluced in the small slots made in surfaces of contact. supports the bridge without raising it, and effects the rotation upon the water itself.

The bridge when closed rests on two supports upon each side of the chamber walls at its extremities. During the motion of lifting

Fifi, 126, - Lifting press and wedge of the revolving bridge.
it turns around a semicylinder fixed under the framing, and engages in a circular cavity made in the upper part of the pivot. During the rotation the bridge rests on its pivot, and upon the breech rollers, which are from in number, two on cach side. 'The amount of water used for lifting the bridge is 450 liters, and for lowering, 378 liters;

Fig. Wi.... Eluation and plan of a leaf of the Belot loek gates.
for turning, 100 liters when a partial fuwn is used, and dad liters when the maximmon pewor is used. This last is regulated acoording to the force of the wind. which is the principal obstacle to the motion. The total quantity used for the donble operation of opening and closing is $1,1+4$ liters or 1.3 fo liters, according as the greater or the less power is used. The time required for opening is two minutes.
(210) The opening of the gotes. - The apparatus for moving the gates comprises one for opening, and another for closing them. The first consists of a cylinder with a plunger forming a pulley; the second is identical, with the isingle difference that the eylinder, instead of having a simple plunger, is furnished with a piston which has a much longer stroke, so as to raise the slack given to the closing chain and so allow the passage of ships. Both chains are fastened to the bottom of the lock. After passing around the guide pulleys placed on the gates they pass around the tackles of the opening and closing apparatus. placed side by side, and set in motion by a single valve.

The lower guide pulleys are mounted on a swivel block, allowing them to take the different directions, followed by the chain. (Figs. 128 and 128).

The quantity of water used for opening or closing is 3 for liters.

Fio. 1: - - Complete phan of the lock gates and the operating apparatus.
The sluices used to close the culverts between the Fure and Bollot hasin are cylindrical, a.os meters in diameter. The apparatus for working them is calculated on the hypothesis of a change of level of 3 meters; it consists. for rach sluice, of a cylinder with a piston attached directly to the valve rod.

The accumblator, to regulate the pressure. has a capacity of ond liters, and the load corresponds to a pressure of \boldsymbol{n} : kilograms per square rentimeter.

A steam engrine of 15 horse power is provided, to take the phace of the acermmatator in case of ned.

The compressing pumps eonsist, of three sets of planger pumps, coupled to the same shatt by thre aranks 1 ? 0 degrees from ach other.

The amount furnished is in liters per minute. This quantity allows a completoopening and closing of the bridge avery twenty-fivo
minutes, which is sufficient to guarantee the service in case of accident to the pipes.

Cost.-The cost of the lock is estimated at $1,980,000$ frames. The engineers who prepared the project and directed thr works arr. MM. Bellot and Quinette de Rochemont, chiel engrimeres: Remomil E. Widmer and H. Desprez, assistant engineers.

IRON DOCK SHEDS.

(211) Description of the sheds.-The first principle laid down in the construction of the sheds was to diminish, as much as possible. compatible with an economical construction, the mumber of the sulp ports.

The pillars, which rise in the midnle of the covered surfaces, takn up the phace of merchandise and are a notable obstacle to trafic. This hindrance is especially sensible at Haver, where the transportation by carts has an important place.

For the southern sheds (Pl. VIII) there are two spans of di.no meters. The roof trusses are spaced 16 metors and mited be longitudinal lattice girders parallel to the puas.

The principal dimensions are given in the following table:

	Moters. -T 30
Distance apart of the principal trusers	16.00
Total height	19.60
Height of the side doors.	4. ii
Construction of the purlins (lattioei:	
Height of the purlins.	0.61)
Distance apart of the purlins.	1. i.)

The eost of the sheds varies acoordine to their dimemsions. The cost of this shed was 40 francs per square meter, covered.

Chapter XXI.-Port of Havre-Iron wave brasker on the BREAKWATER AT THE SOUTH SIDE OF THE OCTER HARBOR.

(:20) Three sloping breakwaters are placel at the entrance of the port of Havre, fwo on the north bank and one on the south bank of the chamel. Toprevent the ships from ruming into the masomer of these works and to permit the passage of perdestrians along the chanmel, a wave-breaker has been constructed on the sill of each of the breakwaters. The northern wave-breakers are of wool, that at the south is of iron. It is 100 meters long ame its plan is curved. It has a height of s.of meters, measured from the sill of the breakwater (at the reforence a.15 meters) to the footpath which forms the coping, at the reference of 10 , isa meters.

It consists (Fig. lef) of sixteren trusses 6 meters apart : ard truss consists of (1) a bedplate, ec, united to a vertical web by fwo angle

FRAME WORK OF THE IRON DOCK SHEDS AT HAVRE.
irons built into the masomry: (2) a cormer post, a b, formed of two chamel irons placed back to back amd united to the plate by two chamol-iron heams: (3) a diagonal brace, e d, equally of chamel iron. united at the extremity to the plate, next to a b, and to the two diagomal beams a s and $m m$, and supporting at its upper extremity the end of the roadway: (t) a horizontal beam, a d, placed in the upper part: (i) two intermediate pieces, t, and $r \cdot r$, uniting the corner post and the diagomal brace ed. The corner post has a batter of one-fifth.

The trusses are mited by flush iron parapets, and also by seven horizontal mils of chamel iron, riveted, behind the corner post, upon the diagonal beams and upon the two intermediate pieces; besides, they are connected on the interior by iron tie-reds.

Fiti. 129...-Iron wave breaker.
Between two consecutive trusses there are three intermediate posts identical with the cormer posts and spaced 1.50 meters. They best upon horizontal rails, and their foet are imbedded in the masomry sill.

The corner posts are cased with ouk. The forthridge is formed of of four courses of domble T iron supporting an oak flooring. It is fumishad with two wroughtiron parapets 0. su meter high, surmounted by wooldon hamd rail. It is $:$ meters wide.

The iron is galvanized. The oak mangs are protected by large headed mals driven in below just to the level of the wator; they are tarred aboser.

The trusses are put together in the breakwater chamisels, then rased and fastoned without any difliculty. The design was prepared and the work directed by MM. (Quinette dre Rochemont and Manrice Widmer, engineers, under the ordersof M. Bellot, emgined in chief.

Chapter XXII.-Canal from Havre to Tancarvile--Single gate of the Tancarville hock.

(213) The canal from Have to Tancarville was built to facilitat. commerce between Havre and the Seine and to a void the dangers of traversing the estuary by canal barges. It begins at Have and onters the Seine near Tancarville, 96 kilometers below Rouen. It: total length is 25 kilometers.
The canal is formed of a single bay. The position of the water level, intermediate between high tide and low tide at Have, and the high tide and low tide at Tancarville, required the construction of two locks, one at Havre and the other at Tancarville. In order to be able to lock boats under all circumstances each one of these locks is furnished with gates closing in both directions.

The Tancarville locks are furnished with four single-leaf gates (Figs. 130-133). These four gates have in plan the same dimensions. They only differ in height. Their upper part is o.0j meter ahowe the maximum high water which they have to sustain. At their lower part they bear 0.20 meter against the masonry sills. The flood gates are, respectively, 9.85 and 9.25 meters in height. The ebl gates are 7.85 and 7.25 meters. Their maximum width is $4.0:$ meters. Their length is 18.75 meters. When they are put in the lock chamber they rest 0.20 meter behind the face of the wall.
Eachof these gates is built so as to float, whatever may be the height of the surroundiag water above its minimum level, which is that of low tide (0.7., meters). For this purpose a horizontal beam with a flush web is placed at this level, which forms a tight deck and comstitutes a compartment of the lower part of the gate, where the ballast is phaced, and where the water can never get in. Upon this horizontal deck three vertical latice beams are phaced, upon which are put two horizontal belts. These belts support vertical members on which the sheet-iron skins are riveted.

The gate is completed at one of its extremities by a rectangular compartment 2. 20 meters long. and is furnished with a trumion at its upere part and a bearing at its lower part. The trmmion work: in a collar fised in the masonry, and the bearing rests on a pivot fastened into the invert.
Wooden casings fixed to the gate insure the tightness of the contact of the leaves and sill.

Iron culverts, capable of being closed by sluices, allow the water in the canal to penetrate freely into the gate above the tight deek. so that when the water rises above the reference o. 7 F meters the equilibrium is mot disturbed.
Iron shafts rise from the deek inst to the upper part of the gate, so that the lower compartment can always be inspected and the ballast handled. They are ordinarily closed by a tight cover.

The gates were constructed in the locks themselves, which were pumped out for the purpose. The compartment, a.25 meters long, which forms the heel post, was carried from the workshop all put together. It was placel immediately upon the piowt and served as a hase for mounting the rest of the leaf.

When a gate has to be remared the sluiers of the colverts are elosed at low tible. The tiderises. lifting the sate. Whioh is mand fast to the side of a barge to aroid any chane of accident, and is then
carried into the dry dock at Harre. It is brought back and phated upon its pivot cluring ablide. At low tide the collar is put on amb therentrert sluiess are raised.

This new systom of gate was invented by M. Bellot when he Was chief anginer at Have. It presents several alvantages wor the system in gemeral use. In certain cases, especially at Tan carville, there is economy in the masonry. Great difficulties are aroided in making the gate itself, the dimensions of which need mothave great precision in order that its tightness be absolute.
shight variations in the form of the leaves do not prevent this tighthess.

When the gates are exposed to the waves or a strong current the finter gates are exposed to shocks which are liable to break the entlars. 'The one-leal' gates only beat upon their edges and the chance of accident is very much less.

Finally, the operation is simplified, and the closing of one leaf is effected without the attention which-is required in miter gates. The superiority of the system is also shown in the various accidents which would have broken miter gates when the single leaf has resisted perfectly.

The designs for the Tancarville gates were prepared and the work directed under the orders of MM. Bellot and Quinette de Rochemont, chief engineers, by M. Maurice Widmer, assistant. Tho gates were built by M. Paudet, Donom \& Co., constructors, Paris.

Chapter XXILI.-Shipway built by the chamber of commerce at Rocen for the repair of ships.

(:21) The port of Roum has been completely changed since 18 sin $^{\circ}$. Artually mone of the old quays are left: they have all been replaced by new ones. A timber basin bordered with quays $1.15 s^{5}$ meters long with an area of 125.0 on square metres has been finished, also a protrolemm dock having aressible banks of $1 . f(00$ meters with six landing stages and an area of 115,0 of square meters.
($\because 1$) The chamber of commeree has lately built a slipway acooding to Labates system which may be described as follows:

The transworse slipway at Rouen is !ometers long: it can aceom-
 :0 per cent; its width is sl. 30 meters, and the travel of the crallo is 31.51 metris, corresponding to a rise of $\% 16$ meters.

It can be traversed in $\overline{5}, 3 \frac{1}{2}$, or \because hours according to the couphing of the winding gear.

When the cradle is at the bottom of its eourse. the level of the kerl blocks is t. 50 below high water; when it is at the top). this level is 1 moter above high water.

The inclined phane is formed of forty-two lamms (Fiss. 134, 135. 1:38) resting on piles united together by bridle pieces. These beams support sted rails.

The cradle is formed of forty-twe bex-girders firmly hated. corresumbing to the forte-two hems of the inclined phan : wach gimen carries also a steel mail. Between these two sots of raik, strings of mollers are phated on which the cradle-truck rolls.

The cradk is divided into two parts. te. 3 ; and to. th meters in longth; which can be worked together on separately, so as to mase a large ship or two small ones. On the lamd side the cradle carrias a service bridge high enough to be always out of water.

The hauling chains, forty in mumber, are attacheel to movahle sheaves phaced midway between the heams of the cradle: these pulleys being connected by a compensating cable (Fig. 1:3) which divides equally the tension betwem all the chains. This cable passes alter nately around one of the movable pulless and a pullere fixed to the cracte: Its empls are attached to the cradle.

Fota. 13i- - Methon of attaching the compermsating eable to the eradle
Each tradion rhain passes romm a wind drum driven hy an ent-
 (Fig. 1:36) extending the whole lengel of the slip. 'The engime gives a power of at horses mosasmed on the shatt.
 and the cralle. 'They ate of chilled iron. 1.14 meter in diametor. and 1 . 1 s metor long. Fach has a ridge in the midrle which rums in a growe in the rals: they aremited be iron rods, which kerpthem
 have the allantage, wor a system of wherls fixed to the cralle. if avoding the axle friction : rolling friction only has to le worrome.
 prasure, combined with simplification in comstruction.

 chains. The pulleys are all whe meter in diameter. the mosable
mase siding in graides 0.20 metre long. In case of the rupture of a whath, the mosahbe pulley will be carred to the bottom of its sumbe. therompensating eable will continur to pull upon it and will distrihate its load equally among the other chatins.

In case of the ruptureof the compensating cable. the eqalle trucks
 be frames armerel above the guthes. 'The rhanceof rupture of the mable is small, as it is expesed to a trasion of maly ab kilograme pel \therefore gllarr millimeter.

(:21s) (\%st.*—M. Labat constructed this slipway at Romen for \%fo, ofor franes, whirli was diviren as follows:

('haprer XXIV.- Port of Howfletcr.

(श!!) Slmirimy busim with a ferting urir for fillin! it.-Hontlemr Harbor is expesed be its situation mon the south bank of the Serine whatry fositing. To preserve the chamel, a shacing basin with all aran of ot hertares has been eonstructed. filled directly from the : 8 a at high tide ly means of a weir with rotating gates. (Fig. 1:3!).

Ther shicing lock has four openings, ach ormeters wide separated bepers: moters thick, smmombed by a stome bridge. Without -ntering into the details of its construction and cost it will be interwing to know how it is closed.

[^52]The apparatus for closing the sluicing lock (Figs. $1+0$ and $1+1$)
 widr. whah prevent leakage as well as the inopportme opening of theresolving gate by the wares striking it from withont: Secome. (If a revolving gate against which the head of water for the shateing fresses when the guard sluices are raised.

Eath sluice carries two racks which gear with pinions kexed to a horizontal shaft above, which four men turn he means of winthes phated on the piers or abutments of the lock. Jhese ratek raise first a valve plared at the base of the shace, which uncovers 1 wo orifies (0.20 meter high by l.iometors wide: these orifices empty the chanther between the slaces athl the mendring gate. The rffort tw ratise the slumers is consequently remmenth that of lifting their weight. The

Fin. 1fu. Vartical half section.

mack caries a stop which. when the valve is rased, catches the shate and aises it to the top of the areh of the ?ringe. 'The preliminary
 home.
 midlles and in order for faditate the closing of the grate aratust the

 the pressure of the water as somen as the stop which holds it is furmed.

The great gate, the two panels of which beeome mequally lealed, rotates sumbenly into the plame of the axis of the lock. Toclose the great gate, it is sufficient, after closing and fastening the rotating valve, to incline it slightly to the lock axis be momson a cable fixed to it and pessing round the drum of onf of the winches. 'Thedifferancerof heal existing within and without the gate canses a difference of pressure on the $\{$ wo panck: and \cdot loses the gate.
 of ak 0 . fo meter thick, firmly held at their extremitios by beams af dumble T iron forming brialle piones. The phates of these beams ane ambedded in the wood, so as formed amy projection. The uprights are hald together hy thre horizontal bolts extemding the whole width of the gato: for belts of wromght iron strengenen the whole. The axheof the gate is formod be a domble T heam terminated ly for pivots and joinel with harizontal bridle pieces. The pivots are of - 1 er l , (0.2l0 meter in diameter
('ost.-- 'Tha cost of constructing the gates and shaces of the hasin. with the wimehes, efe.. amomotal to $1: 3:$, lia! frames.
 during laters of surian water into the basin at will during high tide.
 much elearer than those at the bottom, and that by their wes the hasin would be perenter as much as pessible from silting up. As

 hasin. This length was divided intoloh openings. 10 meters wide,

 tolower the gates. A werir with a movather orest is thas whathend. which allows the introlumtion into the hasin of a later at wathe of

 plared at the lowor part near the flooring : earh gate eonsists of eight rertical bramof phate and angle iroms commeted abowand below be twosimilar crossheams: it in covered on the upstrem side with a plate irom skin, smillimeters thick. : arminatin, below in the form of a semicelinder, so as to always remain in contate with lhe. word ating built into the floming sill. On the downstram side, at a hoight of
 beams: to this crossheath the taction chains are ettarhed. The rad vortioals of the gate: are caterl with worl. The gate is represented in the figure in its vertiond position: that is. when the weir is rlosed: and also a gate in a horizontal prsition. although in reality it never takes it. The figure shows the inclination of the gate during the process of filling the hasin when the level of the seat 11. se 2 meters. a. Forked hearings and journals, wo for vach gate. The form of these hearinge allows the gates to he removed for repairs without having to take them apart undor water. r. Plate iron apron, 4 , entimeters wide. hinged to the base of the gate ame furnished with a leather hand which covers the joint of the gates with the sill. This apron drags upon the fooring, following the motions of the gate, and prevents ohe structions which might proluce acedents at the moment of lifting. d. Twotemnons for ead gate fixed to the upper beam, just wer the rotation jommats. These tennoms are forered in a single piece, with a plate which serves to bolt them uph the wob of the heam: it is by means of these temons that the bolts hold the gate fast aganst the frame so that they may be able to sustain the pressure of the risim: tille while the stomgr hatsin is empty.
B. Framowork holding the moving merhanism for rotating the gates. It is formo.l of two vertiod lattice beams 1.25 meters high: these beams, spaced for contimeters apart, are jointed below toa horizontal beam, 1.0 meters wide. hatime a flash web piered with holes; for the passage of tho chaths. These threr beams are bracel by aros partitons of irom, x millimeters thick, mumbering six per span. . 1 thire vertical beam, bil contimeters high, sustains the crossheams of the foothridge. These latter are mited be four coursen of crossbeams supporting the planks of the service bridge and the rails for a moving crate. On the reservoirside is a sidewalk on corbels, projecting forentimeters, and held by plate iron brackets and angle iron-.
D. Guide pullers of the chans: they are cat-iron growed chain pullers, their growes lined with hronze. They revolvon iron shafts, fomillimeters in diamoter having suppents rast in a single pioce and bolted mader the web of the horizontal beam.
E. (iuide pulleys of the rhatins, of the same mondel as the preceding hut kered to the shaft. The plumber bloks, inclined at his, are fixed at bocentimeters apart upon the upper plates of the vertical beants: the shaft of these pullers is bis millimeters in diamoter at the learings amd go millimeters in the middle. The plumber inheks are furnished with a half lining in bronze, and an iron cap.
F. Reciprosating fames for rotating the gates simultaneomsly. Eath frame -

(i. (rose givders, having thar ends bolted upon the sides of the moving frame se that they can be removed. Tho chains are lixed unon these cross girders her math of thro-burkles which allow their length (o) be rexilated, se that at the closing all the gates shall eome against the frammork. The frame, by its reeiprocatinge mor tion. determines the simultameons rotation of the gates.

 the verticalleames of the frame.
6. (hair supproting the belts.
t. Bolt shatio.

Shorring masis at the boht of honflecth

First. Ten opronings. formed be nine piars and two abutmonts. These openings are able 10 metors wide and 11.0 theters lome. Their invert in the highest part is at the reforence 14 motros * sus as to allow the filling of the basin in the lown tidnes the highest attan-

 building on the central pior contains the hydrandic machinery amb the lorlging of the machinist.

Secomil. Thirty iron food gites, three for each opening. durning an horizontal bearings embedded in the invert of the opening. These food grates rise fom the invert (refarence $1+$ moters) to the
 meters.

Third. An iron frame work built on piles and supporting the upper edge of the flood sates; it carries the guide pullegs of the ifting chains and the rollers upon which the frames move and forms at the same time a brider of communication on which a three-tom rame rums, which allows any piee to be taken out and replaced bory rapidly.

Fourth. The framsmitting mechanism, consisting of chains aml a movable frame. This: last is jointed to a rod driven by two twin presses moved by water moder the pressure of on kilograms pros square centimeter. The otherextremity of the frame is drawn hy a romonterpose intended to werome the passive resistances of the :pparatus during the opening of the food gates.

Fifth. The medhanism for keying. intended to maintain the fleod grates aganst the frame work. to permit them to besist the pressure of the rising tide just to the moment of filling. This mechanism consists of a shaft carrying a series of pins, two for abloth flow gate. driven by a littlo suecial hydraulio press.
 pled herbaulie prosses. A little donble-rolimbered stemm amgine of ! home-perrer works the pumps for filling the acemmalator. or. if neressary, drives dhe wator directly into the: relinders at the ereat preses.
 Jilograms per square centimeter.
 ming of the gates is collected in an iron tank placed on brackets let into the wall of the angine romb. From this respuoir the pumps take the water requirerl for their use. This isamimportant eornomy. :ine the apparatus has to be fod with fresh water homght from the - it !

[^53]The complete operation of the weir consists: first, at the moment of high tide. the hasin heing empty, in gralably lowering the gates, \therefore that their crests shall be comered be a she of water 0 dito meter thick; sucombl. in mising the gates when the hasin is full. that is to sty, genmally, with at diference of lowel if mot mothing at leas insignificant.
 $10 \$ 1.204 .85 \times .30$ frames.
The sluicing operations areatirely sucesseful, and it is omly sulti-- ient to make one or two at meh tide to keep the outer chammel chatr.

The feeding weir works regulatly, but, at the same time. tha inWhase current protuced on the apmoaches to the weir, when the rerolving gates are lowered. does not exalule absolutely the lower turbid layers of water.
The proliminary plan was made he M. Armons, amd the work was directed by MM. Lehlanc and Widmer, ongineers.

The contractors were M. Hersent for the lork, and the Fives Lillo ('o, for the iron work of the war.

Figs. 13! 141 are taken by permission from the Portofuille des pronts et ('hathssíns.
('hapter XXV.-PORT of HoNFlevR-SHPHOXS BETWEEN THE STORAGE BASIN AND THE FOURTH LOCK- ACTOMATH SHDONAGE.
 tion upon the south bank of the seine witary to comsidurable silting पp, against which comstant efforts have to be mate. The stomge hasin of ot hectares affords the principal means of kroping the passes free by shacing.

When great shatings are mot made. commonieation is opened hewern the docks and the storage hasin, in order the increase the efli-
 the silting of the docks by raising as moch as possible the level of the watere of tome last, before the ofening of the oble sates atm infroduction of the fork, which is very murh hathed with samb. This
 fortaght, to reeistablish the level in the dock when this lever has

 there was great interest in making a tight asong. 'This motion.
 These sifhons are six in mumber. The sadlle is plated alocre the wdinary level of the basins (10.3 motars).
 lowing experiments. When at small hole is made in the wall of a siphon in operation, in the portion whore the pressure is below that of the atmosphere, the siphon loes now bremme dear it the hole is
verysmall. The extemalairis surked hy this orition into the siphm. and it iswes ingreat buhbles whah hrak upen the surfare. By enharging the orifere or he pieremg other holes near the firs. we fimally chan, i. A ampty thesiphom.

In upening the sucking orifice to bring alout the charing. we at, serve that the flow of the latter diminishes progressively until it a
 claming is namy instantameons. It is avident that this prinoiph. maty be appled to the filling of siphoms of ereat capacity.

Small siphoms are filled easily and rapidy, either by the omptyine of a reservir full of water, or bemeans of a surking-pump. A lit. the siphon pioped with a sucking orifur properly aranged will wows as a filler for siphons of greater dimensions, if wo mite the piopert sucker of the first to the top of the seromt. To stop the ation it

will suffee to clear the siphoms by putting them in communication with the atmosphere be an orifiere sufficiently large.
 follows: A value (Fig. 143) is opemm which allows the water in the reservoir A to fow into the pit P. amd thence. throumh the anmlait B, into the low bays at the same time the "pper pat of the mencoir A is remberted with the top of the filling siphom. No. 1.
 tained in the siphon is sumed in and replames the water which rume ollt he the valver. When the siphen is filled. which is indienterl

 ameter, whirh goes through the siphon wall perpendiculamy and.
retmang along the axis of the siphom, temmates a litte beromd the top hy a rose. The object of this armanment is to divide the air at its antranco into the siphon and torbtain the rapith drawing

 -xperience shows that this sucker maty beput in fee commmacation with the atmosphere without clearing siphon No. I. For siphoms of the same resss-atetion the size of the sucks arifier depends on Ho difference of level, and the sucker helomging to siphon Xo. 1 is montrived for a difference of about 1 meter.

The sucker just deseribed is put in commanication with at siphon So. \because which has the same diameter as No. 1 , hut is phated 10.0 meter higher. The air contand in No. \because is drawn out be this siphon amd the siphon fills. as the eorresponding manometer indicates. This siphon contains a sucker identical with the first, but with a slightly less section (0.015 meter instead of 0.0) meter). Tho two sucking -iphons are putin commmication with a third siphon, called a coulvert siphon: when the manometer indicates that the first culvert siphon is filled, a second culvert siphon, comnected with the first. is filled, hy taking care not to uncorer a new dist ributing oritice until after the complete filling of the preceding siphon. ()ne matn tills all the siphons. This operation reguires from ton tw twelveminutes. The siphons filled, the reservoir A is filled by puting it in combmumication on ome side with the siphons and on the other with the "pper hasin. All the air contained in this reservoir is sumed wat he the siphons and replated by water from the upper basin. 'The rommmanation should be elosed when the water in both basins is sunsibly at the same level. Tostop the adton of the siphons they are cleared by opening the stopeock of o.n: metor, whirh puts them into communication with the atmospherer. Thar amplete rleating takes place in seven or eight minutes.
 that has just hem deseribed, and which has worked simer lsst, these siphons fill maturally athl atomatically whermor the shacing hasin is filled. 'The water then eovers the sadhlo of a siphon 0.06 metor in diameter. Which goxes down into the woll and fills by worfow. This siphon fills a seeond of $10.1: 3$ motar in diamotor plated $10: 3: 3$
 meter in diametar phaced at 0.8 moter above the serond. This ronleetion of fillers is miterl with siphon No. 1, whirh is 0. so motor in diameter. bey astopeock. When this rock is open all the siphoms till in one hour and a half of two homss, for a differeme of hevel which whelt to be above $0 . f 0$ motrer. This is the neerssary time for the deaatation of the water taken at the moment of high tide in the sluicing basin. This collection of filling siphons. arrangen in a sepres,

The collection previonsly dexcribul only works owasionally.
The siphons were plamed and built hy M. Picard. under the direction of M. Boreus, chief engineer.

Chapter XXVI.-Thatersing bridee over the dock bocks.it the port of st. Mado-st. Sehvas.
 the cities of St. Malo and St. Servan passes over the two locke in meters wide of the two docks, he means of traversing hadges move... by water muder pressure.

These bridges are similar, each one having a total longth of :3x.m meters-x星so meters for the span and if meters for the breech. The total width is s meters. the width of the wagon road is meters, anil that of the sidewalk 1 meter.

 the lifting press.
The roadway is carpied ly two principal girders with flush whe. hawing the form approathing that of a solid of erqual resistance: the maximm height being e.sit metnes. The mper flange is curvent. the lowerstraght. The eross girdurs and spaced! meters.
 is phacen vertically in a masomer pit exactly mum the centre of gravity of the hidge and superts an imon bex gimer on when ex-
 girders, and designed to suphert the whol wight: latheall! it is fitted to pieces of iren which mose in rertical guider.

In order to diminish the quantity of water at the pressure of bo atmospheres Mr. Bared, anginere of the docks at Marseilles, invonted aspecial apparatus, wallel a menperator, which forms, with the lift-

ing press, a sort of harlerstatie halamere allowing the work midnow! he the devent of the bridge bo !e stored up and utilized for masing it altorwarls.

 (Fig. 145).

 that the bridere, P, in descending drives the water of the prese undir the piston of the recouperator and rases the whole system. A pipn. 6. allows water under pressure to be introduced at will into the athe malar spare over the piston of the recuperator, between the pisten forl amd the celimer. or to allow this water to escape. In the cate at the introndution of this water the pressure exarevised in the anmular space is adhed to the weight of tho load. 'The pistom of the reenperator deserods and drives the water into the lifting press. In case of the ascape of the water the pressme in the ammalar spare is relieved; the weight of the hrige again beomes greater and raisas in its turn the piston and its loarl.

The procoling theoretical armagement was modified in pratioe was to a obid having to take away the load of the piston ach timo that it was meoressary to change the packing. The apparatus is reramed, the pistom and pistom rod are fised, while thereglimer is mosable and a armos the loml; so that to change the packing it is omly meressary to raise the cover of the relimder. Fig. If6 shows the: arrangement alopted.

The piston rod, A, is a hollow astibon cylinder tre centimeters in diamoter, which reste upon a cirealar foot 1.41 mo-

Fir. 1 fi..... Horizontal section of the recol prrater pros. ters in diameter. strmgthemed he flanges. The rom is furmishedabove with iron ringes, fomming a pistom of 54 contimotors in diametor', parked with two leather eonlars all kept in phae loy a rast-ipon foll fower bolted down. (Fig. 1tio).

The interion of the porl (Fig. Ifia) forms a comsmuncation. through the pipe. ". between the lifting press and the mosable welinder of the recouperator. This last is ist centimetors in intorion diamoter and solmillimoters thick. It has an enlargement below and a stuming box for the pats: age of the roel. 'Tobring the water from the acemmalators into the ammatar space. (S. Inft between the reol and the eylindere the evelindrical passageway, B. in the piston pod itself. foms the prolomgation withepipe, h, and leads into the ammbar spare through a hole pioperd latmally below the piston.

The base of the cylinder carries externally two flanges which form at drenlar eqroce for holding in phace the imon phate which serves as the bettom of the beded box. This phate is mate of two piomes put togethor with holts. The box is relindrical, of platomen s millimetors thick, 2.3nemetors in diameter, and 3.2immershigh. It
is guided above by a cast-iron support having two arms with shoes, E E. at their extremities. which run on two cast-iron gruides, 3.45 maters long. built into the masomry. Threa oak frames placed above wach other, at the foot of the roxl. form a support 1 meter high upon Which the loaled box rests when it is at the bottom of its course.
(:3:) The witherawal and replacement of the bidge requires. besiles the working of the hydrostatie balance formed by the central press and the recuperator, somo acoessory operations. We must be ahle, in case of necessity to lift the loaded box to the top of its romse, and on the other hamd lower or lift separately the box girder, and in case of repairs, the phunger of the central press. These "perations areaccomplished by theacoumulators and the distributing apparatus phaced in the pavilon and armaged for this purpose.

The weight of the recuperator is less than that of the bridge.
When the bridge is to be raisel, the box being at the top of its course, it is sufficient to open the valve, which puts the amman space compirsed between the piston and its cylinder in communication with the water under foressure. so that the latter, acting on the lower face of the box, comsensates for the difference between the weight of the bridge and that of the box, and produces the upward motion of the bridge.

Tolower the bridge it is sufficient to allow the water to escape from the amular space: the bridge descends then by its own weight and lifts the recuperator. 'The horizontal motion of the bridge is ohtained by two hydrablic presses tixed horizontally on the vertical walls of the box girder (Fig. 1+4) and moving with it. They carry at wach extremity a tackle block with three pulleys. around which the traction chain passes. One sepves for the advance motion and the , ther for the return. The combluting water fipes form a joint with the cylinder preses. The bridge can move upont wo pairs of rollers fixed just hehind the pesition it normally occupies--that is, when the pass is closed-and upon four pairs of movable rollers, which are made to slide upon a castion frame by the action of a hydranlic press, which pushes them under the bridge as soon as it is raised. The pollers are fixed in pars upon a balanced beam, so that the weight of the hridge shat be divided equally over the mumerous prints of support. The rectilinear movements of the bridge are limited at each extremity by buffers built into the masonry.

The complete withdrawal and replacement is made in three or four minutes. One man is sufficient. He is phaced in the pavilion which antains the operating keys. the recuperator, and a service hamd pump, intunded to force in, if necessary, water anough to move the bridge. The water under pressure is hrought throgh one pipe and returns in another to the pavilion constructed betwern the two rolling bridges and contaning the pmons and acemmatators.
(:33) Operim! and rlesin! the lrialye.-The pavilion contams three

pieces of distributing apparatus. When it is required to open thr pass the lockman moves the valve of the first apparatus, and the water under pressure from the centmal machine and the recuperator is forced under the piston of the rentral press, which raises the sherper and consequently the bridge. Then he opens the value of the second apparatus and the movable rollers slip umber the bridere: he then lowers the bridge upon the rollers by opening and diseharging from the lifting press. When the bridge rests upon the rollers he prolongs a little the discharge of the water so that there is a play of (1.0:3 meter between the sleeper and the plates of the beams. Finally. he opens the ralve of the thind apparatus and the rectilinear motion is produced. When it is required to put the bridge in place, the lockman opens the valve of the thind apparatus and the bridge is brought vertically over its first position: then he opens the valre of the first apparatus, which lets the water -umber fressure into the central press. When the bridge is sufticiently mised the valur of the second apparatus allows the movable rollers to be brought hack: then, on opening the valve of the first apparatus, the bridge sinks to its normal position, and at the same time the water in the central press roms into the recuperator and is stored there. The total weight of the bridge is 181,50 kilograms: the prioe including the mechanism, the recuperator, and the pipinge amounts to 200 , 000 frances. This bridge was plamod and made be M. Robert engineer of roads and bridges, under the direction of M., Mrngin, chief enginerer.

Figs. 14in-1ta are taken by permission from the Portefenille das Ponts et Chamsséres.

('hapter XXVII.-Hydratide works aNb paecmatu fotidaTIONS MADE AT (iENOA.

(? $3+3$) Graving docks and acressor? monks. The Duke of Galliera bequeathed to the Kingrlom of Italy several million francs for the improvement and extension of the harbor of Genoa. Among these improvements were particularly specified the construction of two staving docks, capable not only of answering the present requiremonts but also those which might arise in future. A special commission of engineers was appointed to find the best means of fulfill. ing these obligations. The commission, considering the exreptional technical difficulties which this work presented, advised the opening of an international eompetition requesting proposals for the work. with the processes for its execution. and requiring suaranties therefor. The administration adopted this advice.

Eight competitors responded to this invitation of the technical commission, and after a long examination they reperted in favon of the project presented by MM. (. Zschokte and P. Terrier.

The works to be constructed include principally the Quai des

Graces, the western guay, the two docks, the quay which unites them, the pumping machines, and the caisson gates.
(2:35) The Quai des Graces is 200) moters long and \% wide. Its coping is 3 meters above the level of the water. The retaining wall is formed of masonry piers founded by compressed air upon rock at the reference - 8 and united by hrick arches. In the space of 12 moters lectween the piers the filling of the quay is protected by stone pitching.
(236) Western quay.--The foundations of this quay having heen previonsly made the wall alome had to be constructed.
(23i) Graviny docks.--The two docks are parallel. The distance apart of their axes is $7 \pi .3$ meters. Their principal dimensions are as follows:

	Nı.	No. \because
-	Mrefors.	Meters.
Maximum interior length at the quay level incluting the ent mate chamber	179.34	219.94
Width at the same level	29.40	2.4.914
Width of entraner at the same level	25.20	15.48
Width at the water level	24.8010	18.00
Width at the sill	21. XF_{5}	14.64
Height of the water ons sill at meat tite.	9. En	8. (n)
Height of water on the lowest point of the clock	10.0)	9.90)

The two docks, although of different dimensions, are constructed in the same manner. Fach entrano has two recesses for the caisson gate.

Dock No. 2 is provided with two other recesses which are respectively 90 and $1: 30$ meters from the entrance and which allow a second gate to be placed therein, thus dividing the dock into two separate chambers, 90 and 110 meters. or 130 and 0 meters.

The transverse section of the gate chambers is a trapezoid. The interior has five altars in dock No. 1, and four in No. 2.

The wells for pumping out the dock are in the walls toward the entrance. The eastern wall of dock No. 2 contains a special culvert for discharging the water of the two compartmonts independently. which the second calsson gate allows to be placed at the bottom of the dock. The walls approach and close in the shape of an ogive at the end opposite the entrance.

From one part to the other of the ogive inclined phanes, parallel to the axis of the docks, allow the descent of wagons to the bottom in order to transport the material required for reparing ships. These inclined planes are flanked with staireases for the descent of thr workmen. The invert of the docks has a longitudinal declivity of 1 to 100 . It has the same transerse slope from the axis toward the walls, along which little gutters take the drainage to the discharging well.

The revetment for all the parts of the work which are exposed to shocks or subject to strains is of hewn stone. The other parts of the revetment are of brick. The flooring is of sandstone on brick fommations.
(238) IIrad wolls.-The hearl walls are united with the Quai des Graces and the western quay by continuous walls, fommed at the reference - 8 .

P'umps. - The pumping house is placed between the two basins at the entrance. Three centrifugral pumps, driven by as many compound condensing engines, are placed in a dry pit at the reference -s. Two of these pumps can clear either basin filled with water, in five hours, which corresponds to a discharge of 4,000 cubic meters of water per pump per hour. Two other pumps, driven by special motors, provide for the leakage; each one can discharge 250 cubic meters per hour. The steam is furnished for these machines by six boilers.
(239) The three caisson gates are of plate steel. They are surmounted by a bridge large enough to give passage to wagonettes or cars. They are furnished with a number of sluices sufficient to assure the filling of one of the basins in an hour at the most.

EXECUTION OF THE WORKS.

(240) Chararter of the foundation. - The soil upon which the works had to be founded is a calcareous stratified rock of the Miocene formation, with very shelving banks, covered with fine layers of sand and rock ruins. The formation is very variable, both as to the quality and hardness of the rock.
The water has washed away the soft parts and left the hard, so that the surface of the rock presents a series of projections with the hollows filled with sand and fragments; hence the same arrangements had to be made as if the rock had been completely porous, by substituting a béton bottom for the natural soil. The submarine operations were as follows: First, the blasting of the rock; second, the removal of the sand and rock blasted, and, third, the laying of the masonry on the bottom thus cleared.

Tuo solutions of the problem. -The thickness of the banks and their great depth under water precluded, for the boring, any arrangement employing machinery set up above the level of the water. The same circumstances would have rendered the extraction of the pieces of rook by dredges very difficult. Again, the sinking ol béton under water at such great depths would have given only mediocre results.

Recourse must be had to pueumatic processes. Two solutions presented themselves. One was that adoped for the construction of the docks at Toulon and for the basin at Saigon. It consisted in constructing the masonry of the flooring and side walls upon several
great floating caissons and proclucing by the increasing load of this masonry their gradual immersion and descent into the soil at the bottom, then filling the working chamber with hefon when the cutter had arrived at the chosen bottom upon which the work was to be erected. This is in reality the extension of the process in use for the foundation of bridge piers. It is perfectly satisfactory when absolute tightness is not required in the work. but this is not the case with the dry-dock. It is impossible to disguise the fact that the iron imbedded in the masonry, the plates forming the diaphragm between the upper masonry and the beton filling the working chamber, exclude precisely the conditions of homogeneity and continuity of the masses which such constructions are expected to fulfill. The metal interposed must necessarily alter with time and produce leaks. It is also very difficult to spread upon such a great floating caisson the increasing load of masonry in a manner sufficiently uniform to a void all changes of form, and to work without ever deviating from a horizontal plane, first in grounding the caisson upon an irregular bottom, and then in building it upon a rocky bottom. The changes of form and the fissures which they would cause were particularly to be feared at Genoa, where the immersion had to be made in a part of the harbor mot entirely sheltered against the waves and where the blasting of the foundations presented great difficulty. Another solution must be found. That which the contractors proposed, which was adopted by the technical commission, consisted in removing the rock and laying the masonry under water in great diving-bells furnished with the apparatus necessary for rapidly effecting the horizontal or vertical displacement of those machines best adapted to the boring and extraction of the blasted material and the introduc. tion of new.
This process permitted the direct building of the foundation upon the prepared bottom, avoiding risks of change of form and of rupture in the perfectly homogeneous and continuous masonry, in which no portion of iron remained imbedded. It allowed the different portions of the work to goo on independently. These were the motives which decided the contractors to adopt this solution and to construct for realizing it :

First. A movable caisson for blasting out the rocks.
Second. Two other movable caissons for the construction of the walls for the quay and hasin.
Third. A great floating caisson for the extraction of the rocks and for the construction of the flooring.
(2+1) Caisson for blastiny out the rocks.-The hasting caisson (Fig. 148) is 20 meters long and ti.af meters wide. The working chamber does nut differ from those ordinarily used for the construction of bridge piers, except that the walls are lighter, as they do not have to bear the load of the masomry above the bottom.

Pigs of iron placed between the heams of the roof batane the under pressure and keep the caissons on the bottom. Two horizemtal phate-iron cylindurs, 2 meters in diancter and s. 50 meters in length. are fixed above the frame parallel to the tramserse axis of the casson and in symmetric positions in respect to this axis. They are open at their lower parts. A tube comere one with the other amb puts them in commmatation with the compressedtair pipes which supply the working chamber. Water is allowed to asceme in the cylinders, to fill them. when the caisson is kept at the hotem fon hasting. The water is forced out by mans of compressed air when the caisson is to be raised and changed in position.

This substitution of water for air in the cylinders, which has for effect the gradual augmentation of the water displaced by the sy:tem, can be regulated at will and continued just to that degree necessary for the equilibrium of the load, so as to assure the stability of the caisson upon the bottom ; the slightest effort then suffices to lift the apparatus. The caisson is sumomed by two shafts with air locks for the entrance of workmen. A third is reserved to add, if necessary, a lock for the materials extracted.

The caisson is suspembed by twenty-four chains to as many jacks resting on a heary staging, which in turn rests on two barges furnished with all the apparatus necessary for a rapid displacement.
(24:) Boring apparatus.-The boring apparatus made by M. Sulzer at Winterthur, is arranged in the following mamer: The platform of the caisson is divided lengthwise into three equal belts by four double T-irons, the lower wings of which serve as a rolling track for three trumions on rollers. Each of these trimnions has a collar at its lower part to which one of these boring machines is suspended by a joint. The trumion moves the length of the platform, the collar slightly unscrewing along the whole trumion. so that the point of articulation of the boring machine may occupy every position of a plane within the limits of one of the three belts, and the tool may also turn in each of its positions in all directions so as to pierce sloping holes at will. The boring machines are driven by water under pressure brought from an accumulator on the boat, hy jointed piping which descends along the central shaft, runs along the platform, and feeds the tools in all positions and inclinations given them. As the boring progresses the boring tool is prolonged by hollow rods screwed together. The diameter of the bowing hit is 10 centimeter's for the holes exceeding \boldsymbol{y} meters in depth. and 6 centimeters for the others. Two double-acting twin pumps. furnishing water under pressure, are placel in a boat fastened to the caissons. They are driven by two portable engines of th hore power each. The water, taken from the sea, is driven into an accumulator and kept under pressure by the stam taken from the engine boilers, The steam acts on the unpersurface of a phate, fourteen times the

Port of gemod. Biasting caissons.

Fin. 148, - Transvarse section of the movable calswns used fordrilling the rock for the purpose of submarime hlasting. X, the working chamber. Y the lishtering ohamine:

H. Ex. 410-vor, hi-Face page rat.
section of the piston, which tramsmits directly to the water the pressure of of or © atmospheres, necessary (on homg. This arrangement avoids the great load which would have to be phaced upen the barge with an accumulator so weighted as to be capable of giving such a great pressure.- When the bering of the holes has been completed, just to the repuired depth, ore the whole surface covered lig the eaisson, they are filled with cartridges or dyamite gelatin. the wires are attached to a floater which is passed madro the cutter, the

Fis. 14!.- Port of genoa. Transverse section of the movable caisson.
caisson is raised and moved by the supporting barges, and the mines exploded by an electric battery: By experience in regulating the distance between the holes and the amonnt of the charges, they succeeded in giving to the fragments of rock hroken off the dimensions most convenient for use.
(243) Moralle caisson for the romstruetion of the quay wealls. (Figs. 149-1501). -These two caissons. Which served also for the removal of

H. Ex. 410-vol III-Face page 729.
the broken material, were 20 by (6.an meters, and 18 by 0.60 meters. They were constructed, ballasted, and suspended like the one just. described. They were provided with a man lock, and a second lock for the removal of the spoil and the introduction of the materials, and a third for the introduction of beton.
($2+4$) At Rome, before the invention of Zschokkes excavation lock, the spoil was remored through locks placed upon shatts 0.7^{7}) meter indiameter. These shafts were supplied with iron ladders inside, serving in case of need for the removal of the spoil and for the use of the workmen. The spoil loaded into buckets of about 35 liters, was raised hy an elevator fixed to the upper part of the lock and put in motion by a cable transmission.
The insufficiency of this method, especially for rasing large blocks, was immediately recognized, and the company put into use its newly invented excavation lock, which merits especial consideration. It is represented in Figs. 151-156, in the new form which it had at the works at Genoa and Bordeaus.
(2t5) Description of the pxcaucation lock.-This lock forms the upper part of a shaft 1.05 meters in diameter, having its sections united by external angle irons. A circular intorior angle iron, projecting into the shaft, is placed at the bottom of the lock. An iron plate 0.90 meter in diameter, surmounted by two frames supporting a turning bucket, is suspended at the end of a chain passing roumd the drum of an elevator placed at the top of the lock. The bucket and its supporting plate move freely through the height of the working chamber and the shaft, but are stopped in their upward movement by the striking of the plate against an india-rubber ring which lines the lower face of the projecting angle iron below the lock. At the moment, when this striking is produced an antomatic motion of levers acting upon a double stopeock puts the lock in communication with the outer air. The escape of the compressed air produces an increasing pressure and a complete adhesion between the plate and the angle iron. The outside rolling door. bordered with indiarubber, which the interior pressure no longer holds against the eyinder, is opened. The bucket is turned toward the opening and its contents (40) liters) discharged. The bucket is then tipped back, and the exterior door closed ; by a reverse movement of the stopereck. the communication between the working chamber and the lock is reestablished. The compressed air rushes into the lock. The equilibrium is again established on both sides of the moving plate, and nothing stops the descent of the bucket into the working chamber. The elevator is raised by a portable engine and cable, when the local conditions allow this mode of transmission, as was the case at Rome. Elsewhere the motion is transmitted from a schmied motor fixed upon the platform of the lock and worked sometimes by compressed air, and sometimes by water under pressure.

This little light lock, very easy to move, allowed the rapid removal of very comsiderable quantities, and quite large bloeks without requiring for its management the presence of a single man in the compressed ain. It was not armaged for the passage of the workmen who wont in easily thromgh the obl antrance. the lateral locks for removing the spoil having been taken away.

The new excavation lock. emploved in its first form ten years ago, has been very much impored. and, in view of the works executed at Bordeanx and Cienoa, it is paced in the exhibition (Machinery Hall) with its latest imporovements adopted in lass.

The chain drum is driven by means of two friction wheels bey a Schmid water motor taking its supply directly from the city reservoir situated 100 meters above the sea.

The two caissom. served not only to introluce the béton, but also tolay the masomry and the revetment in brick and cut stone of small dimensions. When the hewn stones wereof tow great dimensions to be carried in through the locks they wore lowered outside by means of a floating crane, the caisson, which had to be removed for this operation, was replaced, and the workmen found in the working chamber the stones to be set ilp).
(246) (rreat floating a aisson.-The great foating caisson shown in Fig. 15% is intended for raising the fragments of rocks made by the explosion of the mines just described, and for laying the beton flooring. It is 38 meters long and $3:$ meters wide that is, 1,216 meters of surface. These dimensions were required on account of those of the flooring. The widest of the two floors is 36 meters, that is. : meters less than the length of the caisson.

The caissom, which is now floating in the pert of Genoa, consists of three essential parts:

First. The working chamber. : meters high. surrounded by two tight plate-iron envelopes. one vertical, forming the exterior walls, the other inclined, covering the interion faces of the braces from the roof to the cutter.

Second. The "quilibrium chamber, which rises above the first to a height of 3 meters. It is completely enveloped with plate iron and traversed by shatts giving aceess to the working chamber.

Third. The iron reseloons or regulating pits. which rest upon the equilibrium chamber without commmaicating with it, and which are open at their uper parts above the level of the sea. These pits are four in mumber. 'Tw, of them extend the whole length of the caisson parallel to its walls and 1 meter from the batter. They are 3 meters wide and 8 . $; 0$ meters high. The two others, at right angles to the first, are placed symmetrically with respect to the shorter axis of the caisson. They are also s.;io meters high. and their width is 3.50 meters. These four pits are comected, and the rectangular

Fio. 1:f.-Gireat Hoating caisson used in laying the flooring of dock No. 2 ; transverse section. M. Shaft for the materials, $-1: 0$, meters; P , shaft for the workmet,
H. Ex. 410-viol m-Face page 730.
central portion formed by their interior walls communicates by a pipe with the sea. The walls and braces of the four pits form the framework to support the service bridges and stagings which lead to the different air locks, and carry the tracks. crames, etce, reguired for the handling of the excavations and the materials.

Arrangements have been male for filling the equilibriam chamber with water or compressed air, as may be necessary, and for changing, at will, the level of the water in the regratang pits, which may even be completely emptied by means of pumps. The apparatus is thus maintained in equilibrium under all circumstances (Figs. 158-161). The caisson unloaded draws dias meters, making the ceilng of the working chamber (o.s5 meter below the level of the sea. It is brought into the condition of stability required for working, hy placing enough iron ballast between the braces and orer the ceiling, to make it sink 5.10 meters, which allows the ceiling of the upper chamber to be 10 centimeters out of water. The immersion will go on increasing as water enters the equilibrium chamber and into the regulating pits, unless compressed air is introduced into the working chamber.
If one equilibrium chamber is filled with water, and if the central tank is maintained in communication with the sea by the pipe, of which we have heretofore spoken, the cutter may be lowered to the reference (-8) even if compressed air is introduced into he working chamber. We may then, if the working chamber remains tilled with air, lower the cutter to the reference - $!$, by allowing the water to rise 1.15 meters in the regulating pits: and to the reference - 11.50 meters if the water level in these pits is brought to 0.50 meters below the sea, etc.

To raise the caisson rapidly it is sufficient to pass compressed air from the working chamber into the equilibrium chamber and to diminish thus the load of water in the latter. taking care always to open the discharging orifices made in the walls of the pits so as t, lower the level of the water which they contain as the caisson rises. But this process, which prevents access to the working chamber, is only applicable if we wish to obtain a rapid rise. If, on the contrary, it is required to raise the caisson while the work is groing on in the chamber we must empty first the regulating pits b: means of pumps and then begin by forcing out the water contained in the equilibrium chamber by means of compressed air.

To facilitate these different operations several great pipes. furnished with stoppers, have been arranged in the equilibrium chamber above the bracos. These allow the introduction of sea water or provide for its expulsion by compressed air. The air from the working chamber is passed into the equilibrium chamber through a valve in a pipe which passes at the height of the service bridge

Fia. lix. Without hallast.

Fifi. 154...With ballast.

Figs. 165) and 16it.-(Giswons at work.
roadway. Another pipe allows air to be sent directly from the compressors into the equilibrium chamber. The regulating pits are put in communication with each other and with the sea by pipes 0.40 meter in diameter furnished with cocks operated on the service bridge.

The weight of ballast and the dimensions of the pits depend on the depth at which the work groes on with a stable caisson. At Genoa the arrangements were made for a dejth of from 8 to 1.t.a0 meters.

To be ablle to remove without too much difficulty the fragments of rock caught under the cutter a file of sorew-jacks is armanged in the working chamber upon which, when necessary, the weight of the raisson may rest. These jacks rest on two open beams fixed under the ceiling, parallel to the longitudinal walls which they must lift, and at + meters distance from them.

The rock fragments are taken out by six excavation locks. The béton is spread along the whole length of the flooring in superposed lavers of 0.50 meter thickness. Little brick walls are built as this goes on along the longitudinal borders of the mass, which prevent the beton from running over. In the transverse direction, on the contrary, the béton is left to take its natural slope. The walls would be useless there, besides breaking the homogeneity of the mass.
(2ti) Methorl of laying the fooring.--When the béton has been spread over a thickness of al centimeters the caisson is vertically raised and a new layer placed above the preceding. When a first mass 1.50 meters thick has been thus diposited in three superposed layers, the apparatus is moved the whole of its width in the longitudinal direction of the flooring, and gromoded so that the longitudinal cutter shall come to rest at the foot of the cross slope of the first mass at $S_{\text {, }}$ (see Fig. 16\%). A layer of so (entimeters is then deposited, the caissom is then raised, and, by a slight longitudinal displacement in the contrary direction from the preceding, the cutter is brought to touch the slope of the first mass, no longer at its foot, but 50 centimeters above it (at the point ?). A second layer is then spread upon the first, taking care to fill up, above the cutter, the little triangular prism 50 centimeters high formed by the two transverse slopes, between which the cutter is placed in its preceding position. The caisson is again raised 50 centimeters high, moved lengthwise, a third layer is spread, and at the same time the second little prism is filled up.

We have thus a second mass 1.50 meters thick joined to the first, and the caisson is then moved to commence a third in the same manner. When the layer of 1.50 meters extends continuously the whole length of the flooring the same operations are gone through with, by successive displacements upon this bed. as were previously made on the rocky bottom. But care must be taken that the new positions of the caisson should not be directly over the preceding, in order to
have a series of little triangular transerse prisms to be filled up muder the cutter, etc. We thus obtain a homogeneous and perfectly tight flooring.

Fif. 160.-Method of laying the flooring of a basin. The numerals $1,2,3,11,21,34$. indicate the different gositions of the cutting edge of the caisson: the letters $s_{1}, s_{2}, S_{3} ; S_{1} ; S_{2}$, represent the triangular prisms of beton placed under water, corresponding to the respective positions of the cutting edg.

In order not to allow the caisson to be floating during these operations it is supported upon two rows of jacks resting upon iron phates placed on the layer of beton previously spread.
(248) Supply of compressed air, etc.-The air-compressors, which supply the pheumatic apparatus above described, are placed on the

Fif. 1tis, .- Iomgitudinal wertion of one of the centers.
land, in a shop, by the side of the four 1 in horse power engines which drive them. The supply pipes which lead to each caisson are placed on rafts. These pipes are mand of sheet iron, with india rubber joints. so as to prevent rupture from their constant working due to the motion of the waves.

The free air spaces are lighted by Gramme arc lights, and the caissons by incandescent lamps. The boilers are placed in the same shop as the compressors.
A system of electric bells puts the caissons in communication with the engine shops, and informs the engineer of the quantity of air requisite, by which he regulates the working of the compressors.
(2t!) Centers of the arehes for the Quai its Gruces. - The springing line of the arches between the piers of the Quai des Graces is at

 fower plate, $\mathrm{R}_{2}=14.1 \%$ metars.
the reference -0.20 , and the construction of these arehes required the use of quite solid centers, as the rise is reduced to 1.40 meters for a span of 12 meters. It was, therefore, very difficult to find a type of center which could be set up above the level of the water. In order to find a support it would have been necessary to go down if meters below this level.
The contractor therefore decided to construct a special centur adopted for these exceptional conditions. It is formed (Fig. 16:3)
of curved beams of 13.90 meters span, having their lower plates curved exactly to the form of the extrados of the areh to be constructed, and they had to be arranged so as to eonincide with this curve when placed. The lattice beams are arranged so that long bonts could be placed in line with the verticals, directed along the plain joints of the arch (Fig. 1ift), and having their heads borne by the upper plate on the beams. The nuts, screwed to the bases of these bolts, carried pairs of chamel iron beams, laid along the generatrixes of the intrados of the arch so as to support the plates serving as bolsters. Upon these plates, suspended instead of supported. the arches were constructed. Toremove the center, the bolts were taken away after unscrewing the nuts. The system of chamel iron beams and intrados plates were then placed upon a raft, by which they were taken away to be set up again; at the same time the lattice beams were removed by a floating crane and again placed between the piers, which had to be united with a new arch.

Experience has shown this new arrangement of centers to have given, in all respects, satisfactory results.

Chapter XXVIII.-Folndation of the jetties at La Paldice, the port of Roohelle.
(250) The foundations of the two jetties in the outer harbor of La Pallice (Fig. 165) had to be laid helow the level of the lowest tide.

Fig. 16is-port of Reseleille. Plan of the outer harimer of la Pallice.
The specifications required them to be made of great blocks of masonry, 20 meters long by 8 broad, separated by an interval of 2 meters and carried up to the level of 1.50 meters; the choice of methods for carrying out the work was left entirely to the contractors.

Above this series of blocks arose the body of the jetty, which was carried over the spaces between the blocks by little segmental arches of 3 meters span.

The constructors, MM. Zschokke and Terrier, made use of movable caissons for the foundation of these blocks: the spaces between the blocks, which it was afterwards decided to fill up. was accomplished by a special apparatus which will hereafter be described.
(251) Process adopted for the romstruction of the blocks. - As the blocks had to be built on the coast, without shelter against the sen. and especially against the southwest gales, tho contractors could not, employ the usual system of caissons, and build upon the interion flowing of the caisson, which the sea would have carried away and destroyed. 'They theretore mate use of the movahle caissons whinh they had suceessfully employed at St. Malo; by their use they were able to lay the foundations dry at sea, without leaving a particle of iron in the masomry; they were able to lay twenty-four monolithie submarine blocks with hin meters of surface, amounting to 1,150 rubic meters cach.
(25:) Deseription of the creissons and air locks.-Two similar iron (aissons were built by MM. Baudet \& Donon, D2 meters long by 10 meters wide, with two superposed compartments (Figs. 166 and 167).

Fia. Ifin, ('aisson raised from the hitere.
The lower compartmont was the working chamber, 1.50 meters high, and the uper one the equilibrium chamber, 2 meters high, and completely tight; a platform was placed on the latter which carried a scaffolding a moters high, supporting a second platform la by 4 moters. Four locks and shafts led from the phat form to the working chamber. 'Two of these passages carried the ordinary air locks, and two others served for the discharge of the excavations and the int roduction of the cut stone.

At Rowhelle the caisson worked easily at several hundred moters from the shore, and the waves during the tempests passed over the saffolding. The winches of the lecks could not, therefore, bedriven hy portable rogines and cables, henee schmid motors wore used, supplimed by the compressons sot up on shore. 'The caissons weighed H. Ex. +10-Vol HI- 47

110 tons each. They carricd between the braces and on the lower platform a permanent load of $w 0$ tons of masonry: They were set up on the shore. moved down on rollers at low tide to the hottom of an inclined plane, launched at the mext high tide, and towed mar to the grounding place. The draught of water, with the equilibrium chamber filled with air and the working chamber filled with water. was then 3.30 metors.- The grounding was an operation always delicate and sometimes dangerous. It was necessary to godown exactly upon the location of the block to be constructed, against the waves. and especially against strong currents. It was anchored to six fixem points, one of which was furnished be the jetty behind and five others by booys strongly anchored. The anchoring lines passed over the grooves of pulleys fixed above the upper phatform and terminated at winches placed on the platform. By hauling and letting go with these winches the position of the caisson, and its alignment were regulated.

The height of the water above the bottom at low tide was. for the first blocks, below the draught of the floating caissom. It was sufficient then to let it godown with the tide. When it struck upen the bottom the valves were opened, giving access to the water in the equilibrium chamber, and the surcharge prevented the wasson from rising with the tide.

The depth increasing as the work alvanced the low water did not bring the cutter to touch the bottom. In this case the valves wereopened when the caisson was lowerel, and the entry of the water into the equilibrium chamber produced the groundiag.

The load was then more than sufficient to fix the caisson on the bottom, hat a new load was necessary to balance the under pressure of 400 tons, produced by the introluction of compressed air in thr working chamber, and to assure the stability of the appatatus. This surcharge of about 200 tons was given by cast-iron hallaw which was stowed upon the upper platform.
(253) Work in the caissom. - The first care of the workmen going into the working chamber was to put the caisson on a level ly digging at first under the highest portions of the cutting ellge.
They then proceded to remove the upper layers of thu !nitom just to the limestone bed which was judged proper to serve as the foundation of the block.
The operation of mising the aisson during the lasing of the masomry was done with the aid of twenty-four great sorew-jacks with steel rods 1.80 metors long and 0.10 meter in diameter (Figs. 160 and lis). These rods passed throngh brass nuts set upon the smaller bases of reversed plate-iron cones, the larger bases being riseted to the ceiling of the working chamber. The rods were in line par. allel to the wall and 1.50 moters from it. The lower extremity terminated in the form of a hemisphere. carried in a hollow of the same
form in a cast-iron phate resting on the masonry, which thus a a oided all rigid connection between the suspending pieces of the rod and the plate.
(:5t) When the masonry was commened the twenty-four jacks, having been raised to the end of their course, hat their plates 0.80 meter above the ground. A layer of masomry 0.80 meter thick could then be laid. They then took the support on this layer to rase the caissom. As there was to be overome in this first operation not mily the weight of the apparatus, but the friction of its walls in the ground, they worked at the same time as the serew-jacks, six hydraulic jacks of 30 tons each. The caisson being thas raised 0.40 meter they kept as points of support one jack out of two, that is twelwe in all, and took away the other twelve jacks to build 0.40 meter of height under their plates (Figs. $16 i \sim$ and 168). They then carried the

Fio. 167.-Transverse section.

Fig. 168.--Longitudinal section,
('aisson resting on jacks.
(aisson upon these twelve jacks, raised it, and then placed the twelve others to lay the masonry under. They had thus, around one block, and just to the walls, a continuous belt of masonry 1 meter thick and (1. 10) meter high. By a double working of the jacks identical with the preceding, they raised the caisson again (0.40 meter and carried the height of the surrounding belt to 0.80 meter (Figs. 167 and 16;). They then filled with masomry the portions within the belt, which completed the second course of so centimeters. They proceeded in the same mamer until the block rose to the reference $1 . j 0$ moters.
(2:5) High waves interrupted the work sometimes for several weeks, during which the caisson. exposed to the tempests. had to rest upon its twenty-four jacks. First, they limited themselses to removing the under pressure and allowing the water to come into the working chamber, and phaced a number of struts between the
walls of the caisson and the partly finished block. Experience haring shown that these precautions were insufficient, they built upon the block four great pillars of masomry reaching up to the ceiling, upon which the caisson rested during the interruptions of the work.

They worked night and day in the caissons (exeept during the in(essant stoppages cansel hy heary seas). An average of eighthours out of the twenty-four was used for laying the masomry, the sixteen others to raise the caisson and to carry the stone into the working chamber: Fifteen masons worked in the caisson, with thirty laborers, laying 50 cubic meters of masonry per day. These hands did not include those employed on the service bridge for carrying materials and for the preparation of the mortar on shore. The caissons were raised by sixty men, forty-eight to work the twenty-four jacks, and twelve for the six hydraulic jacks. It took on an average one and three-quarter hours to raise the caisson 0.40 meter.
(?5ti) Displacement of the caisson.-When a block was finished they waited to the next high tide to disengage the caisson.

The reference of the top of the block being 1.50 meters and that of the high dide 5.40 meters, with a draught of water of 3.30 meters, there was a margin of about 0.60 meter for the grounding.

The operation of displacement consisted in withdrawing the castiron ballast, which was deposited upon the boat, in replacing the six anchorages at low tide, and in driving out the water from the equilibrium chamber and allowing the caisson to rise with the tide. At the moment of high tide they pulled with the winches upon the anchorage chains toward the open space, and they let go on the opposite side until the caisson was brought over its new anchorage. They then repeated the operations already described for immersion.
(257) The difficulty of this operation arose because the caissom had to float nine hours, often in the night, from the moment when it lost its support upon the finished block to the moment when the following low tide allowed it to be grounded anew. If a tempest arose when the caisson did not cover the block they could, although not without risk, precipitate its immersion, but the danger would be very much greater if a sudden change of weather, as was often the case in these regions, had overtaken the caisson floating at the moment when one could not disengage it from the block nor ground it again upon it, hence they did not move the caisson except when the weather appeared to be favorable and the tide sufficiently high. It was not possible always to falfill this double condition, except by waiting five or six weeks, during which the materials were unused and the workmen idle.

These operations of incontestible boldness were repeated twentyforur times.
(2ix) Acress to the caisson was from the jetty, which was built as the first hocks were laid, and hy a servier bridge constructed upon the last hlocks not yet finished.

This service bridge rested on an irom framework having its uprights of chamel iron fixed in the masomry. It was constructed as light as possible, so as to not offer much resistance to the waves, but at the same time solid enough to give passage to the cars loaded with materials for the work. Over this bridge passed the electric wires for lighting, the two air pipes which supplied the working chamber, and the air for driving the little motors of the exaration locks.
The level of this service bridge was constant. while the plationm surrounding the locks varied aceording to the height of the caisson on the block. When the platform was sensibly higher than the service bridge the two were joined by a safety planking, carrying rails upon which the little cars were raised ly means of a winch driven by one of the little compressed-air motors of the locks (Fig. $165)$.
(259) Removal of the submarine rocks of the outer harbor of La Pallice.-After an ineffectual attempt to make use of the great caisson for the purpose of removing the rocks of the outer harbor, the contractors proposed to close the entrance to this harbor by sinking four new blocks, also to close all the spaces between the blocks already sunk, and thas establish an immense cofferdan within which 120,000 meters of rock could be removed hy the ordinary processes. These four blocks were accordingly sunk, and the wall above them raised to the reference +10 meters, i. e., 15 meturs above the foundation.
(260) The junction of the blocks.-The principal difficulty of the work consisted in closing under water the openings which had been left between the blocks, which the debris rolled in by the sea hat atready in part obstructed. These openings were of a plain rectangular section in the straight portions of the jetties. Their width varied from: to 3 meters. according to the position which had been given to the caissons in grounding them. In the curved portions of the northern jetty the iomblation blocks, constructed along a polygonal plan, left between them trapezoidal spaces. The conditions of tightness, which it was absolutely necessary to satisfy, did not allow the beton to be run in under water, which would have never reached the solid foundation, and which, besides, would not have set against the sides of the block alrealy covered with marine vegetation. The little sides of the openings could nof be closed by panels to make an inclosure open at the top which could be pumped out. The panels would not have reached the botom through the deposits which covered it, and the little open inclosure would have been constantly broken in upen. Again, the irregulatity in form of these spaces, the force of the current which passed through them, and the entire absence of all shelter from the sea were sufficient motives to prevent the employment of a movable caisson, which M. Zschokke had previously employed with complete success for the
junction of the St. Malo locks in the Seine. A new process must be found which would resist the sea, and allow the openings toln filled with masonry, laid dry, after the spaces between the bocks had been cleaned out.
(261) The eontractors proposel the following arrangement, whirh was appored by the engineers. They converted each opening int, a little caisson formed by the two walls of the block to be mited: hy the arch originally provided between these blocks, and by two lateral iron panels (Fig. 169).

At the reference of the springing line of the arch (+2 meters) the mass of the jetties was behind the faces of the blocks. It was necessary in order to have a complete ceiling to prolong the arches

Fig. 163....Fremt meation.
until they were vertically over these walls, and to lorad them 3 mc ters high with the quantity of masomry necessary to resist the under pressure. They made a vertical cylindrical opening in the arch 0.70 meter in diameter, by prolonging which they ambedded, abow the extrados, a plate-iron collar and angle irons serving for a passage of a shaft (0.70 meter in diameter (Fig. 169). They raised the jetty to the referener +8 , leaving the interior of the mass ahove the aperture for the lock placed upon its shaft.
Two strong bems placed at the same reference, $+\infty$, across the masonry, carried two winches each placed perpendicularly to the two wall faces (Fig. 170). These winches served to hamble the irom panels which completed the working chamber. The pancls were formed of horizontal elements of plateiron with India-rubber bands: between them, and angle irons 0.40 and 0.50 meter high, which could be put together anywhere by bolts (Fig. 1\%:). These elements were curved at their extremities, which rested upon the longitudinal
walls of the two blocks. The upper dement was also ebured upon its longitudimat uper face so as to completely chose upon the mat wimy wall above the ared. The angle irons of the ehoments were pierced with holes for the attachment of tir-rowls with turn-buckles

Fitr. lia.-. Langitudimal sertion.
upon the two opposite faces. Two panels were made for bach arch : they were placed face to face, with a mumber of elements determined hy the vertical distance hetween the intrados of the arch and the surface of the layer of the detritus which ohstructed the bottom of the opening. The pand thus prepared was suspemded by tackles

Flg. 1i1...-Transwerse wotion.
Flic. Be.- 1 .ompitulinal saction.
from the tiwo winches, lowered at low tide, and mantained, at first, at the height necrusary for the angle irons ame their lower eloments to be placed a little below the intrados of the areh, and a little above the low-tide level. Men went into the "pening and phacerl the two
tie-rods of the lower angle iron without tightening them too much. Then the two pancls were lengthened bey the height of the next element. The second set of angle irons was put on mader the intrados. and two new tie-pods were placed. Ther proceded in the samb mamer until the bower angle iron and the pancls tour hed bottom. and they had already a resistane suffecient to withstand the rarrents and the rising tide or even the waves if the sea became rough. At the following tide they tightened the tie-rods of the upyer abments and made with clay, quick setting cement, and hemp, a tight joint between the parts of the first element and the faces of the blocks: they drove out the water by introducing compressed aid under the arch, and then, working in the compressed air. they put on the lower elements and luted the joints.
(26is) They thus arrived at the bottom of the panel; then they ramo to a mass of stones and debris coming from the construction of the hlocks. They united this debris together below the panel by sacks of quick-setting cement, and then began to clean out the space, at the same time holding the debris under the panel, and on the outside, by little walls made with cemont (Fig. lil). These little walls thus formed the prolongations of the patmels and allowed the men to descend to the foundations of the block, and twhegin layine the mason?y there.

As the masomry rose, the tie-rods which were met were rephaced by short iron rods, curved and embedded in the masomry, and eronnected to the flanges of the panels by a hook driven umward so as to be able to be pushed down and thus release the pand.

When they arrived at the reference 1 meter they stopped, all the hooks were pushed down by bars, the upper tie-rods taken off, and the panels, becoming free, could be used in another place.

The rest of the space under the areh was finished in the open air at low tide.

The construction of these great hooks began in May, 1Ret, and terminated in Jume. 1sss. During this time the two aissoms eonstructed twenty-four blocks.

The depth at which the bocks ware hail varied from the reterence, - 0.76 to -5.35 meters. and thein heights from the reference, 1.50 . 2.21 to 6.25 moters.

The total cubic mass was 18,001 cubic meters: it was paid for at the rate of fo. 49 frances per cubic meter. the excavated rock and edment being provided by the (iovermment.

PART III.-BRIDGES AND VIADUC'TS.

Chapter XXIX.--The new Steel bridie at Rocen o. the Seine.
(263) The new bridge at Rouen was constructed to replace a suspension toll bridge built in 18:316.

The bridge (Figs. 1it3-1ita) consists of steel ares resting on masonry piers and abutments. It is unsymmetric, a condition which was imposed by the peculiar circumstances of its situation. It is formed of three spans of $40,48.80$, and 54.60 meters, with rises of $2.50,3 . \hat{2}$, and 4.57 meters. hesides a straight portion of 16.80 meters span with an intermediate support on columns. The complete length of the work is 196.30 meters. The width of the bridge between parapets is en moters-1t for the rowlway and if for the two sidewalks. The quays on the two banks are not parallel ; they are at an angle of $4^{\circ} 5$ '; the two spans of the bridge are therefore slightly: skew. The foundations were made by means of compressed air. except those for the rear abutment on the left, which was founded on piles. The steel ares are nime in each span-five under the roadway. two under the sidewalks near the edges, and two at the sides. The seven intermediate ares have phates 0. dio meter wide ; the thickness of these plates is 0.0 of3 meter for the five ares under the rombway and 0.020 meter for the two intermediate ares. The border arre have plates 0.30 meter wide and $10.0: 3$ moter thick. The heights of the arches are as follows:

The arches alone are of sterl. The spandrels and upper roadway are of iron. The spandrels are formed of uprights, braced corswise only, and not longitudinally : their spacing varies from enis to e.gi meters, acoording to the span. 'The uppri roadway is formed of longitudinal bearers resting on the uprights of the spandrels, and
united by crossbeams supporting hrick arches 0.11 meter thick, haring a pan varying from 1.1:3 to 1.18 meters. The arches under the roadway are of solid brick: those under tho sidewalks of hollow brick. Toward the keystome the longitudinal bearers disampar: and

the cross girders rest directly upon the arches. which gives to the work an appearance of great lightness. Two expansion joints are arranged for ench bearer. Ther span on the right is formed of ,ight
steel beams $0.3+6$ meter high, with widths of phate of 10. fo meter for
 heams are united hy iron crose girders supperting the are hes of the roadway and sidewalks. The archer wore buit on centers rosing on piles. The same renter served for the there spans. It consisted of nine truses form $2 . \vdots 1$ to 2.80 meters apart.

Fia. 17\%. -Ifstrame evation of pier No. :
(24) ('ost.-The cost of the bridge proper was $2,300,000$ franes. The excavations, made by means of compressed air, cost 12.15 francs fer cubic meter; the masomry 53. of francs per cubic meter. The prices per kilogram of the metals were as follows: Steel, 0.57 franc; from, 0.45 franc; ornamental cast iron, 0.3t franc; ordinary cast iron, $1 . \geq \pm$ frame.

The phans for the bridge were prepared by. Junker. engineer, and M. Lavoinne, chief engineer. It was arected under the superintendence of M. Mengin, chiof engineer. and Cadart, assistant. M. De Dartein, professor of arehitecture in the Polytechnic School and in that of Roads and Bridges, mand the are hitectural and dero. rative designs for the work.

Chapter XXX.-Reconstroction of the roadway of the suspension bride at Tonnay-Charente-Alfernately twisted cable.
(245) The road from Bordeaux to St. Malo crosses the Charente above the port of Tomay-Charente, 6 kilometers above Rochefort. At this point the mean width of the river is sol meters. On the right bank is a hill, on which the town is built. On the left bank is an extensive alluvial plain nearly horizontal. situated slightly above high tide.

The toll bridge, constructed in 18t?, consisted of three spans, united upon the left bank with a masonry vaduct passing over by a continuous declivity of 0.05 per meter, the difference of level between the roadway of the bridge and the plain. Ships, which come up to Charente have a free space of $2:$ meters above high water under the central span.
The foumdations were established on the rock on the right side and upon piles for the two piers. As to the abutment on the left, and the viaduct of approach, it was founded simply on the matural soil hy means of a masonry platform resting on a layer of sand 1 meter thick. Considerable settling took place during the work, but afterward a state of equilibrium was established and no motion was observed in the masonry.
(26i6) In 18:53 it was decided, in consequenew of the rupture of the suspension bridge while it was being tested, to reconstruct it, under conditions much better. both as the the stability ame the preservation of the work. (Fig. 1ati).
The total opening between the twonbutments is ouf meters, divided into three parts; two end spans of is meters, and a central one of 9 . The necessity of resting no load upon the left bank viaduct. founded as we have said very lightly, induced the engineer to carry the whole load on the piers taking the points of support on these piers and bringing the lowest $p^{\text {un }}$, of the parabola on a level with the viaduct so that the traction of the cables should be nearly horizontal without any vertical compenent. The three span roadway is held at each end:

First. From the axis of the piers to 1 :3, 6is meters on each side by five oblique cables called rigid.

Secomd. By five cables with parabolir curvature to which the suspension rods are attached carrying the roadway. These hast cables
haveonly to sustain for oo meters of the cable in the central spans and 4.35 meters at each of the side spans. Their deflection is 5 meters in

the central path, 7.79 meters for the span on the left bank. amd $i .17$ meteres fur the span on the right.

The pites supperting this stowture not having the dimensions
sufficient to form abutment piers. can be expesed only to compressive stress. For this purpose the difterence of tension, resulting from the different positions of the proof load, is met by cables or retaining guss, four on each side per span, joining the tops of the piers and anchored at the base of the abutments.
 there is arranged at the top of each an expansion truck rolling within certain limits upon an iron plate. This truck carries the steel pin 0.160 meter in diameter which serves to mite the suspension cables and the guys. It carries besides two pins 0.00 meter for the oblique cables.

The towers are of irom. At their upper part they are solidly uniten by an arched roadway with ribbed plate iron flooring and a parapet. so that the trucks and suspension joints may be easily inspected. The suspension rods are united to the cable so that they may be taken off and replaced easily without interrupting the traffic.

Fig. 177.-Method of attaching the cables.

Firi. lix. - Methon of attaching the suspension rods.

For this purpose the head of each suspension rod, instead of being carried above the cable acoording to the old custom, is suspended below by tive little stirmps (Fig. 1is).
(*is) By the aid of this simple arrangement the removal of thene cables offers no difficulty. When the serews of all the little stirrups are taken away the cable hangs freely, subjected only to the tension of its own weight. It is omly reguired to unserew the great stirrup, which at earla extremity holds the cable passing through holes arranged for this purpose in the cast-iron back piece. where it is wedged through a conical hole (Fig. lio). The same serbes of operations reversed allows the cable to be replaced.

The grays are furnished also at their extremities with mild sterd stirrups ; this permits them to be changed and allows the temsion to
be regulated. All the cables and guss are attached to the top of the piers as has been indicated.

Each suspension cable is attached by means of a back piece and two steel straps to a rectangular har, one end being inserted in a hole made in the masomry on one side, and the other resting against an irom bar embedded in the pit walls. Facilities for the removal of the cabla are thus provided. As an extra prectation, there is a second anchorage formed of two bars embedded in the masomry and united to the first system ly rods with plates and nuts.
On account of its situation the bridge is particularly exposed to the wind. Without entering into the details of its construction, we may say that the roadway was made very rigid, and that wind bracing was used, consisting of a system of diagonal flat bars placed in the plane of the upper crossbeams; also by sets of guys attached to the crossbeams and anchored on the shore.
(269) The cable.-All the cables except the suspension roxis are of twisted wire arranged in concentric layers and twisted alternately: in oppesite directions (Fig. 179).

Fig. 1an. - II. Amodin's alternately twisted cable, one.third of the natural size.
Comsequently all the wires in the same cable, excopt the central one, have the same length, and when the cable is stretched all the wires are equally elongated. This is a property which belongs onl:: to cables with straight wires, and to those which are alternately twisted. The tensions of the different wires produced by the alongation of cables twisted in the ordinary way, as in American cables have very different values. These cables manufactured by M. Arnodin may be called alternately t wisted cables.
The alternately twisted cables have a very much greater flexibility, which will be easily understood when we consider that the points of contact are fewer, and consequently the adhosion much less. The ratio of the hollow to the full portions is much greater than in the simply twisted cable: it varies from 0.15 to, (0.30, according to the number of wires. Before the cable is manufactured the wires atre passed through a bath of inoxidizable composition ; then, as each layer or crown is added, the cable passes anew through this bath, su that all tho wires and all the layers are covered, and the interior spares between tangent circumferences are filled with this composition.
(20) The vertical suspension rools are the only ones which haw parallel wires, in order not to complieate their attachmont to the transerse beams and the parabolic cables.

The ohl roadway weighed 1.3 at kilograms per raning moter, and wound only allow the passage of two oton carriages at a time.

The new superstructure weighs 1 ,3tis kilograms pre rumins metrer. and will permit two (arriages of a tons to pest in tha samureves beam. Hence, without altering sensibly the waight of the superstructure, which was a necessary condition on account of the state of the piers, they were able to obtain a much greater strensth and stiffness in the new structure.
 administration expenses, demolition of the ofd superstructure.

The reconstruction of the superstructure was plamed and carried out by M. Arnodin, under the supervision of M. Potel, chief engineerand Caparon, assistant.
I am indebted to Mr. Arnodin for information and drawings.

Chapter XXXI.-The lifting bridge at La Villette. Paris.

(2ǐ) The port of Villette consists of two basins of unequal lengths (i) and 30 meters), separated by Crimee street, which has a daily traffic amounting to four thousand vehicles. A chanmel fio meters

Fig. 1m. .- Elevation.
long and 11 meters wide comneds these hasins. This chamel was widened to 15 meters, and a lifting binge (Figs 1 sol and 181) was arected over it. This bridge weighs so tons: it is halancen by
four counterpoises, one at each corner, descending into a dry masonry pit. The visible portion of the mechanism consists only of chains and guide pulleys with their supports, which are decorative cast-iron columns. The bridge being balanced, the only efforts to be overcome, both in ascent and descent, are those due to the friction and rigidity of the moving parts, which are estimated at about 5,000 kilograms. The moving mechanism consists of two cylinders placed under the abutments of the bridge, having their piston heads permanently attached to the superstructure. The necessary synchronism of motion in the pistons is accomplished by a shaft, with beveled wheels at each extremity, which in turn drives two transverse shafts provided with spur wheels gearing into racks placed on each upright post (Fig. 182).

Fin. 181.-Transverse section.
In order that the pressures under the pistons shall be exactly equal, two conduits are placed in the superstructure, which communicate with the interior of the piston rod, and empty, one above, and the other below the piston (Fig. 183).
The lower surface of the piston is double the annular upper surface. When the pressure acts upon both faces the bridge rises; when the pressure acts only on the upper face, the lower being connected with the exhaust, the bridge descends; hence the whole valve work is reduced to a three-way cock (Fig. 184), connecting the bottom of the cylinder with the admission or the exhaust.
H. Ex. 410-vol H-48

Lifting bridge at la Villette, Paria.

Fig. 183.-Details of a press and the surerstructure.

To facilitate repairs, and to make up for a certain amount of play, the cylinders are suspended on trunnions, so as to oscillate lengthwise of the bridge.

The pistons being hinged to the superstructure the latter might move about the trumnions were it not maintained in its upright position by guides. These guides consist of four tenons projecting from the ends of the beams into chamnels made for that purpose in the iron columns (Fig. 182). These tenons are united two and two at each end of the bridge by a very rigid piece to which the lifting chains are attached.

Fig. 184.-Three way cock for the lifting bridge at La Villette.
(273) The roadway.-The stringers and crossbeams carry a wrought-iron paneling upon which is laid a mixture of sawdust and wonden splinters mixed with hot tar, and upon this mass, properly curved, a wooden pavement (0.10 meter high is placed (Fig. 183).
The intermediate mixture weighs about 1,000 kilograms and costs, when placed, 100 franes per cubic meter.
Resistance and elasticity.-A trial panel with an intermediate thick-
ness of only 0.015 meter resisted satisfactorily a blow of 8 tons falling from a height of 0.30 meter, there being no permanent change of form or rupture of the filling.

The bridge is frequently operated by a child. Its complete lift is 4.60 meters, and the time of lifting 50 or 60 seconds.

The cost was 140,000 francs, not including the masonry.
The bridge was built by M. L. Le Chatelier, engineer, under the direction of M. Humblot, chief engineer.

I am indebted to M. Chatelier's article for the drawings and information contained in this chapter.*

A working model of this bridge was shown in the pavilion of the city of Paris.

Chapter XXXII.-The Garabit Viaduct.

(274) History. - M. Boyer, the engineer in charge of the preliminary survey for locating the railroad between Marvejols and Neussargues, found that he could avoid constructing the road on the side of a very broken range of hills, and thus save a distance of 20 kilom. eters, by crossing the Truyère at Garabit cut, where the valley narrows, being bordered on each side by elevated planes.

The adoption of this line necessitated the construction of an immense viaduct 120 meters above the river.

Under these circumstances M. Boyer applied to M. Eiffel asking him to prepare the preliminary plans and estimates for such a viaduct, similar to the one built across the Douro, at Oporto, eighteen months before.

The reply of M. Eiffel showed that such an exceptional structure could be erected, which would be entirely satisfactory both as to its stability and its cost ; and that M. Boyer could thus adopt the mew line on the platean, cross the valley by a viaduct 122 meters above the stream, and still make a saving of three millions of francs over the road as originally projected, and at the same time have a much better working line.

Under these circumstances the project for the viaduct furnished by M. Eiffel was approved, and he was authorized to construct it under the supervision of MM. Bauby and Lefranc, chief engineers, and MM. Boyer and Lamotte, assistant engineers.
(275) Description.--The Garabit viaduct is built over the River Truyère at Garabit, for the railroad from Marvejols to Neussargues. It crosses a deep valley and passes over an undulating plateau (Fig. 185). It carries a single line of rails. The iron portion has a total length of 448.30 meters, which is prolonged at its extremeties by masonry viaducts forming abutments. The rails are at a reference of 835.50 meters-that is to say, 122.20 meters above the deepest part of the valley.

[^54]

Fus. 185.-Tlue Garabit viaduct.

The iron viaduct (Fig. 185) is composed of straight girders resting upon masonry abutments at the ends, and upon intermediate wroughtiron piers on each side of the valley, and upon struts standing upon an iron arch of 165 meters span. We shall now give a description of these parts:
(276) The horizontal superstructure is not continuous for its whole length, it is interrupted at the two struts upon the arch, and comsist, properly speaking, of three consecutive portions.
First. That on the Marvejols side, which extends from the Marvejols abutinent to the first strut on the arch.
Second. The central portion, which is included between the two struts.
Third. The Neussargues portion, which extends from the second strut of the arch to the Neussargues abutment.
The portion on the Marvejols side consists of five spans, as follows: Two end spans of 51.80 meters divided into fourteen panels of $3 . \hat{1} 0$ meters each, giving a total length of 103.60 meters; three intermediate spans of 55.50 meters, giving 166.50 meters; finally a flush panel resting on the abutment having a width of 0.24 meter; total, 270.34 meters.
The central portion consists of three equal spans of 24.64 meters, divided into six panels of 4.106 meters, and giving total length of 73.92 meters. Finally the girder on the Neussargues side has two equal spans of 51.50 meters forming fourteen panels of $3 . \% 0$ meters, giving a total length of 103.60 meters, to which must be added the full panel upon the Neussargues abutment, 0.24 meter, making a total of 103.84 meters.
The two end portions are fixed upon the greatiron piers which form the abutments of the arch. They are able to expand freely on each side; and to allow for the motion produced by the variations of temperature there exists upon the abutments a play of 0.25 meter for the Marvejols portion, and 0.10 meter for the Neussargues portion between its ends and the stone guard, and a play of 0.10 meter between its extremity and the central portion on the struts.
The central girder is fixed at the two middle points, and rests freely on the struts.
(277) The roadway (Fig. 189) is placed 1.66 meters below the flange of the longitudinal girder, which thus forms a parapet of great stiffness.
The girders are 5.16 ineters high and 5 meters apart. The upper and lower members have the form of a T, and are united by a simple lattice and by vertical struts.

Each of the members consists of a vertical web 600×15 and two horizontal angle irons $\frac{100 \times 100}{12}$ and a uniform flange 500×10. Supplementary plates are added wherever the calculations require it, as
shown on the drawings. The lattice bars are T -shaped, and consist of a flange and two angle irons, and, in the central girder, simply of a web and two angle irons. The uprights have a double \mathbf{T} section formed by two angle irons $\frac{80 \times 80}{10^{-}}$and a webs millimeters thick.

Above the supports, these uprights are replaced by a strong flush panel to guarantee the transmission of the effiorts coming from the lattice bars. (The dimensions are usually given in millimeters).

The transverse girders are attached to the longitudinal girders at the uprights of the panels. They have the form of a double T consisting of a web 700×8 and four angle irons, $\frac{70 \times 70}{7}$. This transverse girder is supported in the middle by two struts, each formed of two angle irons ${ }^{80 \times 80} 10$ put together. These struts are attached to the feet of the uprights. They are united at their lower parts by a tie rod formed of two angle irons $\frac{80 \times 80}{10}$. Finally, two bars similar to the struts, which they cross at their middle point, are attached to the uprights below the transverse girder and to the center of the tiu rod, thas forming, with the uprights, the transverse girder, the tie rods and the struts, a very stiff bracing (Figs. 189, B and C).
The cross-girders are united to each other by five rows of longitudinal bearers. They consist, in the lateral girders, of a web a 50×7 and four angle irons $\frac{90 \times 90}{10}$, but in the central girder, where the span of the cross-girders is greater, the angle irons are $\frac{90 \times 9}{13}$, the wel, being the same.

These bearers carry the metallic flooring, which is composed of iron plates 0.240×120 and sufficiently strong to support the weight of a locomotive in case of derailment; also, the principal girders form a parapet strong enough to prevent the fall of the derailed engine. Besides this advantage, the flooring, which is almost continuous, presents a second, viz, that of forming an almost perfect windhracing to the girder at the level of the roadway.
A lower wind-bracing, consisting of a single lattice in which each bar is formed of two angle irons $\begin{gathered}\pi(1) \times i 0 \\ 8\end{gathered}$, gives the two girlers the greatest solidity to resist horizontaldisplacement. The girders rest upon hinged supports, some movable and others fixed. Each support consists of an upper part of wronght-iron which is fixed under the flanges of the girders and which carries a slot in which is loelged at wedge to reguiate the level of the superstructure. This wedgerests on a lower piece of cast-iron having a slot so arranged as to gear with that of the upper piece and prevent lateral motion. The lower

Garabit Vladect. ('entral. Portion.

Fis. 186. Elevation.

Fig. 187. Wind bracing of the extrados luet wern the bottom of the areh and the flrst strut

Fivi. iss. Wind braciag on the intralos lut wreen the I wo st ruts.
piece has different forms according as the support is fixed or movaHe. In the case of the movable support, this piece has aless height and rests on cast-iron mollers. These latter have the form of segments which may be increased in number by hringing them neare lugether. They rest upon a cast-iron plate. The use of hinged supprits has the alvantage that the vertical reaction of the supporis always passes through its axis. a condition of absolute necessity for iron piers of great hoight.
($2 \sim 8$) The areh.-The great arch has a chord 1 to moters long; its rise is 51.803 meters, and its height at the erown 10 meters. It comsists of two latfice-work principals placed symmetrically with respect to the midhle plane of the areh, but in oblique planes thereto. The planes of these principals, which are 20 meters apart at the wigin, approach each other toward the orown, where the distance of separation is only b. os meters, measured at the extrados; hence the inward slope per meter is 0.1100s with respere to the vertical. This arrangement gives great stability to the arelo. amabling it to resist the most violent winds. The prineipal ribs are cruciform in section; the mean fiber is a parabola. It has a great height at the (rown, and terminates in a point at ach springing line where it rests on the abutments by a knee joint. This form obviates the use of spandrels, the stresses of which are diflicult to ascertain by calculation, and may vary considembly by expansions or the displacement of the rolling load. While their unusual dimensions would require an enormous amount of iron.

The rigidity which this form gives to the principals emables them to resist, imlependently of all the accessory pieces, changes of form resulting from the unequal distribution of the loads; and it has. besides, the advantage of avoding all uncertainty as to the point in which the resultant of the forces strikes the abutment, since it (an only be the point of contact of the pivot with the cushion stome, which remains the same whatever may be the alteration in form of the arelh.

The intrados and extrados members of earh arched gibler ate commected by a latice amd by vertical struts, except in the panel next the springing lines, which is flush (Pl. IX).

These members, with their open interior faces (Fig. 186), consist of t wo wels 0.6 meters high, strongthomed by two angle irons, and riveted to the flanges by four angle irons. The flanges themselves are formed of a variable mumber of phates (1, (ia) moter wide.

The verticals and trellis work are of angle irons and flat bats (Fig. A).

The principals are united by horizontal braces, bach formed of four angle irons ($\boldsymbol{c}^{\prime}($ millimeters) mated by a phate iron trellis, except at the base, where there is a full wor properly strengthened. Again. in the plane of each of these haces is a vertical wind bracing, each
bar having the section $u^{\prime} v^{\prime}$, Fig. C, united by a trellis of flat bars, except at the lower panel which is flush. Finally the comection of the two arcs is completed, both at the intrados and the extrados, by bracing (Figs. 187 and 188), each brace consisting of a square box trellis formed of four angle irons with a double lattice of iron plate bars on their faces (Pl. IX).
(279) The iron piers are in the form of the frustrum of a pyramid, their edges or standards being girders properly braced (Fig. 186).

In the Douro bridge, built by the same constructor, the standards were box girders. In this case, for the faces of piers at right angles

Fig. C. Cross sections $\sigma^{\prime} \boldsymbol{p}^{\prime}, s^{\prime} \mathbf{t}, \mathbf{u}^{\prime} \mathbf{v}, \mathrm{q} \mathbf{r}, \mathrm{x}^{\prime} \mathbf{y}^{\prime}$.
to the roadway, which resist the force of the wind, the standards have a U shape, in which horizontal and diagonal braces are inserted, having the form of box trellis girders_(Pl. IX).

This arrangement allows easy access and is capable of resistine compression as well as tension.
(280) Principal dimensions.-The piers (Fig. 189) are of the following heights, counting from the viaduct on the Marvejols side, measured from the masonry foundation, viz, $24.51,36.46,51.20,60.43$, and 60.73 meters.
The batter in the piers $1,2,3$ is $0.08: 2 \cdot$ per meter: in Nos. 4 and

Paris Exposition or $1889 \cdots$ Vol. 3.
Civilengineering, etc.--Plate IX.

GARABIT VIADUCT. THE LOWER PORTION OF THE ARCH WITH ITS SUFPORTING PIER.

5 it is 0.11088 in the plane of the great face. The transverse batters are 0.0380 and 0.0388 , respectively.
The piers are divided into panels 10 meters high, measured along the axis of the standard. Each pier terminates in a coping, which receives the supports of the superstructure. The piers, as well as the arch, are anchored in the masonry, as shown in Fig. 186.
In each pier a spiral staircase is placed, so thatevery part may be inspected.
(281) Stresses.-The plans for the masonry work were wholly prepared by the Government engineers.
The calculation of the stresses in the ironwork were made by M. Eiffel, and verified by M. Boyer by other methods and found correct.
The stress was to be limited to 6 kilograms per square millimeter under the combined action of the loads and the wind.
The surcharge was to consist of a locomotive weighing 75 tons drawing a train of cars weighing 15 tons cach.
The effect of the wind was supposed to be 150 kilograms per square meter while the trains were running; and 270 while they were not, at which time the traffic wculd be suspended.
In the calculation, the wind was supposed to act uniformly on the side towards it, and to act solely on the trellis bars on the opposite side. To this there was added its effect on the train, which, as the train is partly protected by the upper members of the girder, was estimated as acting on 1.6 square meters per running meter. This figure, 1.6 , was adopted by M. Nordling in calculation of the great viaductson the Orleans Railroad system, which were also constructed by M. Eiffel.
The effects produced by the load and wind are such that the members of the arch may be regarded as bearing 2 kilograms per square millimeter under the ordinary load, 2 kilograms per square millimeter from the offect of the surcharge alone, and 2 kilograms per square millimeter from the effect of the wind, so that the section of the members is one-half greater than it would be if the effect of the wind had been neglected.
The influence of temperature is very slight when added to the loads. The maximum pressure at the crown of the arch under a variation of 30 degrees is only 0.63 kilogram per square millimeter.
(282) Erection of the ironuork.-At the commencement of the work the country around the viaduct was a complete desert. It was necessary to begin by building offices and lodgings for the overseer, and for the engineers when they visited the grounds, storehouses for the materials, repair shops, lodgings for the workmen, stalles for the horses, and also a school for the children of the workmen. On account of the difficulty of access M. Eiffel erected a service bridge on a level with the foundation of the chief pier, 33 meters above the strean. The head of this bridge was united with the mational highway by a road built on the side of the rovine. On this
road a storehouse was erected for the iron, with traveling cranes for unloading the wagons which brought it from Neussargues station. . The platform of the bridge supported two lines of railroad, by which the materials were brought. All the foundations were lail on very resisting schist.
The masonry constructions presented no difficulty. While the iron

Garabit Pladcot. Erection of the iron arch.

piers were in process of erection two portions of the superstructure of the bridge were set up on the right and left banks. When all was ready these portions were pushed forward soas to orerhang the central piers by a distance of 22.20 meters over the arched space. The end of each portion of the superstructure was made fast by twenty-eight steel cables to the masonry abutments of the accessory
viaducts, and then preparations were made for raising the arch by building two principal scaffoldings in front of the two foundations of the abutment piers up as high as the pivots.
The upper parts of the scaffoldings were curved so as to form a center for the members of the intrados of panels 1 and 2 , which were arched; then the outer extremity of this arch was held by twenty steel cables made fast to the overhanging superstructure (Fig. 190),

and then they proceeded to erect the overhanging arch by attaching new pieces to those already riveted in place.
When the overhanging portion erected balanced that of the lower part, which occurred at the fifth panel, a new set of cables uniting vertical strut 5 with the upper superstructure was put in, and the work was continued to strut 9 (Fig. 191).
Again, twenty-four cables starting from struts 8 and! 9 were made
fast to the-superstructure, and the work so progressed until the crown was reached (see Plate X). The erection went on simultaneously on each side.
(283) Methods of raising the pieces.-The pieces were raised in two different ways; the hoavy pieces were brought ly cars on the service bridge exactly under their intended position. Rolling shears, placed on that portion of the arch already built, supported powerful winches which raised these heary pieces (Fig. 190).
For the light pieces, there were erected above the central piers two wooden stagings 10 meters high, which held a steel-wire cable tramway spanning the distance of 17% meters between the piers. The cable carried two cages, one for each side (Fig. 191).
The cables were made with great care with a hemp core surrounded with eight strands, each of nineteen wires of $0.002+$ meterin diameter. It withstood a tensile stress of 125 kilograms per square millimeter, and each wire could be bent double eight times before broaking.

The diameter of the cable was 0.043 meter, and the weight, 6.5 kilograms per ruming meter. The rupture of one cable would have required an effort of 85 tons, and during the erection no cable had to bear a load exceeding 15 tons.
(284) Proofs.-The proof load was made up of a train formed by a locomotive weighing 75 tons, drawing cars of 15 tons. The deflection observed in spans loaded separately was from 0.016 to 0.01 : meter.
The arch loaded along its whole length by a train of 405 tons had a deffection of 0.008 meter. The same train occupying, successively, half the length of the arch gave a deflection of 0.010 meter.

In the proofs for rolling load, the maximum deflection in the spans was from 0.015 to 0.018 meter, and that of the arch at the crown 0.012 meter. The horizontal displacement of the superstructure during the passage of a train was from 6 to 8 millimeters. After each proof the parts of the structure resumed their exact primitive position.
(2S5) General information.
Weight of the metal employed. kilograms. . 3, 399, 414
Amount of masomry cubic meters. . 20,409
Cost:

The works were begun in January, 1880, and terminated in November, 1884.
M. Eiffel was assisted by MM. Emile Nouguier. Maurice Koechlin, M. Compagnon, and M. J. B. Gobert.

I am indelted to the Eiffel Co. for valuable information, plans, and drawings of this most interesting work.

GARABIT VIADUCT DURING THE PROCESS OF ERECTION.

Chapter XXXIII.-Gour-Noir Viaduct.

(286) The Gour-Noir Vialuct is situated on the railroad from Limoges to Brive near Uzerche, 4 kilometers beyond this last locality, where it crosses the river Vezere at an angle of about 50 degrees.

This river winds through a deep and very precipitous valley; sudden freshets are frequent, and the direction of the current varies with the freshets. For this reason it was preferred to cross the river with an arch of great span, and as there was excellent building material in the vicinity this arch was projected with a span of 60 meters. The work (Fig. 192) is built for two tracks and has a width of 8 meters between the parapets. Its total length is 108.46 meters. The radius of the intrados is 36 meters, that of the extrados 44 meters; the rise is 16.10 meters. The thickness of the arch at the keystone is $1 . \tilde{\%} 0$ meters, at the springing lines 4.20 meters. The spandrels are open with six small arches with a span of 4.30 meters each. The wing walls are flush in elevation, but their filling is hollowed out in the interior by hidden arches of 6 meters span. Communication between these arches is made by openings 1.50 and 1.55 meters in diameter and with the outside by a manholo 0.80 meter in diameter. Between the spandrels and tho wing walls are the buttresses, 2.85 meters wide at the top, which allows the establishment of refuges rendered necessary by the length of the work. In the part between the buttresses there is a parapet of open-work limestone, the only part of the work not of granite. To angment tho stability different batters were given to different parts of the construction. The mean pressure at the keystone is 16.60 kilograms per square centimeter, and the maximum pressure is 33.20 kilograms. On the ground under the foundation the pressure does not exceed 9.80 kilograms.

The centers are made by seven trusses, 1.50 meters apart, each formed of a lattice beam 4.40 meters high, on which rests a system of pieces in the direction of the radii and having a fan-shaped appearance. The rigidity of this fan is insured by two coürses of bridle pieces. Each truss rests upon tho lower support by means of interposed sand boxes. The lower supports, that is to say, all the parts below the sand boxes, are eleven in number, ach one consisting of nine piles.

From the nature of the river bed it was impossible to shoe the piles and drive them in the ordinary mamer ; the piles were placed, and held by cement, in holes, somo of which were hored out, and others hollowed out by stonecutters using sted drills under the shelter of cofferdams.

Cost. - The cost of the viaduct was $235,20 \%$ francs. The projects were made and the works executed under the direction of M. Doniol, inspector-general. The engineens were M. Daigremont, chief engineer, and M. Draux, assistant.

Fig. 192.-Gour-Noir viaduct.

Chapter XXXIV.--Viaduct over the river Tardes.

(28:) The viaduct on the railway from Montluçon to Eygurande crosses the Tardes near Evaux, and has an irom superstructure resting on masomry supports. It consists of three spans, the middle one 1 no. 05 meters, the two others are each 69. 45 meters (Figs. 193 and 194).
The piers at the top are 4 , su ly 8 meters. These dimensions inarase from the top to the buttom. The pier on the left side is $\mathbf{5 9 . 9 5}$ meters high, that on the right tria: meters. The abutments are 14.50 by 9.40 meters, with a hollow interion.

The rombay comsists of two great girdurs s.30 meters high, with double lattice faces distant 5.50 metris from wernter to center. The track is placed above. The topso of the girders are osso meter wide amd form a sidewalk above the latter. The distance betweon the parapets is 9.30 meters. Tha 1 wo girders are united he fwo comses of horizontal wind braces. one bethe and the other above, amb by vertical struts. The rails are supherted log womentringers resting upon stringers of irem miten the the cresegirters spaced s.5s moters. The roadway is curved with a ralins of ${ }^{2} 50$ meders at the eritrame and exit of the superstructure A parabolic are was intercalated between each curor and the right lineportion of the middle structure. The rails are $91.3: 3$ meters abowe the valles.
The piess are founded on compact granite pook and the abmoments upul hard tuffia.
 francs per superficial meter of the vertical projection. The pressure unen the masemry piers, incluting their own weight and that of the superstructure, with the proff loads, was i kilograms jer shame contimeter. It reached the figure of : kibgrams by taking acosunt of the moment of the wimh against the readway during the passage of a train exteming atong the whole length.
The greatest stresses th which the iren is subjected under the dif-
 grams per suma millimeter for the mombers of the girders, the
 millimeter for the lattice. thendizental wind hame and the vert dal struts: and f kilugrams per sumere millimetor for the rivets.

Besides, the members of the lattice girdars as wall as the wiml braces were streng thened. su that during the oprotatom of lamehing the stress did mot exeed at any peint skilograme per sumare millimeter.
 baigremont, chief engimere and N. (iuillame, aswistant.
The contractor was M. Eiffel.
H. Ex. Ho—Vol, H1——!

Chapter XXXV.-Congohdation of the side slopes at La Plante.

(2s9) The malroad form Hopital-du-Crobois to Lode passes behind the town of Ormans in a deep cot thromgh caving gravel. The cut was almost complotely opened, when on acount of the win-
 ing to 2 meters in height, combined with a general alvanomment of the upper slope without any chatere in its form. At the samm time the bridge which (rossed the cut (Fig. 1! \%) was expesed to sumb a
 alvanced \quad obt moter, notwithstamding a strong bracing rapidly made to stay it against the lower abutment. Fimally, openings in the hill at a distanco of ow moters from the erest of the cutting were wherved, covering a space of about 3 . 30 hectars of eroumd. A number of borings showed that the mass of erravel in which the cutting was opened rested upon statified marl, hat at the separation there Was a thin layer of phastic clay very wot by the abondant exudation. The cutting having taken away the thrust of the hill, the latter slipped bodily upon the soapy layer of comperessed elay, rasing the soil of the roarlway which was stopped hy the opposite slope. To prevent this slipping the following moans were omployed: It was thought best to first divide the mass in motion into sertions he the aid of fixed pillars. These pillars wore made by great dry stome spurs of 2 meters thick. having a length proportioned to the importance of the mass in motion. 'These spures rested on the side of the cutting upon great masses of masomry is meters thick and 3 meters wide, themselves buttressed atrainst thr lower wall of the cut by means of a reversed areh placed under the rodwas. Although these constructions presented a great resistanco against the motion, it was also alvantareons to drain the water of exulation beforehand, and to thas dey the mass immediately in front of the cut. These points being setthed, it was only neerssary to oppose the motions of the intermediate masses phaed botwern two eomserutive spurs and partially drained by them. For that purpose a revetmont was built formed of arches of i-metor span. the axis having an inclination of one-third to the vertical. These arehes were 1 meter thick at the crown. They were supported by a rear wall hating a miform thickness of 3 meters. Finally, to cateh all the exmbations which escaped from the spurs, these arehes were covered with dry stone and all the water was collected in a drain which wont from one end of the walls to the other. This last work had such dimensions that it could be inspected atsily, and the satisfactory eombition of the dranage could be told at each instant. be means of manholes. On account of the longitulinal molulations of the st ratified marls on which the wall is foumded, the rear wall of this last, which con-

tains the culvert, is more or less imbedded in this subjacent layer; hut at no point did the plano of slipping pass above the top of the arch in order to avoid crushing this work. It is understood that in the portions built into the stratified marl the thickness of the wall foundation is reduced as much as possible to allow the construction of the culvert. The drainage system worked perfectly, the amount of water caught amounted sometimes to 350 liters per minute, and went down to 10 liters in the season of great droughts.

These different works were not carried out without great difficulty, and from the first great masses were obliged to be moved to erect in the middle of the slope a banguette of $:$ meters.

Since Mareh, 1885, when the works were finished, the motion has entirely ceased.
 motion was about 3.30 hectares, and its mass attained 150,000 cubic metere. The total cost of comsolidation amounted to $391,770.46$ francs, which male the cost per ruming meter of the consolidation, 940 francs.

The work was plamed and carried out under the direction of Inspector-General (Gabarus by M. Chatel, chief engineer, and Barrand, assistant.
 Road from Crest to Aspres des Yevers.
(*90) The prolongation of the Livron and C'rest Railroal to Aspres les Veynes contains, at Cabres Pass. a tumel 3,070 meters long. This important work is laid out in a right line $3,30 \%$. It meters from the crest head; then it is prolonged with a curve of soo meters radius for $393.4 t$ meters, and terminates in a right line 70.40 meters long. It rises in an incline of 0.020 for 14 meters, of 0.015 for 4% meters, and of o.ows for 2,3is.ar meters to attain its summit at the altitude of sst.08f meters, whence it descends toward the station at Baume by a declivity of 0.003 for a distance of 905.23 meters. The Cabres Tummel has been phaned with two tracks, although the line has only one ; this arrangement was mate to facilitate ventilation, which a single-track section would mot have been enough to guarantee; it allows trains to cross, and diminishes the danger of a derailment in the middle of such a long thmel.

The tumel is to be completely linel with masonry, varying from 0.50 to 0.80 meter, aceording to the nature of the strata. A flooring will extend through the whole length, and a central drain to collect the water. Refuge niches are establishol at distances of of meters in each wall, and a stomge chamber is placen also at the middle of the tumnel.

The most important puint of hegiming is the erest head; on this side two ij horse power steam engines are placed, which drive
the air compressors to work the rock drills, the ventilators, and a gramme dynamo fumishing the electric lighting, for a part of the gallery and the works alliacent to the tumel, during the night. The work of the drills produced a mean advancement of from 5 to $\%$ meters per day. Sometimes this alvancement was stopped on account of explosive gas which was given off in great quantities and rendered

Fig. lisi.-Half sections of the Cabres Pass Tunnel.

Fia. 19i.---center used in ('abres Pass fumel.
an exceptional ventilation indispensable. In view of preventing the danger, ventilation by suction was substituted for forced ventilation. Precautions were taken by the use of safety lamps, the explosion of the mines by electricity, the priodical examination of the air, ete. The suction produced by a conduit 1.00 meter in diamoter and 3,000
meters long having ceased to lo sufficient, a vertical shaft was sunk 1,900 meters from the crest head. A natural current then established itself and carried away the explosive gas. If necessary, an exhansting fan might be placed at the upper orifice to aid the natural draft. This tunnel was driven in the layers of marl belonging to the Oxfordian strata, which swells and rises by contact with air, and requires a strong revetment. The contractors used for centers iron ares, which had the advantage (Fig. 19i) of uceupying very small space.
(291) Cost.-The cost is estimated as follows:

	Franes.
Driving the tummel.	
Masonrs.	2.689, 1000

That is, $1, \hat{r}_{0} 0$ francs per rumning moter.
The works are executed by M. Pesselon, merimer, under the direction of M. Berthet, chief engineer.

Chapter XXXVII-Cubzac Brideie over the Dordogne.

(292) The railroad from Cavignac to Bordean crosses the Dordogne valley at 913 meters below the bridge constructed at Cubace for the national roadway No. 10 . The free height under the roadway was determined by the condition of putting no obstacke to the free passage of vessels going up to Libourne. This condition, together with the configuration of the groumd, required the construction of great works extending over a longth of more than : kilometers. consisting of :

First. An iron vialuct on the right hank with a slope of ounos for a length of e9t. 5 s metors. (Fig. las and lata).
 straight line with the first.

Third. Upon the left hank, which was flat and low, at 2 meters helow the level of the highest waters, an iron viaduct oug.e:3 meters long, contimed by a masome viaduct 5 ate en moters long. These two last works are on a durve l.ano ineters ralius. and have a slope of one centimoter per metar. 'The vialuct of the right bank rests on masonry piers. It is formal of six spansof thas moters cach, with an upper roalway. The principal beams are diagonally bracel with vertical upright. The pamels are 3.46 meteres span.

The Dordogne bridge rests on iron piers and includes eight spans,
 fong. Its principal beams have a donble hatice wob of 3.20 moters opening without uprights. The roalway is et meters above low water. The iron viaduct on the left side rests on masonry piers like those on the opposite bank. Its remeral aspect is the same, but on
account of the curvature, its thirteen spans of 44.98 meters are independent.

The masonry viaduct consists of 40 arches of 12 -meters span. It

has a width of 8.46 meters at the springing lines, with an exterior batter of 0.03 meter per meter carried to 0.05 meter for the buttresses.
(293) The Dordogne bridge rests on two abutment piers and on seven river piers. The calcareous marl rock on which its foundations rest in perfect security is 17.50 meters below low water. Compressed air was used in making the foundations; the caissons of the

Fia. 199.-Elevation of a pier of the viaduct of approach left bank).

Fia. 200.-Elevation of an abutment of the Cubaac bridge over the river Dodogne.
abutments are rectangular with rounded angles. They were 17,60 meters long by 9.so meters wide. (Fig. 200).
The height of the working chamber was: meters ; its phat--iron ceiling, 6 millimeters thick, was sustained ly lattice beams (1) mi me-
ter high, united to the caisson walls by vertical gussets terminated by struts, thus consolidating the iron plates. Heavy angle-iron beams, placed around the periphery, which were in turn strengthened by outside plates do by 2 centimeters, stiffened the cutting edge. The sinking was accomplished by gradually lowering the air pressure when the pits had attained the required depth.

All the piers rested on limestone except the fourth (the deepest), which descended 29.20 moters below high-water level into a layer of compact gravel. Under the pressure of three atmospheres, attained in the caisson in summer, the work became extremely difficult and even dangerous; the lateral pressures were so intense that the pier,
notwithstanding its weight, remained in equilibrium and erould not descend more than 3 or + centimeters, even by suddenly lowering the air pressure. It was not therefore possible to go down 4 meters further to the rock under the gravel bank.

The iron pier supports (Fig. 201) are anchored in the masomry by means of eight iron tie rods 0.10 meter in diameter, and four of 0.05 meters, bolted under a flooring of iron beams. The iron framework consists of six standards united by struts and braces and surmounted by a coping on which are placed the supports of the superstructure. The bridge is anchored upon the central pier and provided on the other piers with stetel expansion trucks. The principal girders are braced at their upper parts by lattice girders o. os meter in height; at their lower part by pate iron girders carrying the stringers.

The horizontal wiml bacing is olitained, below, by the plate-iron flooring riveted to the stringers and the cross girders; above, by lattice bracing.
(294) The lenmohimy was effected by means of rollers moved by levers, on each of the piers: but, on account of the great length of the bridge, this operation was divided into two parts, forming two fields of erection, one on the right hank and the other on the left. The same staging served for both halves of the roalway. The erection took place as the launching went forward, and the junction of the two halves was made on the central pier.

The weight of each half of the superstructure was 1, foo tons, and its length eso meter's. The peculiarities worthy of motice in this operation are:

The application of supporting rollers with double oscillation, dividing equally the load on two rollers placed under the two wels of the double beams.

The launching levers were moved by means of a steam rngine set up on the superstructure for the last spans.

Buffers, riveted upon the heals of the beams on the piers, were used to prevent the fall of the superstructure in lanmehing, whe count of hateral displacemont which might be wowsiomed hy the winds or any other catuse.

The first two spans wore bannched hy hamd power. The lamelhang of the secomd required 190 men; the third and fourth would have required at least from ato to 30, men. With the employment. of such a great number of hands. siparated from each other by a distance of iometers, the oferation could not have been made with perfect uniformity, and the total rffort would have heron far from corresponding to the smm of the partial efforts. To ohviate this difficulty the contractors substituted for the hand levers a system of traction by a steam engine armaged so as to drive simultanconsly all the levers requisite for the operation.
(295) Apparatus with a universal joint, for launching by steam.This system consists of an iron frame resting at its central part on a steel axle.* This axle allows the frame to oscillate, like a balance beam, lengthwise of the bridge. The frame itself carries at each end another frame, oscillating transversely and carrying independent rollers.

The lower axle of the principal frame allows the system to tip longitudinally, and thus guarantees the constant contact of the two rollers on the same end with the bottom of the bridge.

The transverse axles allow the transverse frame to tip in the case of a difference of level between the two members of the same girder, and thus equalize upon the four rollers the load supported by the apparatus.

The rollers are 0.50 meter in diameter. Each apparatus is calculated to support 240 tons, that is, 60 on each roller.

A rachet wheel is keyed to the shaft of each outer roller, and the rollers are moved by long levers turning freely on the shafts and carying pawls. These levers are united transversely by braces, and longitudinally by jointed conmecting rods to which bars and chains are attached. Each chain passes over a chain pulley at the overhanging end of the bridge, and thence to the transverse shaft driven by the engine, whence it is wound on a drum placed in the rear.

A friction coupling is placed on the motor shaft, to interrupt the forward motion of the levers and to regulate their return, which is done automatically by the action of counterpoises.

Each of these counterpoises is formed of two weights suspended a certain distance from each other, so that both act at the begiming of the returning movement; then, as the levers approach the vertical position, the resistance diminishing, the first counterpoise rests upon a platform, leaving the second to act alone until in its turn it ceases to act; the levers then having passed the vertical position, their own weight suffices to bring them back. A cord around a second drum, keyed to the same shaft as the first, holds a counterpoise, and thas tightens the chain after each oscillation of the levers.

This system of launching by steam was perfectly satisfactory, giving a regular and gentle forward movement to a mass weighing 1, 700 tons, at the rate of f inches per hour.
Cost.--'The total cost of these works amounted to $9,040,000$ francs.
The plans were made and the work carried out by MXI. Prompt and Girard, engineers.

The ironwork was constructed and the superstructure of the bridge launched by MM. Lebrun, Dayde and Pillé.

* A horizontal bar rounded on the top.

Chapter XXVIII.-The Crueize Viaduct.

(290) The Crueize Viaduct is situated on the line from Marvejols and Neussargues at the point where it crosses the river Crueize, 9 kilometers from Marvejols station. It consists of six arches of 25 meters span and has a total length of $21 \mathrm{~s} . \mathrm{s} 0$ meters. The maximum height of the rails above the lowest point of the valley is 60.30 meters. It is founded on groiss. It has two tracks, and its width is 8 meters between the parapets. At the right of the buttresses of the piers this w: 3 th is 10 meters. The arches of the int ralos consist of two quarters of circles having, respectively, 10.915 and 10.085 meters radii. This arrangement has for its object to give a slight slope, at the same time mantaining the level of the springing lines of the two aldacent arches. This mode of obtaining the slope has the advantage of bringing the resultant of the jressures towarl the center of the pier.

The arches are 1.30 meters in thickness at the crown and 2.60 meters at the joints of rupture. The spandrils are lightened by three longitudinal archways of 1.20 meters span. The piers have on all siles a batter deereasing gradually fom the base to the top. This equalizes the pressure upon the different comses amb leaves the elges continuous.

At the same time, to facilitate the laying of the edee stones. a series of right lines $\tilde{\sigma}$ meters long, forming an inseribed polyon in the theoretical curve, is sulstituted for the "ome itself, the corve corresponding to a constant pressure upon the different courses. This substitution is not observable in the work itselt.

The buttresses are placed against the piers and rise just to the opp. They are 2 meters wide at the springing and project at the spandred 1 meter at the level of the plinth. The maximum depth of the foundation is 10 meters and the mean depth fi.jo metors. 'The mean pressures per square centimeter of the different sections of the piers are from 8.00 to 10 kilograms. The wse of ent stome is limited to the eroping.

The centers were sustamed by a double row of rails passing through the masomry piers. The tirst support, camying the foot of the rafters, consisted of the two rails: the second, placed + metors below, was formed of a single rail upon which rested, by an intorvening plate, the braces sustaining the principal rafters. The contors for raising were placed on the upper flowing of the semvere bridge used in erecting the piers.

The total cost was $1,2 s:, x 93.43$ francs, wheh gives per separe meter of vertical projection in sight, the fommdations not included, 195.50 francs.

The engineers were M. Bauby, engineer in chief, and M. Boyer, assistant.

Chapter XXXIX.-Constrection of the Castelet, the An. tonette, and the Laveck Bridges.
(297) These bridges have single arches of $41.20,50$ and 61.50 meters of span, respectively ; the first erected over the Ariage at Castelet, the second over the Agout near Vielmur. the thirl at Laveur.
The adoption of a great arch, authorized for the three bridges by the incompressibility of the foundation, was justified at Castelet (Fig. $202)$ by the inclination of the line to the river and the violence of the rapids: between the rocks, in a bed encumbered with blocks and with an indefinite depth.
At Vielmur, 50 meters. by the depth of the river fommation, 8 meters, which made it economical to build a great arch, founded directly on the rock (Fig. 20;3).
Finally at Laveur, fifor meters. where the foundations were facilitated by the vicinity of a finc hridge of the cighteenth century (Fig. 204).

Fla. :(the.-Flevation of the Castelet bridge.
The parapets, spandrels, and head bands have a batter of onethirtieth for Castelet bridge and one twenty-tifth for the others. This has the advantage of decreasing the stress on the joints of rupture and of offering greater transerse resistance.
In the spandrel of the great arch are smaller full-centered arches, of 4.5 .0 meters span for the Laveur, and of 4 meters for the others. This arrangement, pleasing in appearance when the openings are properly chosen, has succeeded perfectly, notwithstanding the theoretical objection arising from the danger of distributing the loads in isolated zones, and the practical objection of the tendency to fissures produced near the springing lines.

At Castelet and Antoinette the open viaducts continue to the extreme abutments; at Laveur they rest against two strong; pilasters, which cast heary shadows and stand out prominently frome the neighboring portions of the work. This separation has bern aceentuated by lowering the level of the parapet ahove the s-meter arches, and stopping the architrave and coping of the great arch at the pilasters.

Fig. 203.-Elevation of the Antoinette bridge, and transverse section of the viaduct with little arches

Fig. 204.-Elevation of the Laveur bridge

The extreme abutments are reduced by containing hollow wells. The principal dimensions of the great arcless are as follows:

 thick, on which is drawn the position of all the voussoirs, is mailed upon the bolsters 10 by 1.t, spaced from the key to the springing line, from 25 to an centimeters for the Castelet; from 30 to tis centimeters for the Antoinette, and from 21 to tis centimeters for the Lavelu hridre.

Trasses.-Each conter eonsists of five trusses. the end ones being shighty heavier: wach truss consists of two stories resting one on the other hy means of nind files of sand boxes.

The back pieces are (riple in the Castelet (Fig. Don), double in the
 They are supported heralial struts (except in the Antoinette bridge, where the riversuperts could mot be mumerous, the alternatestruts are radial, and the intermediate ones are replated by two) erpally inclined to thr soflit. forming a fan-shaped frame.

At the ('astelet and Antrimettelninges the fan (back piecess struts, and the beam) rest directly on the wam boxes. At the Lavour bridge, on areount of the height, amother story has been introluced. comsisting of vertical king-posts and diagonal-strots, forming a series of triangles whose vertices support the sticks of the fan.
(:90) I'ortion below the sornd bores.-At Castelet (Fig. :(1) the upper portion is supportad by two double rafters inclined to the hori. zon by the angles $43^{\prime \prime}, 10^{\prime \prime}$ and 0^{\prime} formed of pieces held hy straps, and also by an iron tie rod. The lower rafters rest freely on sheets of lead laid upon oak sleepers built into a masonry apron.

H. Ex. +11-vol. 111 - in

Fig. ith.-Centor for the Anomette hridare: Elevation of atruss

Fin. :rr. ('enter for the bridge: chevation of a truss.

At Laveur (Fig. 207) the center rests on nine supphrts, three of which are double, united by bridle pieces forming seven Ales of piles. two of which serve as wave breakers and wind braces.
At Antoinette (Fig. enfi) there are only four supports, for, hoth of the centers resting on piles, the rocky bottom would not permit of their being driven in the usual way. Holes from 1.00 to 2 meters in depth were made in the bottom. slightly exeeding the diameter of the pile. The pile was cut off flat and protecten by sheet iron against ermshing. The holes were cleared by divers. the pilas bowered and held ley cement, and when necessary ly woden wedges.

This system, which wats necessaryon aceount of the nature of the bottom, was much more expensive than ordinary piling. but it was justified bey the very slight settlement observed in the areh.
(300) (omstruction of the areh-Custelat.--Theardh was constructerl of two rings (Fig. ent A). The thickness of the first ring was, from f0 to 40 degrees (maximum), 1 meter: from 40 to :0 degrees (meati). $0 . i 5$ meter ; from en degrees to the keystone (minimmon), (0.5) meter. Upon the heads only a single row of vomssoins wats paced. The first ring was divided into six portions by worlen frames of two

kinds (Figs. 208 and 209), thus forming six great momolith voussojirs, the joints of which were not keyed until the ring had been completed.
The keyed joints were firmly calked with powdered mortar. The second ring wass made in four portions, and there were for the two rings eight keyings.
The arch was constructed in forty-two days of effective work. The settlements were, on the center, 53 millimeters; on removing the center, sixty days after the second ring had been keyed, one millimeters.
(301) For the Lareur bridge (Fig. 20rA A). -The first ring was divided into fourtem poitionsomonoliths: the seeond into six, and the third into four, having in all twenty-three keyings. The arch was eonstructed in eighty-two days of effective work. The settle-
ments on the center were. on the downstream head 16.75 millimeters, on the upstream had ollomillimeters, and after striking the center, one hundral and thirty days from the time the third ring was keyed. 0.62 millimeter.
(30:) For the Antrinetle bridlye.-In the first ring there were twolve monoliths: in the second oight, and in the thind four ; wentythree keyings for the three rings.

The areh was constructed in fortr-four and one-half days of effective work. The settements were, on the center 0.13 meter, after striking the center. a few days after keying the third ring, o. 6 millimeter.

I am indebted to M. Síjournés article (Ammales des Ponts et Chanssées, sixth series. vol. 12) for the drawins of the centers, figures $205-209$, and information respecting the orection of the threx bridges.

Chapter XLa-The Céret Bribge.

(30:3) The Ceret bridge is sitmated near a city of the same mame on the Tech. It consists of a great areh of to moters span comerting two viaducts. (Fig. Plo).

The adoption of a great areh, made pessible bey the solid gromm on the banks, was justified by the neeessity of avoiding the difficult and expensive foundations in the bed of a deep river exposed to heary freshets.

The spandrels of the great areh are hollow, consisting of a vaduct of lull centered arehes of 3 moters span, carried along to two strong pilasters which form prominent fatures of the bridere. They are still further marked be having a stome parapet above the great arch, while that above and beyond the pilasters is of cast iron.

The spandrels and head band of the areh have a batter of $\frac{1}{40}$. The arch and pilastors rest on a projecting hase capped with cut stome.

The width of the bridge betwern the parapets is t. 6 解 moters, and the thickness of the great areh at the crown $1 . f 0$ meters.

The head hand is of hewn stomes of latge dimensions; the thickness of the voussuits of the areh is about (1.t? meter.

The stomes of the homl band and those of the soffit are in rustio work, projecting 0.10 motor from the spandrel. The head bands of the little arehes are roughly dressed and flush with the spandred face.

The soffit is entirely of knotted ashlar, of the same width as the roussoirs of the head band, i. e., from (0.60 to 0.90 moter in depth and 1. fol meter long. This is one of the characteristics of the arch.

There is a hydraulic mortar (apping tion metor thick over the extramos, which is also covered with one of asphalt, with gargoyles for drainage.

The filling consists of a layer of sam 0.10 meter thick covered with gravel.
The plinth, 0.40 meter thick, propereting 0.45 meter from the face of the spandels. is sustaned by a series of modillions which requires an apprectable reduction in the width of the work under the plinth.
Similarly the thickness of the parapet has been reduced to a minimum (1) en meter above the gramd arels.

At intervals, pilasters reanfore the parapet. The stone is granite; the greatest pressure is, at the keystone ar kilngrams jee sumare centimeter. On the foumdition it is 14.20 kilograms.
(30.) Centers.--The center of the great arch consisted of four trusses 1.35 meters apart, forment of a fixed portion below the samd bexes and a movable ome aboere them. The fixed portion comsisted of seren uprights supperting, the sill, on which the bexes restem, and hared together with bridle pieces lomgthwise and erosswise. Three of these uprights rested on framework supported by piles driven into the bed of the river. The prossures of the three others were borne by shores set at fis degrees with the same support.
The movabie pertion comsisted of a series of back pieces resting on the uprights phated at the right of the sand boxes. Struts like the sticks of a fan resisted the flexure of the back pieces: a horizontal sill united the feet of all the uprights and rested on the sand wexes. The bolsters were on the back pirees and a sheathing 0.0.5 meter thick corverd them.
The fourth back piece from the kerstone phaced below the general level of the sand boxes was supported by a secondary movable truss resting on two sand boxes corresponding to the angle $10^{\circ} 30$ from the peint where the roussoirs hegan to rest on the center.
The salld boxes rested on the sill hy means of stringers. These boxes were protecteri from humidity by means of a pine box filled with phaster. the upper layer of which had been set.
The uprights of the movable truss were bolted to the back pieces by means of irom gussets o.oni:3 moter thick.
The center contained 3 se: cubie meters of wood; the iron weighed 5, two kilograms. The erost was 41, , 93 francs.
The great arch was built in its entire thickness up to the angle gy degrees from the keystome.
The first nine courses which did not rest on the center, were built with a templet, or form, upen which the position of each course was marked.
Above the angle of fo degrees the arch was erected in double rings, each in four blocks. The lowest block rested on three courses, having their joints filled with sheets of lead 0.02 meter thick and having in space of 0.10 meter between the edges of the sheets and those of the stones.
The upper block was supported by joists uniting the triangular frames bolted upon the back pieces.

The four blocks were built simultaneously. The key hock was loaded to 2e degrees as soon as the block starting from foo degrees houl attained 45 degrees.

They keyed the joints at in degrees. taking out as much as possible of the lead. The empty joints were filled with cement mortar
nearly dry. and driven in with mallets: the thickness, on account of the pressure, being reduced from 0.02 to 0.01 meter.

The second ring was also constructed in four blocks limited ber the same angles as the first.
The center was struck two months after the second ring had been k.yed.

There was no apparent motion of the arch.
Cost.-The cost wats :1?.ît.t.t? francs.
The plans were made by M. Velzec, under the direction of M. Tastre, chi ${ }^{\circ}$ engineer.

Chapter XLI.-The crossing of the Garonne at Marmande. The cise of masonry calssons.

(30.5) The railroad from Marmande to Casteljalous crosses the fretpently sumerged plain of the Garome, for a length of 4,500 meters. which was covered in the flood of June, $15 i 5$, to a depth of from 2 to 4.50 meters. The plan (Fig. 211) shows the principal bed

of the Garome wih the dikes. The dike on the left hand. which affects particularly the railroal, gives way ow dinarily at A and at B. The brach at B does not give rise to strong currents. for the mass of water which fills the space abowe the railroal between the Gat ronne and the lateral canal forms a buffer. On the contrary. the breach at A occasions strong currents which fall directly on the
railrome. Great openings have hean made for the disposal of this portion, amounting in all to $\overline{\text { a }}$, uso cuhic metors: the maximum dis-

In order to leave more free space under these works. for floating bodies, and to present to the flowing water, washing the side slopes.

 and hes shenes of $1.00+$ metors. The soil consists of Q \quad aind dopsit cosering a very havy compact clay - . ane . The fommlations al all the impertant work: W. at hast into the manl: the (faromme bridge is built

 two vialluts at the end hate arehes of en moters span and ti. 只 metops rise one of four, and the other of six arehes. (Fig. :l:).

The f wo elliptic isolater atehes are of 20 meters san and ot moters rise. The two iron superstructures are 33 meters span. The loun-
 air. With inon caissons. The fommlations of the of-meter arches were mate by the same system, part with ordinary iron working chambers. and part with masomsy working chambers monnted on curts. An abutment was foumded upon a curb of a rectangular form. this form never having previously been amployed. The curb was joined to the masomry by iron tio-rods ton meters lomg imbedral in the masonry. For filling, beton has given the best results; in every case the filling is terminated by pouring in cement.
(30f) The fommations of twemty such works were matr by means of masomry working chambers, but of a form slightly different from those previously employed. (Figs. :3:3-:1!).

First, the bases of all the foundations were eliiptioal. (Fig. :3b). The base was somewhat strengthemed.

Second, the angle irons of the brackets were armaged with exterion wings, and the curbs were filled with brick masomry which gave them a great solidity. (Fig. $2 l i$).

Third, the working chamber of an wival form comsists of cement masomry I meter thick. The method of making these twonty fondations was as follows:

A pier of about 8 meters in haight was constructed, including the exterior masties, loaving the masonry and mastics to set for a month at least hefore sinking. (Fig. : 17).

They then proceeded to sink this first part. (Fig. : Dis). When this was at the bottom they constructed the rest of the masomry aml waited a month again to make sure of the setting'. They then began with compressed air. (Fig. :l!). ()nly a single severe acejdent was the sudden fall of $1 . \% 0$ meters of the foundation in going through a layer of movable gravel. To prevent the reeureme of a similar fall during the period of work, they malle, when traversing
dangerous hayers. sudden changes of pressure every six hours. All the arches wewe constructed in rings, leaving the joint of rupture on the center (as these centers were very strong they did not key the joints of rupture until after the secomd ring had been finished).
 SlBMEKSIHAE PhAIN UF THE (IABONNE:

 compressed air working chamber.!

Fig: :3ti---Ibtail of the cutting edge and wooden curb.

Fig. :1th. fiwe during the process of sinking.

The centers of the en-meter arehes were struck twenty days after they were keyed. Those of 3 ; meters. forty days after.
(301) The cost of the substructure for the arossing of the (ia-
 ters, i. f.. sts, ono franes pre kilometer.

The inspectors-general were MCM. Croizetto-Denogers, Vernis. Dr la Tournerie, and Remoust des orgeries: the ehiof engmerps. Wh. Faraguet, Chamam, Pugens, and Pettit: the cogineers, Bermadean. Bejourné, and Guibert.

Chapter XLIL--Ohoron Bridege tpon the (iate dolooron Rahas from Pat to Ohoron.

 by the railead from Pan to (Olorom. is contined betwern two bankfrom is to 14 moters high and has a width which varime from en mo. tors at low water fore meters in freshets. Freshets attain the
 bottom of the hed is formed of shlistose rocks mixed with bamk:

 mablishing a station of shectares of surface at the end of the heider. requiber that the rails should he placed e3.0t motors above low
 tarials for the construetion. These emsiderations led to the apose iner of the river with a single areh of fo metros span, which allowed the fommation of the supperts to be mande almost without a coffer. dam, in an impermeable senil. Ther total lengrh, inchuling the abonments, is sis. 0 meters. The width betwern the parapets is lometres. The two abutments of the wreat areh are opened by full centered

The head bands of the great areh hate the same dimensions as the

 by these there perints. Its radius is ?

The areh rests against !wo strong ent-stome pilasters, tangent to the intrahs comvenar the springing lime. These pilasters projer 10.30 meter from the surfare of the spandels under the plinth and have a batteref wosper metre. The spatheres, on the contraty atre rettal and medref masomey. like the int rados and the surfaters of the abutmonts.

Tormafore slightly the areh at the joint of rupture the extrand
 the extremity of the joint at fo degrees.

 limes, are phaced abowe the spandred of the areh. 'The maximme:

 right hank and 11.0 on moters on the laft.

 phaced aromst the abutmont. Tha rapidite of the comment and the
rocky bottom would have rendered the establishment of intermedi. ate points of support difficult and costly.

 two heal trusses situated at a distance from the first of 1.10 metrers. This arrangement was remuired by the necessit y of immediately eon-
siructing the portion of the arch next to the head band. on account of the upper voussoirs being single stones 1.30 meters long, whil. the borly of the areh for a length of s.30 meters was mate in two ring's, each having half the thickness of the arch.

The center rested on sisty samd boxes, with ast-iron pistoms. Ther center was set up be means of a very light temporary brider apern the comrses below the wrat hridle pieces.
E.p the joints of 30 degrees the areh was constructed along its whole thicknoss, then the center was loanded with a weight equal to onf-thiod of the weight of the first ring, which hat a thickness of
 It was keyed in a single print at the arown.
 keyoul like the first. The centor was struck fiftronine dats after the: socond ring had hem kegod. The setting was why 0.0 or: moter. The settlement wh the cente? had been 0.03 moter.
 meter.

The oloron bridge was projected ame the work was executed under the direction of MAL (roizette-Dosnoyers and Vernis. .ermeral in-
 La Riviore. Mamrer, and Biralong, assistant mummers.

Chapter XLIH.-The (fRayona Bridete.

 Which takes its rise in the high memntans in the center of the ishand. is frepuently expesed to freshets. which attan in this place. where the bed is partiondarly matow. a maximum height of !as? moters. These sperial combitions reguife the aroidance of ang obstacle what(ere to the corrent, and that the river shall be (ovssed without any suphert in its bed. The almmbance of granite in the vieinity allowed the work to be built of masomry. It comsists of a single circolat
 is foumbed on the compant eranite which eomes down to the water: rege. The bridge (Fig. N巳, has at single track. aml its width ber twom the parapet: is t. 10 meters.
The areh has a thickness of 1. fo moters at the kevstone. The rat $_{\text {me }}$ dins of the extrados is :a moters, and it has at the joint of rupture a
 mortar 0.10 meter thick.

Ther spanderes arr in a vertieal phane: they are prolonged bark from the abutments to the matural suil by wing walls projecting o. 4 . meter from the spandreland having anexterion battor of o. 0 t moter. The interior filling in this work between the spandrels is bemens of stones carefully arranged by hand. The work is surmounted by
a plinth 0. fo $^{\prime}$ motor high and projecting 0.45 meter from the spandrel wall. This plinth is formed of two courses and rests upon a series of brackets. (on the plinth theme is a fall masomry parapet. The entire work is construed of granite masemry fom the neigh-

boring quarries. The ared is of eut stome 1.40 moters thick at the kerstone. The granite material nsed in the areh may he eonsimbed as resisting a loal of ton kilospams per somate centimetor. The
 31. so kilograms: and ap,

The impossibility of establishing with secomity points of support in the river required the construction of a sperial kind of center. A provisiomal mass of masonm? was therofore rated on each bank upon which was established the center supports, having a maximum -pan reducol to e9.93 metets. For rasing the conter a suspension bridge was employed malle al two ables. whose extromitios wore made fast to solid frames ambedded in a cothor covored with ripnap. The transurese girders were formed of heams attached to the chatin by popes, and mpon these hams a phanking supportan a light ratroad carrying the materials. The forming of this briture was : metres below the intrados at the ker. The arel was constructed in two
 with the amgle of sliding. The trmination of the areh wats efferem on the ist of August. Asst.

The conter wats struck almost antomatially on aceonnt of the pogressive ront raction of the wool moler the adion of heat.
'The apparent clasticity of the areh at the moment of placinge the keystone of the second coume semmed to indicate that the renter ahredy had slightly sottled from the areh. Thirty days after the krying the erenter harl setherl seroral centimeters. Nosetting took pate in the arch.

The cost was $119,0 \%$ frames. that is, s:3 francs per squate metro of qevation.

The projects wore propared and the works executed monder the direction of MM. Delestade and Buffet, seneral inspectors. by MD. (iay, Intoris, and Magerid, chief engineers, and MM. Descubes and Fonam, assistants.

PAR'T IV--CIVIL CONS'IRUCTION AND ARCHITECTURE.

Chapter XLIV.-Specinens of mon constriotion in Paris.

(310) The great retail store of M. Jaluzot, called Magazins du Printemps, destroyed by fire in 18 se has been rebuilt by M. Sedille. architect, with the assistance of eminent engineers, both for the fomblation and the iron framework.

The ground has an area of 3.0 of soume moters, and it was required to make an available floos space of x, oof square meters and have the whole well lighted from the top and sides.

These requirements prechuled the use of walls, either within the building or on the outside.

The floorings of the various stories, many of which were to hodd heary goods, were required to be especially strong, and the loads to be placed in the upper portions of the building made it necessary for the arehited fordopt iren as the material for the construction of the pillars, and to employ stome simply for decorative purposes: for orlinary hard stone supports a pressure of about 30 kilograms per suare centimeter, while iron will support from 600 to som.
 : 3 or, 000 kilograms. which would have required stone pillats more than a moter spuate: henee iron pillans were adopten.

Again, the establishment of heavy piers on isolated spots required the fommations to be made by sinking pits in various parts of the ground ; but the soil consisted of fine samd mixed with water and clay.
(311) Three borings, made th the depth of 35 meters, 16 meters. and 5:3 meters, respectively, produced a flow of 2.400 cubic meters of water per day. At a depthof : meters the soil was sand and gravel which showed a density sufficient to support a load of from to to 8 kilograms per square centimeter.

It was therefore determined to sink cylimurical pits from 2.50 or 3 meters in diameter to the depth of $:$ meters, the maximum load being 350,000 kilograms and the minimum 250,000 .

(312) It now remained to determine how these pits shomld be sunk. It would be dangerous to use the ordinary conferlanis. from which the water is pumped out and bfon run in. Such a process, her ro. moving the very abumbant supply of surface water, would canse tho settling of the smeface 'saml, would heak up, the suil, and endanger the foundations of the sumpunding structures. For this

rason the arehitect adopted the mothod of sinking them by eompressed air, and employed this proces for the first time in making foumbations in the city of Paris.
(:3:3) M. Zachokle, whlo has malo a soecialty of river and harbor work was called to make these foumbations, which he did with great
rapidity. For each fommation of a pin a eylmbical eaisson $A B$ (Fig. 次) wats amployed, from o.so to : motors in diameter and 2 meters high, marle of phate iron 4 millimeters thick, strengthened above with two circular angle iroms foll be, and at the lower part, bepate iron, 200 hy 10 millimeters, foming the cutting edge. This (aisson was to pass theough the layer of water. It is smomomed hy fwo conical frustrums. EF amd (iHE, both of iron aml mitod by an irombell, CD, which is bolted to the upper belt of the caisson. These two upper cones, one interior. (iH. inclined at 30 demeres. the other exterior, EF, at bo degrese formed the air lock neerssary for the mocess. They are each furnished with a elone commmaneating with the interior of the lock at K , and from the interion of the lock to the interion of the caisson at L . Stopeocks seme tompalize the pressure between the two withont being obliged to and the dooms. At the upper part there is a winch to rase the buckets.

An India rubber pipe ${ }^{\text {ol }}$ millimeters in diamoter which passes through the two cones furnishes the compmesed atir. at 11.5 atmosphere, from an air compressor. This air forees back the water and allows the workmen to work fredy in the interior at the aisson which showly descends. The excaration spoil raised in the catson is thrown out upon GH, and thes orve the rasson an increasinge lowl necessary to batance the moder pressurt of the compressed air, beside the resistano due to the friction of the ground agranst the iron wall. Before rmming in the beron the examation spoil is thrown off, beinge compensated by the weight of the apparatus. 'The int roduction of the berton is made through the movable tube N, fixed to the upper part of the cone EF , he means of sucoessive lorkages. As it is introluced it is well rammed, and when it arrives at the desired lovel for bayine the stone blocks the supply of eompressed air is kept up for seremal homse to prevent the water from rising, and to allow the hedratie mortar time to set. This done. it only remains (1) take away the fomble cone formine the air loek, and foremove it formother catsson. Twenterfour hours sullier fomake the complete fommation of a pit \because.on metre: in diameter; ten hours for sinkins ambexavatings and fourtern hours for raming in and ramming the bíton.

Finally, to avoll the heating resulting from the eompression of the air, a continuous jet of spraty was introdured. 'These different operations tommated, the comes wore taken away, having in the foumbation the metallie caisson which enveloped the erlindrical colman of bécon amd adred to its resistance.

Thus the fommation of the forty-six iron pillars in the interion of the Printemps: were laid. In like mamer thastome pillats of the exterion facarles, and the gramd vestibule or hatl were mate.

The loads which these fommations had to bear varien from esan to 3:0) tons. For this reason, at certain poiats heavily baded, the
diameter of the foundation was made 3 meters instead of eno, the diameter aloped for most of the other caissoms.
(314) Fonndations for the sterm engines.-The use of dyammoelectric: matchines for lighting the new edifice refuires a Corliss stathn engine of ano horse power, and it was necessay to take spectal mecations: in making the foundations for it. Aceordingls, the arehitere deaded on the construction of an inen caisson $1 \% . \%$ meters lans. f meters wide : meters high, and onom motere thick. to lay the fomedations below the sheet of water he means af compresed atr. 'This was successfully accomplishod and filled with a mass wh beon 1.30 meters high. (on this mass stones of emormous size wore platen? W receive the supports for the four principal shafts.
(315) Iron worli-What was lequired in the new store was spar. and light. By increasing the number of stories upon the groumt of 3,000 meters, ath area of 21,000 meters of Hooring was masly obtained.

Transverse sections of the phland of the Mamame be Phintembs.

Fig. W. Whenterior. I. Least loaded.

Flic. Ded. - Interior. II. Least loaded

Fir: . Sin, -Interion. III. Most loaded. -
As to the light, it had tole obtamed through the sides. and through the glazed roof of the central nave. Consergently there must berne interior wall and no exterion wall around the alifice, but simply isolated irom pillas of as small a momber as possible.
(316) 'The contract for the iron work of this important construction was given to Batulet, Donon \& Co.. whose reputation and wreat workshops were a guarantee of rapid construction. To determinnthe resistance of these pillars the section of which was fixed at on centimeters on each side, in order to leave the necessary spaces for the conduits, it was necessary to take account of the exact loads:

which the pillars would have to support. These loads are of two kinds, the dead load and the rolling or accidental load.

The dead load is composed of the weight of all the parts of the construction which form the flooring. The multiplicity of stories of small heights rendered it important to diminish as much as possible the thickness of the fooring. The architect obtained this result by using for floor timbers the smallest specimen of double T-iron girders in use, that is to say, T of 80 millimeters, with a span not exceeding \because meters. The filling was formed of hollow brick laid in plaster upon iron beams 14 millimeters thick. For the calculations, the dead load upon the flooring was estimated at 280 kilograms per square meter: the accidental, or live load, at $5 \% 0$ kilograms.

The loads on the different floorings being thus determined, the sertions of the pillars were calculated by considering them as huilt in at each story, on account of the beams being strongly fistened to their brackets. The loads may be thus deseribed:

(317) These pillars, londed according to their position, may be divided into three classes:

First. Pillar on the perimeter (Fig. 223).-
Second. Pillar on the interior least loaded (Fig 224).
Third. Pillar on the interior most loaded (Fig. $2 \cdot 5$).

1. Surface to be carried, 7.80 by 3.20 meters, $=0.5$ square meters. 25 by $6,600=$ 145, 000 kilograms.
Web 400 by 1 b .square milimeters. . 5,400
4 plates 500 by 12 . 4,000
4 Angle irons, 100 and 100 , by $19 . \ldots . .$.

Total. 45,400
Load per square millimeter $\frac{165000}{4.5(10)}=3.6$ kilograms to resist crushing.

III. For the most heavily loaded $\frac{348000}{30(000}=3.85$ kilograms.

For the short double T beams R (lond fur square millimeter) $=0.3$ kilograms.
For the longest beams R (load per square millimoter) $=6.2$ kilograms.

Strength of the pillars to resist rupture by flexure for cases I, II, and III, calling the height of the pillar in the cellar 3 meters, and its width 0.5 , we have by Love's formula, $1.55+0.0005\left(\frac{3}{0.5}\right)^{2}=1.565$; hence,
I. $R=3.6$ by $1.568=5.75$ kilograms per square millimeter.
II. $R=3.87$ by $1.568=0.07$ kilograms per square millimeter.
III. $R=3.85$ by $1.508=6.03$ kilograms per square millimeter.

Pl. XI shows the frame work in construction, and exhibits the form and arrangement of the pillars and floor beams.
Acknowledgment.-I wish to express my indebtedness to Messis. Sedille and Baudet for explanations and documents.

Chapter XLV.-The Eiffel Tower.

(318) The investigations of M. Eiffel upon high iron piers for railroad viaducts like that at Garabit, led him to consider that such piers might be erected to a height very much greater than they had yet attained.

The prineipal difficulty hitherto found in the erection of high iron piers is, that, generally, a system of heavy lattice bracing is placed on their faces to resist the action of the wind: as the pier is increased in height the base also increases, and this lattice bracing, on account of its great length, becomes of imaginary rather than real utility.
There is, therefore, great advantage in dispensing entirely with these large and heavy accessory pieces, and giving to the pier such a form that all the shearing stresses shall be concentrated in its edges, these being reduced to four great columns united simply by widely separated horizontal bands.
Imbued with these ideas, M. Eiffel made the calculations for a great pier 120 meters high and 40 broad at the base.

These researches finally led to the studies for a tower attaining a height of 300 meters.
The project for such a tower was carefully prepared by MM. Nouguier and Koechlin, engineers' of the Eiffel Company, and M. Sauvestre, architect. It was brought before the French Society of Civil Engineers by M. Eiffel, and thus summarily deseribed.
(319) Description of the proposed touer.-The frame work consists essentially of four uprights, forming the edges of a pyramid with curved faces; each upright has a square section decreasing from the base to the top, and forms a curved lattice caisson 15 meters square at the base and 5 at the top.

The uprights are 100 meters apart from center to center at the base, and are firmly anchored in a solid mass of masonry.
At the first story. 70 meters above the ground, the uprights are united by a gallery 15 meters wide running from pier to pier around the whole construction, and having an area of 4,200 square meters.

Fig. :Nf.-Revistamer of a simple lattice.

Fig. : - - hiagran of the stahility of the Eiffel Tower when expmeded to the pressure of the wint. Two cases.
H. Ex. +10 -rol m-Face page sor.

At the second story there is a platform 30 meters square. At top, a cupola, and a balcony with an area of 250 square meters. At the lower part of the tower an imposing arch of 80 meters span and jo rise is placed in each face, which, hy its broad open-work head band and its ornamented and variously colored spandrel, forms the prineipal decorative feature.
(320) Strength and stability of the toner: force of the wind.-The force or pressure of the wind may be decomposed as follows:

Suppose for an instant that we have in one face of a pier (Fig. 22(6) a simple lattice forming a surface resisting the shearing stresses of the wind ; let the horizontal compionents of these stresses be $\mathrm{P}^{\mathbf{1}}$, P', P"I, PN.

To calculate the stress in the three pieces ent by any plane M N , it is sufficient to determine the resultant P of all the exterior forcos acting above this section, and to decompose this resultant into three forces passing through the pieces cut.

If the form of this system is such that for each horizonal section M N , the two uprights Oa and Ob intersect on P, the effort on the lattice bar C D is nothing, and it may bo dispensed with. The application of this principle constitutes one of the peculiarities of M . Eiffel's system. It is therefore evident that the direction of each element of the uprights follows the direction of a curve traced upon the chart (Fig. 227), and in reality this exterior curve of the tower is no other than the curve of the moments of flexure due to the wind.
(321) Hypotheses in reference to the pressure of the wind.-The uncertainty of the effects of the wind, and the data to be adopted both as to the intensity and the amount of surface struck, requires the adoption of particularly prudent hypotheses.

With regard to the intensity of the pressure of the uind two sup)positions have been made. The first assumed the wind to act on the tower with a constant pressure of 300 kilograms per square meter; the second, that the intensity increased uniformly from 200 kilograms at the base to 400 at the top.
(322) As to the surface struck, it was assumed, notwithstanding its apparent exaggeration, that the upper half of the tower should be treated as if the lattice work were replaced by closed surfaces: that upon the intermediate part, where the open spaces are much greater. each anterior face should be reekoned four times the real surface of the iron; below (the gallery of the first story and the upper portions of the arches) the anterior surfaces should be counted full; finally, at the base of the tower, the uprights should be counted as full and struck with twice the force of the wind.

These hypotheses are more unfavorable than those usmally adopted for vialucts.

With these surfaces the calculations have been made under both
hypotheses of the intensity of the wind, and the results given in the annexed chart (Fig. 227) show that the two funicular polygons thus obtained are nearly identical. In the hypotheses of the uniform wind of 300 kilograms per square meter upon the whole tower, the horizontal effort upon the whole construction is $3,28 \pm$ tons, and its point of application is situated 92.30 meters above the masonry base.

The overturning moment is $\mathrm{M}_{1}=3,284 \times 92.30=303,150$ ton-meters.
(323) As to the moment of stability, the weight of the construction is as follows:

	Tons.
Metal	4,800
Rubble flooring	1,650
Sundries . . .	\%)
Total	6,500

The base of the tower being 100 meters, the momont of stability $M_{8}=6,500 \times \stackrel{100}{\underset{2}{2}}=325,000$ ton-meters, which is greater inan M_{1}.
(3i4) In the second hypotheses, i. e., the wind varying in intensity from 200 to 400 kilograms per square meter, the total horizontal effort is only $2,8 \% 4.4$ tons, but its point of application rises to 107 meters above the masoury base. The overturning moment in this case is $\mathrm{M}_{2}=2,874.4 \times 107=307,562$ ton-meters. This is very nearly the same as M_{1}, and is still below M_{s}.
(325) Anchoraçe.-The stability is still further augmented by anchoring each of the four standards of an upright to the massive base by means of iron ties embedded in a mass of masonry sufficient to double the coefficient of safety. (Figs. 232 and 2333).
(326) Deflection.-If we take Claudel's designation of winds given below, the calculated deflection will be as follows:

(327) Resistance of the tower against the wind.-First case, wind 300 kilograms pressure from base to top. Second case, wind increasing uniformly from 300 at the base to 400 at the top.

C'orresponding surfaces and pressures.

(308) Determination of the stresses in the uprights.-The prolongation of the section A B meets the axis at (), the point of application of the resultant of the forces $1,2,3, \pm, 5$. We may therefore decompose this foree of $1,26 \pi, 200$ kilograms in the direction of tho uprights, which gives for each of them a stress of $\frac{3040000}{2}$ kilograms.

The stress in the lower part of the uprights is $\frac{3+1 ; 0 \% N}{?}$ kilograms.
The stress in the upper part of the uprights is $\frac{3001000(}{2}$ kilograms.
($3: 9$ (9) Calulation of the section of the base of the uprights.-Total weight on the foundations, $6,500,000^{*}$ kilograms. Overturning moment, $303,150,10(1)$.

Load on the base of an apright from its own weight$\frac{6,000,000}{4}=1.655,000$ kilograms.

Load on the base of an upright due to the effeet of the wind$\frac{30.3,150,100}{2 b y 100}=1,515, \% 50$.

Total loads, $3,140,750$ kilograms.
Section of a standard at its base, 80,148 square millimeters.
Section of an upright $=80,148$ by $4=320,092$ square millimeters.
Loal persquare millimeter $=\frac{3,1+40,650}{3: 0,5!5}=3,5$ kilograms per square millimeter.
$\mathrm{M}_{1}=30: 3,150,100$ the overturning moment, first case.
$\mathrm{M}_{2}=307.560 .619$ the overturning moment, second case.

constreation of the hiffel tower.

(330) The idea of a tower 300 moters high is not a new one. In 1833 the celebrated English congineer Trevithick proposed to erect a

* This refers to the first project ; the weight of the metal in the actual structure is $7,300,000$.
cast-iron tower 1,000 feet high, 100 feet in diameter at the base, and 12 feet at the top. But this work was never begun.
On the occasion of the Centennial celebration in $\mathbf{1 8 5 6}$ Messrs. Clarke, Reeves \& Co. proposed to construct at Philadelphia a wrought-iron tower 1,000 feet high, and 150 feet at the base.

In 1881 M. Sébillot proposed the erection of a tower 300 meters high to light Paris electrically, but this plan was never adopted.
(331) Situation.-It was finally decided that the tower should be suilt on the Champs de Mars in front of the Jena bridge, M. Eiffel receiving a subsidy of $1,500,000$ francs and the tower to revert to the city of Paris after a lapse of twenty years, M. Eiffel and his representatives having the income derived from the tower up to that date.

Fig. 2ex.-General plan of the foundations of the Eiffel tower.
(332) Foundutions.-The base of the tower consists of four piers which bear the names of the four cardinal points. the two next the Seine being the north and west, the others being cast and south.
It was absolutely essential that the piers should be erected on firm ground and so careful soundings were male to determine its nature.
(333) Soundings.-A great number of borings in the Champe de Mars showed the strata to be arranged as shown in Fig. W?!, that is, the lower layer consists of a bed of plastic clay resting on the chalk formation and capable of supporting 3 to 4 kilograms per square centimeter.
This clay bed slopes slightly from the Ecole Militaire toward the Seine, and underlies a bank of compact sand and gravel, a good material for foundations.

Fig. 2 2 s shows the general plan of the foundations. For the two $^{\text {p }}$ piers, No. 2 and 3 , the made ground was \hat{i} meters above the level of the Seine, and below that level there was a bed of gravel 6 meters thick affording farorable conditions for an excellent foundation; the piers were accordingly built upon a layer of cement concrete? meter's thick. (Fig. 232 and Plate XIII).

Limestone.
Fig. Pxa,-Longitudinal section of the Champ de Mars through the axes of piers 1 and 2.
(334) Use of compressed air.-The other two piers, Nos. 1 and 4, were differently founded.
The bed of sand and gravel occurred at the level 品 (above sea level), that is, a meters below the level of the Seine (27), and it was overlaid by soft alluvial deposits from the river.

Fug. 23n....tongitudinal and transersar sections of the iron caissons.
In order to make sure a preliminary bell or caisom 1.50 moters in diameter (Fig. 20?) was sunk in the center of ach pier. and it was ascertaned that, helow the samd and gravel, samb, fermginums sandstone, and a bank of chloride of calcium were fiomed at the buttom of a depression washed out of the phastic clay.
There was no difficulty, therefore in making the foundations by using compressed air with four irom caissons 1 ; meters long and is

Eiffer Tower.

Fig. 231.-Vied of a calsson for making the foundations of the Eiffel Tower by means of compressed air. Section showing the undersromil work ami the shafts for the men and the materin's.

THE EIFFEL TOWER. IRON CAISSONS USED WITH COMPRESSED AIR IN BUILDING THE FOUNDATIONS OF A PIER.
meters wido for each pier, and sunk 5 meters below the level of the river.

Figs. 230 and 231 show the arrangement and dimensions of one of these caissons, and Plate XII shows all four caissons of one of the piers, in the process of sinking.
(335) Description of the ironwork.-Each of the four uprights of the tower is a huge frame 15 meters square whose edges transmit the pressure to the ground by masses of masonry placed under each; there are four of these masses for cach pier. The top of each of the masses, which takes the thrust, is at right angles to the direction of the edges of the upright; the mass itself is pyramidal in form, having its vertical face in front and its oblique face behind. Its dimensions are so calculated as to bring the resultant of the oblique pressures to a point very near the center of the foundation.
This oblique pressure amounts to 565 tons without that of the wind, and 8% with that of the wind.
(336) Details of the foundation. - Upon the bottom of piers Nos. 1 and 4, i. e., at a depth of 14 meters, the vertical pressure is 3.300 tons with the wind; this, spread over a surface of go square meters, gives a load of 3.7 kilograms per square centimeter.
Upon piers 2 and 3 the pressure on the ground at a depth of 9 meters is 1,970 tons, which, spreal over a surface of dio square meters, gives a pressure of 3.3 kilograms per square centimeter.
The masses of concrete are 10 meters long ly 6 meters wide, arranged as in Fig. 2:32. The concrete is made of 250 kilograms of Boulogne cement for each cubic meter of sand. The masonry is of Souppes stone set in the sand cement. The use of cement was requisite for attaining a rapid setting, thus avoiding any settling.

At the center of each mass two great anchor bolts. $\boldsymbol{\gamma} .50$ meters long and 0.10 meter in diameter are imbedded, which, by moans of two iron I bars and anchorage plates, hold on to the principal portion of the masonry (Fig. 233).
This anchorage, not necessary for the stahility of the tower. which is maintained ly its own weight, gives an excess of security against overturning, and, moreover, it was utilizen in the erection of the oblique standards.

The masonry, subjected to a load of from 4 to 5 kilograms per square millimeter, is capped by two courses of cut stone from Chat ean Landon, having a resistance of 1,235 kilograms per square centimuter. The pressure under the iron shoes is not more than 30 kilograms per square centimeter, hence the coefficient of safety is 40 .

It may be seen from these figures, and from the materials selectorl. that the foundations have been so laid that there can be no doubt as to their perfect security.

Besides the separate foundations for earh standard there is a ma-
sonry base, carrying no loal. but designed to support the metal moldings which ilecorate the pedestal of the uprights.

The walls which carry this pedestal are laid on arches and form a square 26 meter's on a side, the whole of the substructure being filled with earth exepht thase piers in which chambers are reserved for the elevator engines and beilers (Pl. XIII).
(:3:) The two lightuing combluctors for each pier are carried down in cast-iron pipes 0.50 meter in diameter and 18 meters long. which

Fta. 23.-Plan. and section along A B, of pier No. 1.
are sunk below the water-boring stratum and are in direct communication with the ironwork of the tower.
(338) The hydroulie jurk of sum toms.-Before deseribing the erection of the tower it may not be out of place to give an account of the powerful hydraulic jack used to aljust the heary standards.

To be perfectly sure that the four supports of the tower shall be in exactly the same horizontal plane, a space has been provided under each of the shoes of a standard in which a hydraulic jack of soo tons power could be placed so as to raise or lower any upright in the

the eiffel tower. view of a pier with its inclosing wall.
structure for the insertion of steel strips or wedges between the hedplate and the shoe. Figure ont shows the jack in section, and fig. ure : 238 talken from La Nature, shows it in operation. The eyl-

 millimuters in diameter.
(339) Erection of the first story.-By the end of June, $1 \mathrm{~s} \%$. the foundations were completed and the erection of the ironwork began. The lower parts of the columns were erected by braced shears $\%:$

ters high, in the form of the letter \mathbf{A}. They were made of timbor and provided with a pulley at the top, over which a chain passed to a winch on the ground (Fig. 2:P4).

The sections of the standards, in the form of caissons 0.80 meter square, weighing from 2,500 to 3,000 kilograms each, were successfully placed on each other and joined, first by pins, then by bolts. After the sections came the latticework and braces miting the portions of the standards already erected, fixing them in their relative positions and consolidating the whole structure.

Behind the gangs of adjusters came the riveters, who removed the bolts and replaced them by rivets driven hot, forming the permanent junction between the pieces. When the structure had reached the height of 15 meters, the shears were replaced by special cranes. The inclination of the standards naturally tended to overset them, but this tendency would not be effective until a height computed to be 30 meters was reached; so that up to this height the standards could be erected, so far as their stability was concerned, just as if they were vertical. Besides the calculated theoretical security, there was that resulting from the anchorage, which was more than sufficient in this case to prevent any movement.

The erection proceeded steadily until the height of 30 meters was reached. The weight of the pieces already placed in position exceeded 1,450 tons.
(340) Erecting scaffoldings.-To continue the erection, wooden scaffoldings 30 meters high were built on piles, and planted so as to sustain at their tops the three interior standards of each pier. At. the top of each scaffolding was a strong platform on which were placed sand boxes such as are used on the centering of arched bridges.

Accessory brackets, which were afterwards removed, were attached to the standards, their horizontal faces resting on the sand boxes, thus forming the support of the iron pier on the wooden scaffolding. This support once obtained, the work of erection went on up to the level of the first story of the tower.

The sand boxes afforded a moans of rectification in case of any deviation of the structure from its true position. If the column required to be lowered a little, some of the sand could be run out, and the iron work then sank to the desired position. If, on the contrary, the column had to be ratised, it was asily done by hydraulic jacks placed on the platform heside the sand boxes, and acting against the temporary bracket. In this way the work was under perfect control.

In the construction of the twelve seafloldings jast deseribed, foo cubic meters of wool were used, and the erection was continued to a height of io meters. At this level the horizontal girders were laid. uniting the four piors and forming the first story.

The special eranes which were used had a range of 12 meters: this was sufficient to be within reach of the four standards. The cranes had a power of 4 toms each, and were worked upon the inclined girders forming the guides for the elevators.
H. Ex. 410 -VOL H—— 5 ?

When the piers had attained a height of 55 meters the first great belt of horizontal girders was put in, ruming from pier to pier. These girders, $\boldsymbol{\tau} .50$ meters high and weighing 70 tons each, were so constructed as to adapt theme to the inclined faces of the converging columns. These conditions, in addition to the great height at which they were to be placed, rendered it necessary to erect for this purpose a neur sactfolding to meter: high, with a platform ${ }^{5} 5$ meters long. Four such scaffoldings were erected, one for each face of the tower.

The central parts of each of the horizontal griders were hoisted and riveted on these scaffoldings: the adjacent portions were then added to the right and loft so as to unite the four piers, the operation being carried on simultaneously for all four faces.

Plate XIV is a neal view of this scaffolding and its superimposed grirder. When these girders were joined together they formed a strong horizontal frame which took the thrusts due to the obliquity of the four piers.
(3+1) The ererting rromes. - We shall now describe the construction of the erecting crame above alluded to. Up to a distance of 15 meters the pieces were raised by shears and winches, but when that height had bern rathed the following special crane was devised by MM. (dryenet and Eiffel. which is thus described by M. Nansouty: It consists (Fig. ens) of a long jib, turning on a pivot mounted on a frame having the form of a triangular pyramid upside down. The pivot is placed in the axis of the pramid, with the pivot step at the apex. The base of the pyramid is the operating platform, and one of the sides of this hase is comected to a frame formed of two longitudinal and two transerse beams. This last frame supports the whole weight, aml transmits it to the inclined elevator guides which were arected with the piers. The flanges of these guides are pierced with holes at equal distances. Similar holes are bored in the longiturlinal beams of the frame carrying the crane; by means of these holes the two are bolted together.
(34:) Method of ratising the crone.--Whom ail the pieces within the range of the crane had been raised and riveted together. it was necessary to raise the crane in its turn : this was accomplished thus: A strong iron boam, through the center of which passed a large screw, is bolted horizontally upon the gruides at about 2.50 meters above the crane frame. The sorew passes through the frame, and is secured by a nut. Now if the bolts are withdrawn from the frame and the grudes, the crane will hang from the iron beam suspended by the screw. By turning the nut, the frame slowly ascends to its new position, the bolts are replaced, and the work grees on. When the crane is again to be raised (supposing the nut to be near the end of its course) the crossbar is detached, carried up, again bolted to the guides, the screw put in, and the process is repeated.

Two jacks were placed under the frame in case of the rupture of the principal screw.

THE EIFFEL TOWER, NEW SCAFFOLDING, 45 METERS HIGH, USED IN JOINING THE ISOLATED PIERS.

Eli. 235.-The erecting craurs ripecially derised by MM. Gugenet and Eiffel, used in the erection of the first und secound waries.

Fig. was.-View of the first story. showing one of the four piers of the tower and the shelter for the portable hoisting engine, the circular railroad, ete.

THE EIFFEL TOWER. DETAILS OF THE IRONWORK OF THE STRUCTURE.

Another peculiarity of this crane is the mechanism hy which the range is changed. This is effected as follows

The ties of the jib are attached to an axle mounted on rollers and moving vertically on the crane post be means of a screw and nut. This simple device allows the range of the loaded jib to vary from :3 to 12 meters.

It is susceptible of yet another movement about a horizontal axis by which its rerticality is assured whatever be the inclination of the guides upon which the frame moves. This is accomplished by a screw fixed to the frame, which drives a nut placed in the pivot step. Again, the suspending hook is furnished with a hand sorew. The pieces to be riveted may, so to speak, be mathematically adjusted.

Four of these cranes were used upon the four piers up to the height of 150 meters. Each one weighed 12 tons and could lift 4 tons.
(343) Erection of the first and seromd stories.- - 'lhe piers between the first and second stories were rapidly erected by the same method as that employed below. i. e.. by means of four cranes working on

Fif. :3F.--One of the whotom hydraulir jateks.
the elevator guides. But a new arrangement was made, after the completion first story, for lifting the material, the distance to the ground being too great for one set of cranes to lift it to its position.

On the first story a cireular railroad was laid down, and a crane set up driven by a portable engine of 10 -horse power, which lifted the materials from the ground and deposited them on cars, by which they were carried to one of the four cranes which raised them to their final position. (Fig. D:36 and Pl. XV).

The work advanced with such rapidity that on the Ith of July, 1888, the fireworks, celebrating the national fote, were discharged from the second phatform, 115 maters above the groumd.
(344) Cse of the soo-fon juck.-." When preparations were made to join the four pillars, in pairs, by horizontal beams, above the second story, it was fomd, as had been the case on the first story, that there was a slight difference bet ween the piris. The difference arose from
the fact that the piers $?$ and 3 were a little higher than the others, the difference being between 5 and $i f$ millimeters. As no alteration of the parts could be made on the spot, the discrepancy was corrected

Fig. ©NW. - Operation of lifting one standard of the tower hy an hydrautic jack, for the purpose of driving in the wedges.
by lowering these two piers and slightly widening the distance hetween them. This meration was affected by means of the hydraulic jacks above described."* (Figs. 237 and 238 .)

[^55](345) The erecting crancs ahore the second story.-A bove the second story, i. e., above 115 meters, considerable modification had to be made in the system of erection. (Fig. 23:3 and Pl. XVI).

Fua, 239.-Arrangement of the crane for constmoting the tower above the secooud story. Height 915 meters. Jecominer, 1 Nos.

The oblique elevator guides no longer exist, but are replaced by vertical ones belonging to another system (Edoux). This system was introduced because the curved form of the cower, by bringing the columns together, had considerably reduced the horizontal section. Instead of four cranes, two were sufficient. To support these two cranes and provide a substitute for the elevator guide ways, M. Eiffel made use of the vertical guide pillars introduced between the second story and the top of the tower. The cranes were like those already used, but so modified as to adapt them to be hoisted against a vertical guide instead of resting on the inclined ones. To balance them they were fixed back to back on the central elevator guide pillar. To increase the surface of support three iron frames were also bolted to the pillar. These frames were 3 meters high, and wide enough to allow the crane frame to be bolted to their vertical sides. Safety appliances were used as before, and, in addition, the cranes and auxiliary frames were firmly united together by a system of temporary beams, so as to form one solid structure.

A whole panel of the tower, 10 meters in height, could be erected without shifting the cranes.

The three squares thus placed one above another formed a vertical road of 9 meters, upon which the cranes could move by the lifting screws.
(346) Mefhod of shifting the orames.-When a crane had traveled up the three sets of squares and had to go higher, another set of three squares was placed in position, the crane was then moved up, and the first three squares were free to be used subsequently. Jacks were placed under the squares as well as under the cranes, so that in case of the failure of the bolts the cranes woukd remain in position (Pl. XVI).

The time required to make the shift from one panel to another was about $t \mathrm{~s}$ hours, a short time when it is considered that the total weight to be moved amounted to tis tons.

The erection above the second story may be thus summed up: A. steam winch on the first story raised the material from the ground, a second winch of the same kind on the second story raised it to this level, i. e. 115 meters. A third steam winch, set up on an interme. diate flooring of the Edoux elevator, 197 meters high, brought the pieces to the cranes, which put them in position.
(347) Protection of the workmen.-The workmen were provided with movable platforms furnished with a hand rail and screen. These were first placed in position by carpenters, and occupied successively by the adjusters and riveters. Only one accident happened by falling and that was at the begimning of the work.
(348) Top of the tomer.-The upper portion of the tower terminates in a cornice, supporting the campanile and the light-house. The lower part of the campanile consists of a covered gallery, 16 me-

THE EIFFEL TOWER. THE ERECTING CRANE USED ABOVE THE SECOND STORY.
ters on each side, and will accommodate 800 persons. It is fitted all arou ad with glazed sashes, which can be opened or closed at will, the closing of the windows being necessary in strong winds. (Fig. 240).

Fin. 2to.-Campanile of the tower.
The summit of the tower, formod of four lattion arches placed diagonally to the square section, supports the light-house.

Above the eupola is a small terrace 1.40 meters in diameter, to which access is obtained by a ladder in the lantern. This terrace,
which is 300 mettrs above the ground, is specially designed for the anemometers and other meteorological instruments.
(349) Staircases. - In the east and west piers there are straight staircases 1 meter wide, with numerous landings, giving easy access to the first floor and consisting of three hundred and eighteen solid oak steps. The former is used for descending and the latter for ascending, and it is estimated that a file of 2,000 persons per hour could be accommodated by them.
From the first to the second story a spiral staircase, 0.60 meter wide, is arranged in each of the piers; two of these staircases are for the ascending and two for the descending visitors. They also will accommodate 2,000 persons per hour.
From the second story to the top there is a spiral staircase 160 meters high, which is simply a service staircase and not open to the public.
(350) Arranyement of the first story.-Upon the first story, which covers an area of 4,200 meters, an arcaded open gallery is arranged for visitors who wish to enjoy the view of Paris, its environs, and the exhibition. This promenade is $28: 3$ meters long and 2.60 meters wide. There are also four large restaurants, capable of containing from 500 to 600 persons each. They are built in different styles of architecture and are called the Russian, the Anglo-American, the Alsace-Lorraine, and the French restaurants.

A general view of the lower part of the tower and the first story is given Plate XVII.
(351) The second story has a surface of 1,400 square meters. It has a covered gallery forming a second promenade 150 meters long and 2.60 meters wide. The central part contains the stations for the elevator, and at one end is the office of the newspaper printed, stereotyped, and published here, called the "Figaro de la Tour Eiffel," the rotary printing press being worked by a gas motor.
(352) The third story is octagonal in shape, consisting of four sides, 12 meters in length and four small ones of 2 meters.

An iron staircave of ten steps leads up to the private rooms of M. Eiffel, and to those devoted to scientific observations. From these a straight staircase of thirty steps leads up to the springing lines of the iron lattice arches supporting the campanile; thence a spiral staircase leads, at the top of these arches, to an iron cylinder containing a ladder of twenty steps leading to an octagomal lodge with a balcony. Through an iron trapdoor at the top of ten steps more we come into the lantern itself. Passing through this, up one more ladder, we come out upon a small balcony containing the flagstaff. and at a height of 300 meters above the ground.
(353) The elecutors.-Independently of the staircases, the ascent is facilitated by a certain number of elevators of different systems, viz: (1) The Roux-Combaluzier and Lepape system; (2) the Otis; (3) the Edoux.

THE EIFFEL TOWER. THE FIRST STORY.

From the ground to the first story there are four elevators, two on Roux-Combaluzier and Lepape system, and two on the Otis system. From the first to the second stories the ascent is effected by the two Otis elevators, which run continuously from the ground to the second story.

Finally, from the second story to the third, the Edoux system is used. Its starting point is from a platform erected halfway between the second and third stories. It is worked by water power with a vertical piston having a cage on the top. This cage affords the means of transit to the thisd story, a distance of 80 meters above the intermediate platform. It is attached by chains to a second cage forming a counterpoise. This cage brings the passengers from the second story, 80 meters below, up to the intermediate platform. In this way the passengers, by changing from one cage to the other at the intermediate platform, make the ascent of 160 meters from the second to the third story.
(354) Time of ascent.-The Roux-Combaluzier and Lepape system takes 100 passengers, who are landed at the first story within the minute, at a speed of 1 meter per second.
The Otis elevator cage holds 50 passengers, but has an ascensional velocity of 2 meters per second.
The Edoux elevator cage accommodates 63 persons, the ascensional velocity is 0.90 meter per second, and the time is $1 \frac{1}{2}$ minutes for each course and 1 minute for changing cages, i. e., 4 minutes for the ascent from the second to the third platform.
All the elevators are furnished with safety apparatus. They are operated by hydraulic power, the water furnishing this power being raised by stem pumps of 300 horse power.

The elevators can take up to the first and second stories :, 350 persons per hour, and 750 persons up to the third, the complete ascent occupying 7 minutes. By means of the staircases and elevators combined the tower can be visited by 5,000 persons per hour.

The mechanical features of these elevators are described in the report on class 52 .
(355) Terification of the verticality of the tower.-This was accomplished when the tower had attained a height of 220 meters by MM. Thuasne and Seilhac. This verification consisted in observing whether the median lines on each face of the tower were situated in the principal planes of the tower. By a median line of a surface is meant a line situated in a vertical plane and passing through the center of gravity of that surface. A principal plane is a vertical plane passing through the lines A A (Figs. 241, 242). For this purpose points a, b, c, d, e, f, and the intersection of the diagonals of the lattice situated upon the median lines of the four faces were selected.
The median lines being thus traced on the tower, the operation consisted in observing, with a theodolite placed in the plane A A
and properly adjusted, whether the points a, b, c, d, e, f coincided with the vertical wire of the telescope when rotated in a vertica! plane.

Fig. 241.-Elevation.

Fig. 24:-Plan.

These observations were made upon each of the four planes (4-1), (1-2), (2-3), (3-4) at points situated upon the lines A A, A A at distances from the axis of the tower varying from $160 t \rightarrow 300$ meters.

One of these stations of observation was upon the Jena bridge about 250 meters from the axis of the tower.
The vertical wire of the telescope was found to coincide absolutely with all the points a, b, c, d, e, and the crossings of the diagonals; hence all these points were in the principal plane. Similar observations made at three other stations showed the tower to be ahsolutely vertical.
(356). Uses of the tower.-M. Eiffel thus described the uses of the tower in an address to the members of the "Societe centrale du Travail Professionnel :"
The construction of the tower will enable us to observe, with new effects of light a prospect of incomparable beauty, before which no one can fail to be deeply im pressed with the grandeur of nature, and the power of man. But besides its soul inspiring prospects, the tower will have varied applications for our national defense as well as in the domain of science.
(357) Strategical operations.-" In case of war or siege it would be possible to watoh the movements of an enemy within a radius of 70 kilometers, and to look far begond the heights on which our new fortifications are built. If we had possessed the tower during the siege of Paris, in 1870, with its brilliant electrie lights, who knows whether the issues of that contest would not have been entirely changed: The tower would have provided the means of easy and constant communication between Paris and the provinces with the aid of optical telegraphy, the processes of which have attained such remarkable perfection". (Nansouty.)
It is situated at such a distance from the defensive forts as to be out of the reach of the batteries of the enemy.
(358) Meteorological observations. - It will be, moreover, a wonderfulmeteorohogical observatory in which may be studied the direction and force of the atmospherie: currents, the electrical state and chemical composition of the atmowphere, its hygrometry, ets.
(3i9) Astronomical observations.-As regards astronomical observations, the purity of the air at such a height, the absence of the mists which often cover the lower horizons in Paris, will allow many physical and astronomical observations to bee made which would be often impossible in our region.
(360) Scientific experiments may be made, including the study of the fall of borliess in the air, the resistance of the air according to speed. certain laws of elasticity, the study of the compression of gas and vapers by an immense mercurial manometer having a pressure of 40) atmospheres; a new realization on a large scale of Foucauld pendulam, showing the rotation of the earth, the deviation toward the east of falling bodies, ete.

It will le an observatory and a laboratory such as has never lefore been placed at the disposal of savants, who from the beginning have encouraged the undertaking with their warmest sympathies.

My wish has been to erect a trimphal arch for the glory of science and ther honor of French industry, as striking as those reared to military comquerors he former generations: and to express in a most emphatic manner that the momument I raise is placed under the invocation of science, I have inssribed in golden letters under the great frieze of the first story and in the place of honor the names of the great savants who have honored France for the last century.

Between the brackets is a frieze on which are inscribed in golden letters, perfectly legible from below, the names of the men who have honored French science.

On the Paris side: Petiet, Daguerre, Wurtz, Perdonnet, Delambre, Malers, Breguet, Polonceau, Dumas, Clapeyron, Borda, Fourrier, Bichat, Sauvage, Pelouse, Carnot, and Lame.

Trocadero side: Séguin, Lalande, Tresca, Poncelet, Bresse, Lagrange, Belanger, Cuvier, Laplace, Dulong. Chasles, Lavoisier, Amperre, Chevreuil, Flachat, Navier, Legendre, Chaptal.
Grenelle side: Janin, Gay-Lussac, Fizeau, Schneider, Le ChateLier, Berthier, Barruel, de Dion, Gouin, Jousselin, Broca, Becquerel, Coriolis, Cail, Triger, Giffard, Perrier, and Sturm.

Towards the Ecole Militaire: Cauchy, Legrand, Regnault, Fresnel, Prony, Vicat, Ebelmen, Coulomb, Poinsot, Foucault, Delaunay, Morin, Hauy, Combes, Thenard, Arago, Poisson and Monge.

Plate XVIII gives a general view of the complete structure.
(3i61) Statistics.-The weight of the iron contained in the tower is about $\%, 3(\%)$ tons. The weight of the rivets is ti5) tons and their total number $2.80,000$. Of this quantity 800,000 were hand driven on the tower for uniting the parts already prepared. The number of metallic pieces is 12,000 , which, on account of their varying form and position in space, required special drawings.

Forty draftsmen and computers worked steadily for two years to complete the plans, specifications and computations.

It took ten draftemen from 8 o'clock in the morning to 10 o'clock at night for one month to prepare the drawings for one panel, i. . 10 meters of the tower. The drawings were made with great prorision up to the ten-thousandth of a meter.

The plans of the tower comprised 500 drawings and 2,500 working drawings for the whole at panels. Each piece of which the tower was built was hesigned, shaped, and bored at the works at LevalloisPerret and was found to fit exactly into its place when it reached the Champ de Mars.

From 10) to $2(0)$ men were employed, at the rate af 0.50 to I franc per hour.
(3:3) Cobr.-The tower is painted a chocolate color, which is deseribed as a reddish bronze, from the foot to the first story; from the first to the secomd story the same tint. but lighter; from the second story to the top it becomes lighter and lighter until the cupula is ahmost yellow.
(36;3) Cost.-

Franes.

Foundations, masonry, pedestal 900 , 090
Erection, metal, city duties or: the iron 3, 8(\%), 000
Painting, four coats. 800, 000)
Elevators and machines. 1. ${ }_{2}(6)$, 000
Restaurants, decorations, different buildings. 400, 000)
Total. 6, 500. 000

COMPLETE VIEW OF THE EIFFEL TOWER.
(3f4) The Montyon prize in mechanics. -The French Academy of Siciences has just awarded the Montyon prize of mechanics to M. G. Eiffel as a mark of their appreciation of his skill in the erection of iron structures.
(365) Ackinouledyment.-I wish here to express my ohligations to MM. Fiffel, Salles, and Nouguier for numerous courtesies received, as well as for information, printed descriptions. and heliographs, of which liberal use has been made in this report.
Figures $\operatorname{si31,~} 2: 30$ to 039 , inclusive, are from copies of La Nature, and Figs. 2:33, 2:34, 240 to 242 , inclusive, ate from Namsontys book on the Eiffel tower.
Supplementary note.-In order to show some of the opposition to M. Eiffel's scheme for a tower 300 meters high the following extract from Engineering is appended:

On the 5 th of November, 1886 , the finance committee of the Paris Exhibition voted a credit of $1,500,000$ francs as a subsidy for the unigue and momumental work M. Gustave Eiffel had undertaken to construct, and which was tolte one of the great original features of the exhibition. The idea of erecting a tower 1.000 feet in height was received with a very general feeling of distrust and even of dismay; not that anyone doubted the capability of the bold and successful engineer to complete the work to which he had pledged himself. but the misgivings were very general as to the effect that such a novel construction would have upon the architectural features of the Exhibition, and a widespread ery of influential voices went up from Paris as a protest against the enginerring outrage that was to be inflicted upon the French metropolis. It is rather curions, now that the fower is completed and the great consensus of public opinion is lom in it: approval. to recall the remonstrances addressed to M. Alphand, the Director-(iemeral of Works, against the proposed column. " We wish-authors, painters, scouptors, arehitects, enthusiastic bevers of beauty-which has hithertobeen respected in Paris-toprotest with allour energe, and with all the indignation of which we are capable, in the name of art and of French history now menaced. against the erection in the heart of our eap)ital of the useless and monstrous Eiffel tower, whichpublicesatire, often full of good sense and a spirit of justice has abready christemed the Tower af Babel. Without falling into extravagance we claim the right to assert that Paris stands without a rival in the world. Alowe its streets and bonlevards, alone its quays. amidst its magnificent promenades, abound the most nohle momments which homan genius has ever put into extecution. The soul of France, creator of chefo-d'arare, shines forth from this wealth of stone. Italy. (Germany, Flambers, so justly proud of their artistic heritage, possess nothing comparable. and from all cornepsof the universe Paris commands admimation. Are we, then, going to allow this tolue jorofaned: Is the rity of Paris to permit itself to be deformed hy monstrosities. be the mercantile dreams of a maker of machinery : to be disfigured for ever and tobe dishonored? For the Eiffel tower, which even the Chited States would not commtenance, is surely going to dishonor Paris. Everyone feels it. werront says so. everyone is plunged into the deeperst grief aloont it, and our voine is conly a berble echo of universal opinion properly alarmed.
"When foreigners will come to visit our exhibition they will ery in astomishmemt: - Is this horror that Frenchmen have invented intended to wive us an idea of the taste of which they are so proud? And they will be right to morek us, lexanse the Paris of the sublime architects, the Paris of Juan Goujon, of (immain Pilon, of Puget, of Rude, of Barye, will have become the Paris of M. Eiffel. Nothing further
is wanting to prove the justice of what we say than to realize for an instant this tower dominating Paris, like a gigantic and black factory chimney, crushing, with its barbarous mass, Notre Dame, the Sainte Chapelle, the Tour St. Jacques, the Louvre, the dome of the Invalides, the Arc de Triomphe; all our monuments humiliated, all our architecure shrunken, and disappearing affrighted in this bewildering dream. And during twenty years we shall see, stretching over the entire city, still thrilling with the genius of so many centuries, we shall see stretching out like a black blot the odious shadow of the odious column built up of riveted iron plates." And so forth. and so forth. To this vehement protest were attached the names of many of the best-known men of France-Meissonier, Gounod, Garnier, Sardou, Gerome, Bonnat, Bouguerean, Dumas, Coppee, etc. But these well-meant ill-judged remonstrances were not heard, and to-day the Eiffel tower stands completed, the marvel of the exhibition and the glory of the constructor. The noble monuments of Paris apparently thrill as much as they did before with the genius of the centuries, and the grand proportions of the Arc de l'Etoile do not seem to have suffered because a great French engineer has achieved a triumph of construction. If foreign criticism was not set forth in such brave words as those we have quoted above, it was none the less hostile : but foreign criticism is generally more or less colored by jealousy, and is therefore not of much account.

Chapter XLVI.-The Machinery Hall.

(366) The enormous machinery hall is justly considered the boldest work of the exhibition; it illustrates the extraordinary progress of engineering, and its new lessons in the art of construction are already beginning to be applied.
(367) The Osiris prize.-A committee of French journalists to whom was assigned the task of awarding the Osiris prize of 100,000 francs to the most important work of the exhibition, after having paid a just tribute to the palaces of the fine and of the liberal arts. constructed by M. Formige, and to the central dome by M. Bouvard. decided to give it to the constructors of the machinery hall. M. Dutert, the architect who conceived the idea, prepared the plans, and superintended the erection, received 20.000 francs; M. Contamin. who prescribed the dimensions and calculated the strength of all the ironwork, lis, (ro francs ; to the five assistant architects and engineers, 3.000 francs ach; the other 50.000 francs were distributed among the workmen.
(364) History.-In 1878 M. de Dion made a bold beginning by constructing the gallery of machines with a single iron arch without a tie-rol, the trusses forming one solid piece with the piers, and built into the masomry: but these trusses were of only 30 meters span. and the height did not exceed 25 meters.

In the railroad station at St. Pancreas, in London, the trusses have in appearance no intermediate point of support; in reality the ends are united by tie-rods concealed bentath the flooring; the span is only 03 meters.

In 1889 the system adopted had already been employed by Oudry in the construction of the swinging bridge at Brest, for a few iron
viaducts, and in some railroad stations in Germany, but it had never before been applied on so gigantic a scale.

Before entering upon a detailed description of the construction and erection of this remarkable building it may not be out of place to show by the following extract from one of the Paris journals,* what impression the sight of this vast edifice produced upon the enlightened public.

If the Eiffel tower was an unexpected surprise, a triumph of originality and of daring skill, the machinery hall was found to be only one degree less marvelous; and this because the progress of modern architecture and of the seience of engineering had, from one decade to another, led us up to this supert realization of the unexplored possibilities of both. Never before, in the opinion of engineers of all countries who have visited it, has a building, proportionately to its vast dimensions, been constructed with such a wondrous combination of solidity, lightness, and grace, the general effect being enhanced by the floonl of light freely admitted to all parts of the palace. The Government is therefore to lee most heartily congratulated, on national aud artistic grounds alike, upon the initiative which it has taken to jermanently preserve this magnificent building, together with those set apart to the fine and liberal arts. in addition to the grand central dome.
The machinery hall is, indeed, the most prodigions outgrowth of the joint ingenuity and skill of architect and engineer. To bring under one roof all the machinery that was to lee exhibited was a problem which almost defied solution. The task, however, was happily surmounted by the cooperation of M. Dutert, the eminent architect, and MM. Contamir, Charton, and Pietron, engineers. M. Dutert, who conceived the entire plan of the work, tracing it out even to its minutest features, superintended the decorative details. Taking up this vast conception of an artist, M. Contamin stamped upon it the hall-mark of science by calculating the efforts of the materials, estimating their resistance, and insuring the due solidity and equilibrium of the whole structure. He it was who surerintended the operation of fitting together the ribs and girders and general framework resting upon the solid squares of masonry constituting the foundations. The palace is 420 meters in length, and 115 in width, covering a superficial area of 48.335 square meters, or about $11 \frac{1}{2}$ English acres. \dagger It is estimated, indeed, that should the buidding be ultimately converted into a military riding school, it will afford ample space for exercising $!, 2(0)$ horses at a time. Some further idea of its commanding proportions may be conveyed by the statement that the Vendome column, with its well-known statue of Sapoleon I, might easily be erected within the four walls, as it would leave 7 meters to spare between the head of the figure and the alex of the arched roof; that the span of the girders supporting this roof, which is 48 meters in height, would shelter the Arc de Triomphe; and that the nave of the Palais de l'Industrie is only half the length and half the width of that of the Palais des Machines. There is sufficient "free play" at the top of the arching girders to allow of the slight displacement that takes place under the action of heat and cold. The only points of support are, in fact, at the base of the girders and where these latter meet each other in the center of the roof: but these chief rils, be it noted, are connected by longitudinal girders, the whole framework being otherwise strengthened, on each side of the building, on the most approved principles. The methol which was followed enabled the constructors to carry out their plans with the minimum of materials commensurate with necessary strength and artistic effect; and the entire cost of the palace ($\mathbf{7}, 514,095$ francs, of which $5,398,307$ franes was for ironwork alone)

* Galignani's Messenger, July, $1 \times 8)$.
\dagger The mave alone, not incluling the lateral galleries.
H. Ex. +10-voL III--i:3

was correspondingly lessened. Over the summit of the roof is a narrow gallery for workmen.

Each of the arched girders running up the sides of the building consists of two ribs, an inner and outer one, solidfy bound together, abore and below, crosswise, one regular square alternating with an elongated one, the only real point of support leing, as we have said, in the masonry at the base, inasmuch as the girders meet each other lightly, with a sort of elastic touch at the apex above. The total weight of material over the grand nave is only $i, 400$ tons, a little more than the mass of iron used in the construction of the Eiffel tower. On either side of the mat chinery hall is a gallery lis meters in width, to which access is obtained by broad staireases, as also by lifts. One point deserving special mention is that the contract for the buiding was divided hetween two firms. One-half of the palace, that on the A venue de Latourdomais side, was constructed by the Compagnie Fives-Lille, and the other half, stretching to the Arenue de Suffren, by the Societe Cail. The former company put its girders into position in heary sections, some of these weighing 48 tons apiece. whilst those of the other contractors were set up in fragments of 3 tons. Had steel been used, the framework would have been much lighter than it is, but the idea of resorting to it was abandoned on the two-fold ground of expense and the necessity of hastening the rxecution of the work. Those who believed that iron was ill adapted to the requirements of art as applied to industry have been agreeably surprised by the happy results achieved by M. Dutert and thr engineers who so ably cöperated with him in this veritable palace of wonders.

The internal decorations, under the glass roff arching downwards toward the sides, are most effective, the chief tone heing of a rosy yellow giving rise to some curious effects of the sun's rays. Thus, toward evening, all the panes over the right side of the nave assume a rosy tint, whins those opposite are of a light-green hue, the contrast suggesting that letwoen rubies and emerahls. Ten large pancls and one hundred and twenty-four smaller omes have been painted hy M. M. Afred Rube. Philippe Chaperon, amd Marcel Jambon: the former representing the arms and commercial or other attributes of the lealing capitals of the world (Berlin, of course. excepted), and the latter the escutcheons, ete., of the minor cities and towns. including all the chefs-lienar of French departments. Over the chief entrance in the A vemue de La Bourdonnais, is a large rose window in different colors. The ornamentations on the outside are exceedingly striking. The vast areh over the prorch is decomated with a foliated design showing between the leaves various implements of latror. On the lintel is the inseription "Palais des Machines," in decorative faience, the grommbork being an olive branch. This is supported by two groups 10 meters in height.* The first, by M. Barrias, represents electricity, and is composed of two female figures. One of these, by a finger touch, sends an electric Hash through the gloler. whilst the other, resting in a recumbent peosition on a cloud, stretches forth her hand to her companion; they symbelize the two opposite currents. The second group. by M. Chapu, shows a female figure personifying steam, and a workman clasping her in his arms. A colored window above sets forth the arms of the varions powers taking part in the exhibition. In the center of the gable at the opposite end are some colorel panes depioting the battle of Bouvines, t and facing the Ecole Militaire is a wimbow ledicated to the "('hariot of the Sun."

Those who enter the machinery hall from the genoral industries gallery pass through a central vestibule which from its rich decoration. may le regarded as a sort of xelon d'homucur. Were is a handsomoropola covered with colored panes and mosaics, the former showing the leading agricultural problucts of the country, such as flax, hemp, wheat, and maize. The painted pendentives represent the arts,

* See Plates XXI and XXII, tllate XX.
sciences, letters, and commerce. The numerous other allegorical subjects ornamenting the vestibule have been greatly admired. At the fiont of the handsome staircase leading to the gallery are two splendid bronze figures, each bearing a cluster of twenty incandescent lamps.
Such, in brief, is the general outline of the building itself. It may be urged that the Palais des Machines affords evidence that a fresh era in architecture has been inaugurated, that ceci tuera cela, and that the age of stone is to be succeeded by the age of iron. We do not think so. It is true that the engineers are juse now trimphant in many directions. The chief of the state is anengineer: an engineer, M. de Freycinet, is minister of war: M. Aphand. another engineer, was one of the organizing directors of the Universal Exhibition: and the name of the engineer, Eiffel, has become something more than a household word. With respect to the architectural question, however, it is evident that engineers can dictate to architects only in the case of immense buildings whose distinctive characters is, after all, that of use rather than ornament. Those. however, who look at the interior of this machinery hall for the first time can not form an estimate of its imposing dimensions; its architectural lines do not draw the attention upwards, and so its roof appears lower than that of the smallest (iothic cathedral. Noberly, at a glance, would imagine that he stoxsl in the highest covered buidding in the world.
The motive power is distributed by means of four shafts extending from one end of the building to the other, the total force actually at work leing equal to 2,600 horse power, although 5,640 horse power may be developed if necessary. This is more than double the power placed at the disposal of exhibitors in 1sis. In 1855 the figure stool at 350 and in 1867 at 638 . There has, therefore, lreen a remarkable progression. Visitors may watch the machinery in movement from two traveling cranes, or ponts roulduts, as they are more correctly described in French, which move to and fro on rails at some height above the shafts. The bird's-eye view thas oltained proved so startling to an Annamite the other day that he turned suddenly pale, or pale yellow, on glancing down at the irom monsters which to his untutored and superstitious gaze seemed to be harboring destructive designs upon the passing crowds, and he looked as though he were ready at a moment's notice to prostrate himself at the feet of some modern Mohorh! The steam Ixoilers coceupy a place in a covered court facing the Avenue de Lamotto-Piquat, and it should here be stated that the machinery on the Quai dOrsay is set in motion by the engines in the machinery hall, a motor turning a dynamo for the transmission of electricity to the agricultural hall. Most of the engrines exhibited in the Palais des Machines belong to the Corliss, Sulzer, and Wheelock systems, and are generally of the compound type, but others will also be studied with interest by technical judges.

The general arrangement of the exhibits may br deseribed in a few worls. As the visitor passes through the palace from the A venue de Suffren to the a venue de Labourdonnais, he finds that the first half on his right is devoted to those relating to civil engineering, the ceramic arts, cabinet-making, mechanisin of various kinds, electricity, agriculture, mining, and metallurgy, printing, and paper-making: and the other half, on the left, to railway material, and spinning, weaving, and iron working machinery, ete. and the special places set apart to Switzerland, Ifelgium, the United States, and England. Between the machinery hall and the general industries hallery is a court in which electrical apparatus of all kinds may tes seen in full working order at night. It constitutes one of the most novel and attractive features of the exhitition. The forus of one great lamp consists of a cluster of 15,0\%0 small incandescent lights.
(309) E.rtract from ther offirial spereifications.--The following axtract from the official speeifarations will give an idea of the great pressures which the fommations were required to sustain.

The great nave consists of nineteen bays, varying in length as follows: Two at the end, of 25.295 meters each; sixteen intermediate, of 21.50 meters, and one in the middle, of 26.40 meters. There are twenty principal girders (Fig. 247), the two end ones being heavier than the others. These principal girders are connected at the top by two ridge purlins, with a walk and parapet above them, and ou the sides by eight lattice purlins, and two plate purlins at the right of the main gutters. Between the principal girders each bay is divided into four parts by three girders at right angles to the purlins, to which they are attached. These latter hold the minor purlins and sash bars, with the iron framing for the roof covering. Laterally, the principal girders are connected by lattice girders at the first fiom level of the side galleries, and under the gutter by lattice arches and open iron work. The weight of the nave was estimated at $7,709,100$ kilograms, and the thrust of each principal girder amounted to 115.5 (H)0 kilograms, inchoding a weight of show and the effect of a strong wind blowing at the rate of 40 meters per second.
(3i0) Foundations.-The foundations for the Machinery IIall were begun on the 5th of July, 18s7, and were finished on the 21st of December. The structure, according to the specifications just given, consists of an immense nave 110 meters wide and 420 long, with two side galleries 15 meters wide, containing a single story 8 meters above the ground, with grand stands at each end, supported on iron pillars. Access to this story is obtained by four great staircases.

The twenty great curved girders of 110 meters span form the framework of the building; they are jointed at the top and at the springing lines. The axles on which they rest are on a level with the ground. The bed plates or cast-iron bearings, which take up the thrust of the arch and transmit it to the masonry, had to be made strong enough to support a vertical load of 412 tons, and a horizontal thrust of 115 tons.

As provision had to be made for a system of underground pipes for water, steam, drainage, etc., it was impossible to use underground tie-rods; it was, therefore, absolutely necessary to make the foundations of the piers or abutments of the great girders strong and deep enough to assure the perfect security of the edifice. The twenty great girders rest on forty masonry piers entirely hidden in the ground; they are designated by the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc. (Fig. 243).
(371) The nature of the soil is suitable for foundations, where it has not been previonsly disturbed, hut unfortunately for the present occasion, the Champ de Mars has, during the last century, been the site of exhibitions beginning with that of 1789 and ending with the recent one of 1876 , when a deep deposit of sand was removed and replaced with rublish.

On this old gravel pit a portion of the foundation had to be made (this pertion is shaded in the figure).

Numerous borings had shown the strata (Fig. Dif) to be as follows: made ground and gravel, for a depth of 7.50 meters; plastic clay, 7.50 meters ; quartz sand, 1.50 meters ; plastic clay, 3.10 meters; clay, 5.40 meters; marl, 19.40 meters to the chalk.

Fig. 243.-General plan of the foundations of machinery hall.

On account of the differences in the strata it was found necessary to adopt three types of piers according to the thickness of the gravel on which they rested. Whenever the thickness of the alluvial de-

Fig. 24.-Geological pection. posit exceeded 3 meters, the foundation of the pier consisted of a block of masonry 7 meters long, 3.50 wide, and 3.70 thick, resting on a layer of beton from 0.50 to 0.80 meter thick. (In this first case the resistance of the ground was required to be 3 kilograms per square centimeter). This is the general type of foundation, twenty-five piers out of forty being so constructed. When the bed of gravel was reduced in thickness, without falling below 1.50 meters, the depth and surface of the béton was considerably augmented, the dimensions being 1.35 meters in thickness, with a surface of 11.20 by 6.50 meters in some instances, supporting a mass of masonry which was the same for all the piers; the resistance in this latter case was 1.9 kilograms. Only five piers were constructed on this type, viz, G, M, P, Q, and P^{\prime}.

Finally, for the piers which had to be constructed on the site of the gravel pit, the bed of beton was the same as in the last case, but, before laying this, a group of piles 0.33 meter in diameter and 9 meters long was driven into the bed of quartz sand, which extends below the layer of clay 7 meters thick.
The foundations on the line A T began on July 5 and presented no difficulty, but in sinking the piers G P portions of the foundations of the exhibitions of 1878 were met and blasted out. Figs. 245 and 246 show a vertical section and plan of one of these piers. Each of these elliptic excavations was 20 by 15 meters at the top, 11.20 by 0.50 meters at the bottom, and from 7 to 7.50 meters deep. The contents varied from 1,100 to 1,200 cubic meters. The piles were sawn off and covered with a layer of beton, 11.20 by 6.50 by 1.80 meters, amounting to $1: 31$ cubic meters. The operation of running in and ramming the béton occupied 26 men two days. Upon this the various layers of masonry (Fig. 245) were built-varying from 120 to 130 cubic meters-by six or seven masons and as many helpers, in 8 or 9 days.

The feet of the principal girders were at the reference 35.12 meters.*
The masonry was stopped at 32.96 meters to put in the anchor bolts holding the bearings. These bolts are six in number, united by a network of T irons imbedded in the masonry.

[^56]

Fig. 245.-Foumdation of n truss girder; elevation.

Fict. 246...- Plan.
Each bolt is separated from the masonry by being placed in a castiron tube, which allows it. $0.0: 3$ meter phay in every direction. At
O. 50 meter above the reference 32.96 meters each cast-iron tube is prolonged by one of sandstone, so that it may be cut to the exact height of the bearing. The bearing rests upon a large cast-iron bed-plate, so that rubblework under it answers very well.

The foundations were completed on December 21 by MM. Manoury, Grouselle \& Co., contractors.
(372) Principal girders or arched ribs.-Each principal girder is jointed at three points, i. e. at the top, and at the springing lines (Fig. 247). This arrangement simplifies the calculation by determining the exact points of application of the stresses ; it also facilitates the movements due to the variations of temperature, which cause the ridge to rise or fall as the girders expand or contract.

We will first consider the arch and afterwards the spandrel, which does not affect its strength, but simply constitutes a filling. The arch is divided into twenty-four panels of different sizes. The distance between the extreme plates of the intrados and extrados at the bottom is 3.70 meters. This distance continues up to purlin No. 5 , whence it begins gradually to diminish to nearly 3 meters at the top. This very economical form gives a character of lightness and elegance to the whole girder.

As the Figs. 248-254 indicate, the girder consists of two webs 450 by 9 millimeters for the part between panels Nos. 1 to $16 ; 450$ by 10 for that between panels 16 and 21 , and 450 by 23 for that between 21 and 24 . (Dimensions given in millimeters).

These webs are united by plates 770 by 8 for the extrados, and 900 by 10 for the intrados, and four angle irons $\frac{100 \text { by } 100}{9}$.

The uprights and diagonals are fastened to the two webs.
For the part between purlin No. 4 and the joint at the foot of the girder the stresses are considerable, and the sections have been strengthened.

The covering plates for those parts subject to the greatest stress are six in number. A plate of 10 thick extends over the entire girder, a plate of 13 over a shorter length, one plate of 11 over a certain length of the intrados, also two of 12 , and one of 13 , which makes a total of ${ }_{\gamma} 1$ millimeters. (See Fig. 249).

At the extrados, the last two plates are omitted, and they have been replaced by two angle irons $\frac{110 \text { by } 110}{9}$, which connect the spandrel with the principal girder. (Fig. 252).

The portion of the arch between two purlins is formed by three small diagonals and two large ones. This division of the diagonals into small and large serves to decorate the arch, and has also the advantage of giving the same distance, 10.72 meters, between the vertical purlins, which is indispensable considering their great height.

OIVIL ENGINEERING, ETC.

Sbctions of the arfat triss girderg

Fig. 2ti。

Fia :49

Fio. : 20.

Fig. 251.

Fig. 253.

Fig. : wht.
(373) The diagonals are formed by \mathbf{T}-irons of different dimensions, according to their position in the section with respect to the webs of 450 . From the panel 21 to 12 the diagonals are T -irons $\frac{200 \text { by } 100}{14}$. In the panels $22,2: 3,24$ they are T-irons $\frac{200 \text { by } 100}{14}$ strengthened by a plate 200 by 10 ; in the panels 11 to 1 they are 170 by 90.

The panels at the head and foot are of an entirely different construction. In those of the head, which have to resist a horizontal thrust of 74,950 kilograms under ordinary circumstances, of 114,360 when the roof is covered with snow, and of 119,840 in case of a wind having a mean velocity of 40 meters per second, two large diagonal double T-irons are used, which take the thrust, and form, with a series of supplementary webs and strengthening plates, a very stiff frame.
Figs. 264 and 265 show the methorl of attaching the bearings to the wel) of the arch.
The bottom panel is entirely plain and has two webs strengthened by several supplementary plates.
The panel rests on the upper bearing by means of an additional plate 20 millimeters thick, to which it is fastened by four bolts. The lower pillow block rests on a cast-iron plate, to which it is attached by long anchor-bolts imbedded in masonry, as has been previously described.

For facility of transportation the different sections were 5 or 6 meters in length, the joints being made in the middle of a panel, and care taken that the angle irons should break joint.
($3 \mathrm{~B}^{\pi} 4$) The spandrel has the same construction as the arch itself. It is formed of two webs 400 by 9 united by a plate 770 by 8 , and four angle irons $\frac{100 \text { by } 100}{9}$.

The uprights are in the prolongations of those of the arch, and like them placed beneath the two webs. The vertical part of the spandrel outside of the girder, which carries the arches of the lateral galleries, and the gutter purlins, is strengthened by two webs 150 by 7 and four angle irons $\frac{100 \text { by } 100}{10}$.
The joints between the gutter purlins and the girder are made by bolts, on account of the difficulty of riveting at this height, and the gutter is secured to the uprights of this purlin by a number of brackets. All the space below this purlin above the arches of the lateral galleries is closed by a plate-iron curtain 4 millimeters thick formed by plates 1.73 meters long and lapping over each other for a distance of 0.150 meter.
(375) Purlins.-There are twelve purlins, including those which support the gutters, which aredifferently constructed from the others. The two latter are formed of a web) 1.05 meters high by 8 millimeters thick, and two plates 300 by 9 inillimeters with four angle irons $\frac{70 \text { by } 70}{7}$.
The uprights, consisting of a web and four angle irons, stiffen the beam, and serve at the same time as a support for the rafters on the interior and for the gutter corbels on the exterior.

The other ten purlins (Figs. 255-25\%) are each formed of an \mathbf{N} shaped lattice girder. The tension bars are two flat irons 120 by 8 joined on each side to the two plate webs of 350 millimeters thick. For the two panels near the trusses where the shearing stress is greatest the thickness of the plates is 9 millimeters.

Machinery hali. Pi'hlin with details.

Section A B.

Section K L.

Figs. 255, 256, 257: Purlin.
The purlins have been calculated by considering them as pieces resting on two supports and carrying three separate loads, viz, the rafters, a portion of sashes and glass, and their own weight. These conditions give a height in the middle of the purlin of 1.80 meters, and this height has been augmented toward each end for architectural effect.
(376) Rafters.- The purlins are braced by a series of rafters running from the ridge to the gutters (Figs. 258-262). Upon the rafters rest the minor purlins which support sash bars. Rafters Nos, 1 and 2 have been selected as illustrations on account of the peculiar arrangement at their upper parts due to the joining of the principal girders.
On account of the great length of the purlins it is indispensible that they should be braced at several prints; this is accomplished by

CIVIL, ENGINEERIN(i, HIC.
Mac'hinehy hatid. Rafter.

Fias. 2ts-2mil. Rafter, rafter end, and sections A Is and (C D.
means of the three ratters placed between two principal girders. This bracing is made secure by putting at the right of each rafter and for each purlin a large ear of plate and angle irons. Between the two ears a sheet of lead 15 millimeters thick is placed.
This arrangement does not prevent the movements due to variations of temperature, for when the girder expands the ridge rises. The lead gives at its lower part and allows the motion.
six bolts are used to mite the two cars, but, in order to lawe a slight play, care is taken not to sorew up the nuts too tightly:
The two ridge purlins suppert a walking gallery with an outside parapet. This gallery is fixed to the right gutter purlin only, and is free from the other so as to vary its position as the roof moves.
(379) Erection. - The contracts for iron work and the erection of the Machinery Hall were allotted to three companies, viz, the gables and lateral gralleries to MCM. Baudet, Donon \& Co. and the other portions of the great nave were equally divided between the companies Fives-Lille and Caile.
(3i8) The methend codopted by Fites-Lill. Cob is due to M. Lantrac. chief engineer of the company, and was superintended by. Malme,

the resident engincer. This system consisted in putting the parts of the girder together on the gromid so as to form four sections, viz, t wo piers and two arches, then raising these four sections to their proper places, and riveting them together on seaffoldings armaged for the purpose.
The scaffoldings required for the whole operation were theee in number, one high central one and two lateral ones: they are shown in Fig. ega; they are monted on wheels and are eatirely indepembent of rach other.

> HF:culurlun of Fu: sis.

Fig. 963 represents the methol of raising the girders, with the traveling soaffoldings in use.

Machinery Hall. Ehection of a great trigs girder. Method adopted by the Fvier-Ialle ('OMPANY.

I I', piers; X, high central seaffoldings 22 meters long, 19 meters wide, 44 meters high, running on 18 wheels 0.80 meter in diameter; Y Z, two smaller traveling scaffoldings just alike; $\mathrm{U}^{\prime} \mathrm{U}^{\prime}$, secondary scaffoldings fastened to Y and Z; V' V^{\prime}, traveling scaffoldings fastened on to Y and Z ; \boldsymbol{u}, 1 , firmly braced projecting stage ; b, c, hoisting pulleys on $a ; d$, e, winches for b and $a ; f,!$, smaller winches below; h, i, small cranes; j, lifting pulley: k, l, winches; m, p, foot of girder ; , is, a platform on piles, with a winch; n, the rest of the half girder: r, guys: μ, pulleys; y, traveling crane.

When it was desired to transfer UZ amd V from one bay to another, the following operations were necessary: First, a motion at right angles to the axis of the nave for a distance of $1 \tilde{r}$ meters, so as to clear Z and V and allow them to pass under the arched girder; secoul, a movement of 21.50 meters parallel to this axis to the following bay; third, a movement at right augles to the axis, so as to bring the whole back into line with its primitive position.
These travelers were carried on three sets of rails, two across and one lengthwise, by means of fifty wheels, twenty-eight for the first and third travelers, and wenty-t wo for the second.
The height of the axles of the wheels conld be raised enough to enable the wheels to clear the rails, by removing a set of cast-iron bearings phaced above the axles for this purpose.
In order to pass from one line of rails to another, the travelers were raised by a set of hydraulic jacks, the upper bearings removed, the wheels pushed up and wedged into their frames, and the set of wheels for the other line brought down. The travelers were then moved by cables attached to piles driven into the ground, the cables being wound up on the winches k and 7 . The time required to shift X, Y, and Z , was a little less than two days.
(379) General process of erection.-The bed plates, cast-iron pillow blocks, were fastened by the anchorage bolts already described. The form is shown in Figs. 294 and 265.
The bed plate rests on a sheet of lead 5 millimeters thick, spread upon a coating of Portland cement laid upon the masonry.
The portions of one-half of the girder, consisting of the foot, the heal panel, and the intermediate sections unriveted, were sent from the shop.
The traveling crane $y, 10$ meters high, was used to handle the different pieces, which were put together in two separate portions, m and n, and laid parallel to each other (Hig. 26:3).
Suppose now the bay H H' I I' to be finished ; we pass to the following bay thus: X takes the position $\mathrm{X}_{1} ; \mathrm{Y}$, the successive position Y_{1} and Y_{2}; and Z, those of Z_{1} and Z_{2}. Then the portion of the girder n placed upon cars rumning on a cross track is brought to n ', directly under the pulleys forming the hoisting apparatus on X , while the foot m is dragged to the position m^{\prime} just in front of its bearings. Y_{2} is then pushed into the position Y_{3} in line with its
first position. The same movements are made with 7 . The two pieces m^{\prime} and n^{\prime} are now ready to be raised.
(380) Erection of the foot of the girder.—Fig. :(it-The first oneration is to turn P around an auxiliary axle. A, until the rounded edge, M, of O bears upon N. S is fixed by four steel wedges. H, to the bed plate 'T, which is made fast by the anchorage bolts. The anxiliary axle A is a steel cylinder $0.1 \geqslant$ meter in diameter and 0.80 moter lomg. It rests on the cast-iron half pillow block B bolted to the oak frame E. The half pillow block, C , of the axle A is fixed upon P by bolts and

braced by two iron claws, D, riveted to the girder itself. The pieces C and D are subsequently removed and the holes stopped with rivets.

When the piece P is dragged over so as to stand exactly in front of R, it is lifted by hydraulic jacks, and the supports are gradually removed until C comes in contact with A . The hoisting was done H. Ex. 410 -vol III- 54
by means of a cable and two pulleys-one fixed to the scaffolding Z,

Fig. 266.-Sipecial arrangement of the pulleys for lifting the foot of the girder so that the different pieces may secillate in directions at right angles to eachother, in order that the traction shall always be normal to the axis of rotation. and the other united by an oscillating bar and two comecting rods to a steel axle fixed to the lower flange of the fifth panel (Fig. 2466), so that the different pieces could oscillate at right angles to the traction in both directions. The cable was 0.075 meter in diameter and had been tested to 40 tons. The foot weighing 48 tons and bearing partly upon A, its axle of rotation, with three plies of the cable there was no danger of rupture. The cable passed over the winch e and was worked by a gang of twelve men. As an extra precaution the first motion of the girder was aided by the auxiliary hoist q. Two guys steadied p in its motion, and finally the traveler Z was guyed by a sted cable s. It took about three hours to raise both feet together.
(381) Erection of the remainder of the girder. - When each foot was raised and secured to its traveler the joining pieces were brought into place by the traveling cranes, $h h$, and were riveted on the scaffoldings.

Flla. 2fit.-Scheme adopted by Fives-Lille Co. for erpeting the rafters and purlins.
Thenther pertion n of the girler was shang at its extremities to the pullessedand k by three ables earh, so that the section, which weighs
about 38 tons, was borne with perfect security. The inner end was first raised by the winch duntil the section took the position n_{1}^{\prime}. It was then raised by means of d and k, to the position n_{2}^{\prime}, the head being about 2 meters from its final position n_{3}^{\prime}. To bring it to the position n^{\prime}, the winch d was stopped. and a second pulley w worked by the winch f was attached to the end of girder.

Fig. $20 ; 3$ shows the arrangement of these two pulleys. By hauling and slacking alternately with the pulley d, the bearing of the head was brought to the trumnion of the upper joint. The raising of the other section was carried on at the same time matil both bearings closed upon the trumion. When this wasdone the collar plates were bolted on, uniting the two bearings together. During this time the two sections of the girder were beingriveted together.

The operation of raising the whole girder took five hours and a gang of eighty men in all.
(38:) The raising of the purlins.-After the gutters had been raised and placed by the cranes h_{4} and i, purlins Nos. 2, 3, 4 (Fig. $26 i$) were raised and placed on U '. The upper extremities were furnished with bushings carrying rollers (Figs. 265 and 269).

Then the three purlins with their six rafters were riveted together uron the fioor of the traveler. The whole system was then rolled by two winches placed on the central traveler and hauled to its final place; the rollers were taken off, the cheeks let down by special jacks arranged on wooden frames; the-purlins came into their proper places and were bolted to gussets riveted to the girder (Fig. 270).
(383) Weight.-

Weight of each gable-end girder 240
Weight of each of the other girders... 196
Weight of one-half bay including the purlins, rafters, and sash bars.......... 6 .
Weight of gutters, arcade, etc., for one-half bay.............................. 23
Number of rivets for the ordinary girders, about 32,000 , not including those for the purlins. Of these 19,600 were driven in the shops, 10,300 on the ground, and 2,100 on the scaffoldings.

Number of workmen employed on the ground daily, 250 .
The first girder was erected April 20, 1888. The first bay was completed in 23 days, the second in 16 days, the third in 12 days, and each of the following bays in about 10 days.
(384) Method of erection adopted by Cail \& Co.-The system adopted by Cail \& Co. was devised by M. Barbet, chief engineer of the company. It consisted in raising the girder in pieces not exceeding 3 tons and riveting them directly from a single scaffolding, the top of which conformed as nearly as possible to the intrados of the arch.
Fig. 271 shows the elevation of this great scaffolding, consisting of five stagings 16,18 , and 20 meters long, by 8 wide, comected at a height of 10 meters by a series of bridle pieces; the stagings are united at their upper parts by plank floorings; one of the floorings, a flight of steps, follows the outline of the girder which it is intended to support; it has a width of 5 neters; the other, 35 meters high, is horizontal.
On this platform, 4 meters wide, two rails, 2.50 meters apart, are laid, which carry a traveling crane, shown in the figure.
The five stagings are mounted on twelve wheels 0.60 meter in diameter. The rails, 0.12 meter high, are fixed to strong cross-ties 1.10 meters by 0.25 , by $0.15,0.70$ apart and the whole carefully leveled.

The scaffolding is moved by five winches set up on its lower framing, and the ropes pass through pulleys made fast to piles driven into the ground. Each staging was provided with a plumb line, and,

Fig. 241 .-Erection of the great truss girders. Method used by Cail \& Co. View of the girders and the erecting scaffolding.

as all the rails were marked in divisions, it was possible to correct, from time to time, irregularities in the motions of the different stagings. The shifting of the scaffolding for one bay occupied not more than $1 \frac{1}{2}$ hours.
In addition to these saffoldings there were two large traveling cranes, 8 meters by 6 , and 28 high, ruming on tracks laid outside and parallel to the axis of the nave.
(385) Process of arection.-After holting down and andusting the bed plate, the bearings, etc., they proceeded twerect the basos of the

Fra. 2r3.-Method of erecting the purlins adopted by ('ail \& c'o.
girders by building around the pier a staging which was capable of holding a flooring at any height below the gutters; pieces, brought by cars, were taken by the cranes, carried up, and fitted; a gang of riveters followed the fitters as the work went on, to the level of the gutters. The cranes were then moved on to the next pier and the operation repeated.
During this time the traveling crames on the great scaffolding (Fig. 272) raised and placed the other pieces of the arch which were first secured, then bolted together. The two half arches rose progressively together to the upper joint ; at intervals the intrados plate was supported on pairs of jacks, thirty-two for the whole girder, which was thus held a little above its final position so as to leave a little play at the joint. Whes the riveting was finished the half
girders were dropped into their proper position and the comecting collars bolted on.
(385) Erection of the purlins and rafters. - Figure Nat shows the method by which the purlins and rafters were placed. One end of the purlin was made fast to the chains of the traveling crane, the other end to a rope from sheers erected exactly in line with the definite position of the purlin. The crane was moved out of line as the hoisting went on, until the purlin had cleared the flanges of the girders, the crane was then brought hack and the purlin lowered into its place. At the time of lowering the purlin, an aperture was made in the scaffold flooring by taking up some of the planks, which were replaced when the operation was finished.
The rafters were raised in a similar mamer. To each purlin were fastened six outriggers, coupled at the right of the angle irons fastening the rafters; these outriggers carried pulleys over which ropes passed to winches on the ground. The rafters, like the purlins, were raised by these winches.
As before stated, there were 32,000 rivets; of these 4,000 were driven in the workshop, 8,000 on the ground, and 20,000 upon the scaffoldings.
The average number of workmen was 215.
The first girder and bay were completed on the 2tth of May ; the second and thind girders and bays reguired 13 days each ; the fourth and fifth 12 days each, and the rest 10 days each, on an average.
A view of the gable in process of construction is given in Plate XIX, and a view of the interior of one end of the hall in Plate XX.
(38\%) The great costibule.-The central 30-meter gallery communicates with the Machinery Hall by a vestibule (Fig. 274), which unites it with the lateral galleries of the great nave. This vestibule has two wings covered by hooded arches 4.60 meters wide, each containing a monumental staircase leading to the Machinery Hall gallery.
The iron framework consists of four great pillars 22 meters high, whene thy means of four arches, support a belt 25.66 meters in diameter, resting on the middle of each arch. A part of the weight of this belt is borne directly by the pillars by means of struts which form, with the base of the belt, four pendant arches.
The root is a cupola formed by sixteen curved ribs resting, below, on the belt. and converging to a second belt 10 meters in diameter, which supports the lantern. The latter also consists of sixteen ribs 0.15 meter wide, springing from the upper belt and converging to a third belt I meter in diameter. The ribs are braced by circular purlins. whictosupport the sash bars and that part near the gutters which is covered with zinc.
The roof has a double glazed ceiling. A spherical glazed ceiling, hung from the curved ribs by iron rods, extends upward to a perforated circular plate suspended from the lantern ribs, serving as a

VIEW OF MACHINERY HALL, SHOWING THE END TRUSS GIRDER AND THE GABLES.
means of ventilation. This double ceiling is only ornamental: it is entively glazed except at its lower part, and is divided into sixteen panels mate up of a number of pieces of colored glass set in lead frames.
The portions of the interior of the dome and wing not glazed are decorated with paintings and ornamented plaster and cramic work.

The balustrade of wrought iron and bronze is a work of great artistic merit. Two bronze figures at the entrance, by MM. Cordonnier and Barthelemy, carry a group of twenty incandescent lamps.
(388) The erecting seaffolding is shown in Figs. 255 and 286 ; it is circular, being formed of two framed belts of the same size as those of the cupola. The exterior belt has twelve sides; it is made up of sixteen posts united by four courses of bridle pieces and double
diagonals. The interior belt is square, formed of eight posts united like the preceding ones.
The two belts are connected with each other by sixteen trestles, four of which intersect and form the sides of the interior square.

Fias. 275 and 276 .-Transverse section and plan of the scaffolding used in erecting the vestibule of Machinery Hall.
The dome was erected by means of wooden shears set up on two wooden platforms, the first 18.75 meters, and the second 26.30 meters high.

The constructors of the iron work for this pavillion were MM. Monreau, Frères.
(389) Decoration.-The nave is covered with ground glass fur-

Fig. 2it.-Iongitudnal façade.
nished by the Saint Goban Manufactory; the lower parts toward the gutters are unglazed, but decorated with the arms of the principal
diagonals. The interior belt is square, formed of eight posts united like the preceding ones.
The two belts are connected with each other by sixteen trestles, four of which intersect and form the sides of the interior square.

Fios. 275 and 966 . -Transverse section and plan of the scaffolding used in erecting the vestibule of Machinery Hall.
The dome was erected by means of wooden shears set up on two wooden platforms, the first 18.75 meters, and the second 26.30 meters high.

The constructors of the iron work for this pavillion were MM. Monrean, Frères.
(389) Decoration.-The nave is covered with ground glass fur-

Machingry Hadi. Side galleries.

Fig. 2Ti.-Longitudnal façade.
nished by the Saint Goban Manufactory; the lower parts toward the gutters are unglazed, but decorated with the arms of the principal
cities of the world and those of the chief towns of France and her colonies.
(390) Lateral galleries of Machinery Hall.-Figss. Ri7-2ia show elevations and a section of the lateral galleries amexed to the great nave of Machinery Hall. The galleries are on the two long sides of the great nave only; they are made up of a series of arches.
The first series consists of the arches situated between the great girders and united with the vertical part of the spandrel, in which is fixed the gutter purlin of the great nave. These arches brace the great girders and sustain a flush vertical portion, a sort of curtain which closes the space left between the girders above the arches.

Fig. ©r8.-Transverse section through the crown of the arch.
The second series of arches, situated 15 meters outside the first, is identical in form with the preceding, but of a slightly different construction. The two series are united by a system of purlins and rafters supporting a zinc roofing.
The lateral galleries are divded into two stories by a flooring 8 meters above the ground; on this flooring the grand stands are placed.
The façade arches are formed of a girder with a full web.
This girder is made up of a plate cut according to the profile of the arch, having its upper and lower members formed by two angle irons 90 by 90 and by a plate 300 by 8 millimeters. These mem-

Machinery hall. Side Galleries.

Fig. 279.-Side galleries. Lateral view from the principal nave.
bers are united at intervals by a certain number of uprights which stiffen, and serve as points of attachment for a series of brackets and angle irons supporting the upper crown of the arch.

For all the portions of the façade arches and also for the interior part, where a purlin is fixed to an upright, the uprights are formed by four angle irons.

At the interior portion of the arches of the façade (Fig. 279), and to reproduce the lattice of the arches, plate-iron bars are riveted to the girders. This lattice only serves as a decoration. The piers of the facade arches are the same as those of the interior. These piers support a horizontal girder resting on two intermediate columns. The foor beams are joined to this beam. These beams are attached on the interior side to a girder half flush and half lattice, which spans, without support, the intermediate space of 21.50 meters between the girders. Above, the horizontal façade girder the space is filled with brick, and above that, with glass to light the first story of the galleries.

The ground floor is lighted by a glazed portion situated below the horizontal girder, begiming at a distance of 0.575 meter above the ground.

The decorations of the annexed galleries, like the decorations of the great nave, are very simple, and indicate clearly the atilitarian object of the structure.
(391) The construction of the gable ends and the lateral galleries (Plates XIX and XX) was done by MM. Baudet, Donon \& Co., the gable ends and galleries attached requiring over $1,200,000$ kilograms of iron. One end is decorated by a great glass window, consisting of 19 panels 9 meters high, representing the battle of Bouvines.
'The opposite end is flanked by two towers, and bears in relief the arms and attributes of the city of Paris. The archivolt is decorated with the arms of the principal countries taking part in the exhibition.

Plate XXI and XXII show the two groups of figures, 10 meters high, supporting the lintel of the gable, referred to elsewhere.
(392) Weight.

The total weight of iron usedkilograms. . 10,761,063
Total surface covered.........square meters... 62,113
Weight per square meter covered . . kilograms. . 205.45

[^57]

A GROUP OF FIGURES SUPPORTING THE LINTEL OF MACHINERY HALL, AND PERSONIFYING STEAM ; BY M. CHAPU.

Cost of Machinery Hall.

Earthwork and masonry	Franes. 592,425.54
Ironwork	5,398,307. 25
Woolwork	198,760.51
Covering, lead and zinc	236,682. 74
Floorings	78,591.04
Joiner's work	34,345.80
Glazing.	182,242.67
Decoration	256,141.50
Painting.	158,547.40
Administrative expenses	190,227.66
Engineers, etc.	102,922.52
Total	7,514,004. 69

(393) Acknowledyments.-In terminating this extended notice, I wish to express my obligations to M. Contamin, chief engineer of the building, for valuable assistance and information.

The original plans and deseriptions of Machinery Hall were published by M. Grosclaude, M. Contamin's assistant, but were considerably modified (iron substituted for steel) before the structure was erected. M. Grosclaude was kind enough to correct his plans and descriptions published in Le Genie Civil and also furnish me with new drawings of the main girder and its details. The notice of the foundation and erection are from the description of M. Henard, assistant architect of the building, published in the same journal.

To Cail \& Co., and especially to M. Baudet, contractor for the gables, I am indobted for photographs and for much valuable information.

PAR' V.-LIGHT-HOUSES.

Chapter XLVII.-Planier Light-house.

(394) At a distance of s miles southeast of the entrance to the port of Marseilles is a vast mass of rocks for the most part under water, and which emerge at one point only, where they form the islet of Planier, which is 200 meters in length from east to west and 100 meters in breadth. It consists only of rocks and has a flat surface, the most elevated point of which is only 4.50 meters above flood tide; in the heavy swells from southeast to south and west, the waves cover the islet, to the approaches of the light-house tower.

The sides of the islet are perpendicular, but several little creeks exist where it is possible to land when the weather is favorable, care being taken to select one to leeward. They are, however, very small, and have not more than 1 or 2 meters of water, owing to which circumstance only small boats can enter them.

Being situated at the entrance of the bay of Marseilles, this islet has, from time immomorial, been pointed out to navigators, and an old tower on the eastern side origrinally served as a bea on. In 1829 it was considered necessary to establish at Planier, for the benefit of vessels making the land, a light-house which would be visible at a great distance, and a tower was constructed on the west side, on which was placed a light of the first order, eclipsed at intervals of 30 seconds. and with its focus 36 meters above the ground and to meters above flood tides.

Owing, however, to the immense development of the maritime commerce of Marseilles, and because, since the period of steam navigation, the speed of vessels has been augmented to such a degree, it became imperatively necessary to render the approaches of the port as conspicuous as possible, so that there need be neither error nor hesitation on the part of the commanders of vessels at a long distance from the island. It was, therefore, decided to establish here a flashing electric light, with eclipses at an interval of 5 seconds, a red flash succeeding three white flashes, having a range of about 23.04 nautical miles. To obtain this range, so superior to the old one, which was not more than 15.03 miles, the light had to be increased in intensity, the oil lighting replaced by an electric light, and the tower raised 40 meters, that is, to 93,469 meters above low tide. As
the existing tower was not high enough for so extensive a range, and the nature of the construction did not admit of any addition to its height, the erection of a new tower was resolved upon, which is shown in Figs. 280 and 281 . It is cylindrical in form, built of rubble masonry with hydraulic mortar. Ashlar is used only for the

revetment at the base and for the eornice and parapet at the crown. The facing of the shaft consists of a layer of Porthand cement. The staircase is of ashlar. The base rests upon a fommation phatform leveled at 4.45 meters above low water. The height of the hase H. Ex. 410-vol, 111 - in
above this platform is 8.60 meters, that of the shaft 42.44 meters. and that of the crown 5.45 meters. The focus is 59,019 meters above the platform foundation. The radii of the horizontal sections of the tower are as follows : 3.35 meters for the top of the shaft, 4.40 meters at its base, and 6.90 meters at the bottom of the basement. The interior space forming the stancase is a cylinder 4 meters in diameter. It is lighted by twenty-five windows. The stone stairway, 0.80 meter wide, stops on the two hundred and fifty-fourth step. It is prolonged by an iron staircase of sixteen steps reduced to 0.60 meter. This last goes through the arch upon which the flooring of the service chamber rests, at a height of 49.08 meters above the sill of the entrance. This chamber is lighted by four windows pierced between the brackets of the coping and facing in the direction of the four cardinal points. A second iron staincase of twenty-one steps leads through another arch to the lantern, which is contained in a little. stone tower 2 meters high, which forms the base of the lantern and surmounts the coping of the light-house. The iron lantern is 4 meters diameter inside. The light-house is protected by a lightning rod.
(395) Lighting apparatus.-In order to avoid confusing the Planier light-house with those in the vicinity, and as the electrie light is very appropriate for producing flashes, it was decided to give the new apparatus the character of a flashing light with three white flashes and one red one.

The optical system which has been adopted consists of a dioptric apparatus with a fixed light, 0.60 meter in interior diameter, surrounded with a movable drum of vertical lenses consisting of sis groups of four lenses, one red and three white, making a resolution in 90 seconds. The lenses intended to produce the red flashes inchade a space of 30 degrees; those which give the white flashes extend only over 10 degrees; hence there is an interval of at seconds between the white flashes, and is seconds betweensach red flash and the succeeding white flash. The machine which produces the regular rotation of the drum is lodged in the base of the apparatus.

The driving weight is about 150 kilograms; it lescends in a pit arranged in the masomry wall of the tower and its fall is about 0.90 meter per hour.
(30\%) Marhinery.-The apparatus for producing the electricity is double. It is formed of two distinct groups set up in a separate house and arranged so that either stem engine can drive either magneto-eledtio machine. The steam engines are horizontal, with surface combonsation: having separato boilers and forming two indopendent systems. Each boiler is furnished with two steam pipes so that it can feed either engine. The boilers are rated at 5 kilocrams pror square centimeter: the power of cach is 5 horse power, which can be raised to 10 .

The electricity is produced at Planier by magneto-electric machines capable of furnishing a light of 85 Carcel lamps per borse power.

The current is transmitted to an electric regulator by a commutator, which allows the machines to be coupled either for intensity or quantity, and for using them successively or separately.

The ordinary light is 400 Carcel burners and can be carried to 800 .
The luminous range of the flashes is 48.02 natical miles for the ordinary atmospheric conditions. The actual geographical range is 22.02 miles for an observer at 4.50 meters above the level of the sea.

The cost was 474,776 fiancs.
The plans were prepared by MM. Bernard, Chief Engineer, and Andre, under the direction of M. Leonce Raynaud, Director of the Light-House Service.

Chapter XLVIII.-Iron light-house at Port Vendores.

(397) To facilitate the entrance and exit of steamers plying regularly botween Port Vendres and Algeria a light-house has been constructed upon the pier head erected for the protection of this port against heavy seas.

On account of local circumstances exceptional difficulties were met with in this construction.

On one hand, they were obliged to guard against the consequences of the settling of the foundations of the pier heal, which was built on artificial blocks according to the usual process adopted in the Merliterranean. Again, it was necessary to arrange the edifice suas to lorge the keeper, and to resist the great violence of the waves, for the parapet of the pier head was only 4 meters above the level of low tide, entirely insufficient in great tempests to prevent the waves from breaking over it and striking the light-house.

Under these circumstances the idea of constructing a masonry light-house was abandoned, as well as one with an iron frame work, on account of the influence of the waves in causing vibrations, and loosening the screws of the tie rods.

It was finally decided to build this edifice (Figs. 2s: and 28:3) upon sis upright hollow iron pillars 14.50 meters long arranged in the form of a regular hexagon 2.20 meters on each side. Each of these uprights is formed of three parts. The lower part, which has an exterior diameter of 0.30 meter, 0.03 meter thick, is built, for a length of 2 moters, into the mass of the masomry and united by a coupling collar to the middle portion, which has the same diameter and a thickness calculated acording to the stress. The upper part is serewed to the middle part, and fastened at its upper extremity to the iron floorings of the platform and the service room.

The walls of the latter are formed of phate iron, which complates the bracing. It is cased on the inside with woodwork. 'The flow and the ceiling are equally of worl. Access to the lantern is ob-
tained by a spiral staircase. The risers are of cast iron, curved, movalile around the nowel post, and resting on four pieces which allow them to turn easily withont the upper risers obstructing the motion. The steps and hand fail are removable: hence in a threatening time they are rapidly taken away, and all the risers are placed according to the direction of the waves so as to aroid almost com-

pletely being struck by the waves. Under these circumstances the risers form a vertical ladder, which also gives access to the chamber and the lantern.

Arrangements are made so that the keeper may remain without commonication with land during heavy weather.

For about four years the light-house has been in regular operation without acoident, notwithstanding tempests of exceptional violence during the winter 1887-8s, which destroyed a portion of the jetty

Fia, wi.- Section and plan of the loxiging room of Port Vendres Light-honsw.
and carried away the parapet. Great dashes of spray frequently covered the lantern, put out the fire, and broke the glass in the
keeper's room. Nevertheless neither the security of the service nor the stability of the construction has been endangered. The results, therefore, may be considered satisfactory in every respect.

Cost. -The cost was $\mathbf{0 9}, 489$ francs.
The light-house was plamed and erected under the direction of M. Leferme, general inspector, by M. Bourdelles, chief engineer; M. Barbier \& Co. built the iron superstructure.

Chapter XLIX—Apparatu's, 2.gif meters in interior diameter, ('ALLED HYPER-RADIANT, FOR LIGHTING CAPE ANTIFER.

(398) The apparatus for a light-house, called hyper-radiant, appears in a universal exhibition for the first time.

It may not be out of place to call to mind that the first lenticular apparatus which Fresnel made for the light-house at Corduan, in $18 \% 2$, was a first-class light, having a diameter of 1.84 meters, the same as all those hitherto constructed. And although important improvements have been made in the lenses, yet there has never been hitherto an apparatus constructed of greater diameter.
M. Barbier, toward the end of 1885, succeeded in constructing a great annular lens of one-sixth, having a focal length of 1.33 meters and an angular aperture of f 50 degrees in the vertical plane. This lens was tried at South Foreland in 1885, and compared with the greatest of the lenses of the first order, and especially with a lens of English construction similar to that of the new Eddystone Lighthouse, a lens of 0.92 meter focal distance, which occupies equally 60 degrees in the horizontal plane, and subtends an angle of 92 degrees in the vertical plane.

Photometric measurements made by Prof. Harold Dixon, of Balliol College, Oxford, on the 13th of October, 1885, showed that the illuminating power of the lens of 1.33 meters focal length compared to the Eddystone lens (the two lenses illuminated by the same lamp) was, for the first series of experiments, as 62.2 to 31.8 , and for the second series, in the ratio of 28.9 to 13.7.

If we consider that the lens of the Eddystone type has an angle of 92 degrees in the vertical plane, while the latter, corresponding to the lens of 1.33 meters, has only 65 degrees, we see that the illuminating power of this last is not simply twice but nearly three times as great.

This apparatus was shown in the pavilion of the minister of public works.
(399) Apparatus for Cape Antifer.-The first hyper-radiant apparatus to be placed on the French coast will be for the new light-house on Cape Antifer, near Havre (Fig. 284). The optical apparatus which is 2.66 meters in interior diameter, consists of six annular panels each one occupying a sixth of a circumference and including
twelve lower catadioptric elements, ten upper dioptric intermediato elements, and twenty-six upper catadioptric elements.

The optical apparatus is placed on a cast-iron frame formed of six.

Fig. axt.-Half elevation, half section, and plan of the hyjer-radiant apparatus for the new lighthouse al (apt Antifer, near Havre.
columns supporting a cireular entablature and a central table which is accessible by a flight of steps. Upon this base a car with conical

 with the pinion of the driving muchine. 'lha clockwork of this
 duce llashes overy
 slowing andstoppiag, as well as an armaramont for winding up tho. whirht without intorruptins the rotation. 'This apmotatus will pressently be desieribed.

 GsiNG miNEMAI, oll.
(f0r) The reconstructionof the Farman light-homse and the intro. duction into the new odifice of a flashing light of the third class. afforded an upportunity for hringing tugether the different improvements which have recently been introducel into several French lighthouses burning mine wh oil. These wero shown at the exhibition.

Multiforal ophieal apmaralus.- It is the general custom to construct the dioptric eloments of the ammar lenses and the celindrical and vertical elements, employed in the optical apparatus of lighthouses, with a common focus. The same rule is applied to the catadioptric rings, and there has been hitherto only one exception.

This manner of proceeding would be required if the lenses were formed of a singlo piece, but it can mot be justified for those in eeholons on steps in use in light-honses, and still less for the catadioptric rings; for the eloments which compose them must be calculated and constructed sepmately. It is casy to perceive that it does not realize oither the maximum useful effect of the light, no the best distribution of the light upon the surfueg of the ocem, and that these results can mot be obtainen except under the condition of assigning to each element a special focus placed in the most favorable position.

By determining thas the different foci of the elements of a cylindrical lans we find that they should be takon upon the axis of revo lution above the focus of the central lens and at a height increasine with the distance of the elements from the focal phan of this lens.

This method of distributing the foci is not adapted to the ammalar apparatus the elements of which are obtained by revolution aromul a horizontal axis; but it is easy to recognize that one may realize the desired effects by taking the foci on this axis, as in the precerling case, with this difference: that the elements situated above the contral lens have their foci to the left of that of the lens, and the lower elements to the right. In virtue of these arrangements the contiguons edges of two sucerssive rings are formed of t wo concentric circles of the same ralius, which come together and unite per-
fectly without either space between or superposition. We thus avoid the defects of the ancient amular pieces of apparatus, at the
 place of contact of the dioptric elements with the catadioptric rings, which have a distinet focus placenl outside of the axis of revolution.

Thus multiplicity of foci does not complicate either the calculation on the optical construction, and presents, consecuently, adrantages without any inconvenience.
The new apparatus of the Faraman light-house is multifocal. It consists of five panels. each formed of two unsymmetric lenses, having their principal axes at an angle of 23 degrees. It: flashes are thus emitted in groups of two. In each group they last a secomd. and are separated by a little eclipse of two seconds. A great eclipse of six seconds separates each group from that which precedes and follows it. The apparatus revolves once in fifty seconds.
(401) Spherical reflector:-As the Faraman light illuminates only half of the horizon. it becomes convenient to utilize the light lost on the land side and to send it toward the sea by means of a spherical reffector. Butit has not been judged necessary to give to this reflector a radius sensibly equal to that of the lenses as has been hitherto done. It is easy to see that the result to be obtained is independent of this radius, and that one can reduce without inconvenience its length according to the convenience of the service or of the construction.

Under these conditions it is easy to make the reffectors of molded, or even of hlown, glass with great economy; a slight retouch by grinding, suffices to assure the proper regularity of the interior and exterior surtace; the latter zontal bections of an appartens liphted with petroleum oil. is then silvered and covered with a protecting varnish. Reflectors

 whject of varins improveinents, many of which have buen intw, dured in Framer, Among these we may mantion:

First. The substitution of comical whents fin shomes. pownely used, for the rolling chariot.

Secomd. The winding apparatus for the weight, promitting this weight to he raised without stomping the machine.
(-103) Automutio brake and reyulator:- - That the rotation shall humiform, reguires the action of the weight to be nawhs equal to the pmsive resistances which it has to overeomes. Whan these increase

Fig, Wio.-Regulatiog brake and Indicator of stoppage.
from any cause the apparatus is liable to frequent stoppages. To n) ${ }^{\text {viate these we must: }}$

First. Give the moving weight an extra load which shall render it capable of putting the machine in motion and overcoming the friction of its parts at the begiming.
second. Comnteract, during the motion, the effect of this extra load, which temals to accelerate the velocity.

The combination has heen realized hy means of a conical pendulum (Fig. DSí), meh arm of which is furnished with a stirrup pierced with a hole. in which a properly batanced rod can slide. This rod carries at its lower part a womden or a cork hutton, which rubs upon the interior surface of a spherical segment when the speed of rotation brings the arms of the pendulum to their normal distance apart. The friction ceases automatically when the arms approach each wther in consequence of the rotation becoming slower or stopping. In the latter case a stop prevents the rod from descending and the center of the segment is situated a little above that of the circumference described by the button when the rod rests upon its stop.

With this arrangement the surcharge is free if the machine is at rest, and its action determines the motion, which accelerates until the branches of the pendulum have taken their normal distance apart. At this moment the work of the load is equalized by that of the friction, on account of the path which the button describes upon the segment and the pressure exerted by the loaded rod on account of the centrifugal force. The movement then becomes uniform, and the rotation is maintained in the required conditions as long as the passive resistances remain constant. If they diminish slightly the rotation is accelerated, the distance apart of the pendulum balls. as well as the work of the friction increases, and the uniform motion is reestablished. It is the reverse in the case where the resistances increase. The brake works thas as a regulator and has great sensibility.

It is evident that in varying the load and the path of the rods this arrangement will accommodate itself to all the motions of the clockwork.
(404) Electrie indicator of the stoppate of the apparatus.-These machines, notwithstanding the intervention of the brake, may, notwithstanding, stop, if the keeper is negligent, and especially if he forgets to wind up the weight at the proper time. It has therefore been considered prudent to signalize such an accident by an electric hell. It is put in motion by the arms of the pendulum when they fall on account of the slowing or stopping of the machine. Their weight then overtmos an ebonite box containing mereury. This liquid closes the electric cireuit having its two poles in the box.
(to5) C'onstant lerel lamp.-The old lamps have heen replaced by lamps on a new morel with a comstant level. They consist of a eylindrical copper reservoir furnished at its lower part with a neck which can be opened or shat at, will with a cock. A central tube, open at its extremities, passes through the bottom of an upper compartment of the reservoir. arranged like a tumel, and descends to the lower part of the neck. Another vertical tube emptying on the exterior of the neck rises to the upjer part of the jeservoir, with which it communicates. The neck dips into a little tank, from whence starts the feeding tube for the wick and that of the overflow.

To fill the lamp, the cock in the neck is closed and the oil is poured upon the tunnel, and runs into the reservoir by means of the central

Fias. 2 N a constant level lamp. tule driving the air into the lateral tube. whence it escapes into the atmosphere. When the reservoir is filled the cock is opened, the oil flows into the tank until its level has attained the lower orifice of the central tube, that is to say, a constant level.* From this moment the central tube is empty, the lateral tube is full up, to the level of the oil in the reservoir, and the lamp is ready to work. If we open the wick cock it may be lighted. As the oil is consumed its level lowers in the tank and opens the orifice in the central tube by which air escapes, making the requisite quantity of oil flow into the tank so as to reeistablish the constant level.
The lamp is fixed upon one of the uprights of the lantern.
It communicates with the wick by means of tubes which pass under the frame and rise in a central column which supports the burner. This arrangement makes the service easier, especially for apparatus of small dimensions, like those of the third class. It aroids all the inconveniences of moderator lamps and properly feeds the wick.

Cost.-The expense of the apparatus for the Faraman light-house amounts to 23,300 francs.
M. Bourdelles, engineer in chicf of the service, made the plan under the direction of M. Emile Bernard, general inspector and director of the light-house service.

Chapter LI.--Improvements recently made in electric highthotses.

(40fi) Important improvements have been recently made in the electric illumination of the French const. This illumination is confined at present to eight important points, viz, Dunkirk. Calais.

[^58]Gris-Nez, La Canche, Lat Hive, Créach, Lees Baloines, and Planier. Five others are in process of erection.

Bifocal apparatus.-The small dimensions of the optical apparatus
Recent mprovements in elertmic light-hol'ses.

(0.60 meter in diameter) have been preserved. The apparatus itself consists of anmalar unsymmetric lenses, preserving the chanacter of
the electric light (flashing with groups of two, three, or four flashes), which is thoroughly appreciated by seamen. This arrangement of the optical apparatus enables the horizontal angle subtended by the lenses to be augmented, conseruently the intensity of the light increased. (Figs. 290 and 291).
The latter is still further increased by the suppression of the horizontal divergence artificially given to the lenses in the vertical elements of the old apparatus.

As to the vertical divergence, it has not been thought best to increase it artificially.
This bifocal arrangement is the most advantageous and the most appropriate for electric lighting, and it has accordingly been introduced into the new apparatus.
Caloric engines as motors have been substituted for portable engines, three, of 9 -horse power, being placed in each light-house. A single one is sufficient in ordinary times, but two are used in case of fog. or to work the fog horns. The third is used as a reserve.

The magneto electric machines used are those of M. de Méritens, which have been entirely satisfactory in all respects. A number of modifications have been introduced, viz:

The arrangement of the bobbins.--Eight have been coupled for tension, i. e, one-half in each of the five disks making up a magnetnelectric machine. The five half disks are coupled quantitively, so as to divide each machine into two half machines having separately five groups of eight bobbins in tension. Finally, by a commutator arranged for the purpose, two, three. or four half mathines may be quantitively combined.
On the other hand, it is not necessary to couple two machines when they are in use so as form a single machine. The same result is ohtained by leaving them separate and driving them by a single belt. This is accomplished by interposing between the machines a short shaft, the prolongation of those of the machines, carrying two loose pulleys, so that the driving belt can be thrown on or off of either.
(40 in) Workin! of the system. -The system of magneto-tlectric machines and their accessories allows the variation of the intensity of light according to the condition of the atmosphere.
The following table shows the different intensities admitted in the service and the means of obtaining them:

Wrather	1.1.ar	Wrimary:	Mist	Fur.
Itanneter of the carbmiprints, in millimeters.	111	110	(4)	$\because 3$
Sumber of magmotoreletro machines in uso.	$!$	1	$1!$	\because
Merhanioal mentures:				
Sumber of revoluthons fere minute	(:4)	1:4)	(13)	4,41
	$\because: 1$	3. 41	.7. 4)	7. .x

Weather...	Clear. Ordinary.		Mist.	For.
Electrical measurements:				
Intensity (1) in amperes:				
Circuit closed without the lamp.	33	is	111	1:4)
Circuit closed with lamp.	\therefore	\$1	i	94
Electro-motive force (E) in volts:				
Open circuit.	is	tis	$6 \times$	As
Closed with lamp..	11	4	41	11
Energy in watts (E 1).:				4,312
Photometric measurements:				
Horizontal intensity (L) of the electric lamp in Carcel burners.	16ir		(\%h)	测
Intensity of the beam of light emitted measured at a distance of 460 meters.				(ixk), (kN)
Effleiency:				
Carcel burner power per horse pwwer..................	13.3	85.3	$\pi .6$	Sx. 5
Number of burners per ampere..	6.5	6.4	8.1	6.9
	. 3	0.3 ì	0.71	0.:

In clear weather, i. e., ten-twelfths of the year, the luminous range of the new electric light exceeds 27 miles, which is amply sufficient. For the other two-twelfths the luminous range is insufficient on account of the fogs. but it is impossible to remedy this defect without. an outlay entirely out of proportion to the results to be attained.
(408) Electric regulatior.-The electric service as previeusly duscribed could not employ M. Serrin's regulators except by modifying them and alapting them to the new conditions of electric lighting. This has been accomplished as follows:

The current of a demi-magnetw hefore passing to the lower carbon point passes through an electro-magnet acting on a rod of soft iron carrying the detent which serves to separate the star wheel from the regulator. This rod is suspended from a horizontal axle around which it can oscillate. It is placed at the proper distance from the poles of an electro-magnet by means of a bent lever driven by a screw and furnished with two spiral springs acting in opposite directions. (Fig. 20:).

With this simple arrangement the variations in the resistance of the voltaic are and those of the current resulting therefrom determine the oscillation of the soft iron, the escape of the detent, and the proper distance between the two carbon points.

It may be noticed also that the new arrangement of exapement is independent of the lower carbon point. When the electric: lighting requires more than one demi-magneto, the circuit of the suphlementary machines is eomeceter directly with the corbon points by means of tmushes which allow the motion of the earbon-point. holders. and the regulator eonseduently continues to work umder

ELECTHIC HEGILATORS AND INDICATORS.

Fig. :xy2.-Modification of the electric-light regulator.

Fio. Wh. - Elestrie indicator of the stompare or slowing of the machinet.

Fig. Wh. - Ele ifi the limp.

As to the lighting, it is done by a hand lever which separates the carbon points the exict distance requisite for the production of the are light.
(409) Controlling apperatus. - The apparatus of an electric lighthouse is also supplemented by different instruments to indicate the Working and make known the defects which may be produced, viz:

First. A Siemens electro-dynamometer to measime the intensity of the currents.

Second. An electric indicator of the stoppages or slowing of the magneto-electric machines, by means of a bell. This apparatus consists of a traveler (Fig. 293) moving by means of centrifugal force along a fixed rod attached at right angles to the axle of the magnetoelectric machine, and which compresses a spiral spring in proportion to the velocity of rotation given to the machine.

When the velocity is insufficient the spring brings the moving piece into such a position that it closes the circuit of an electric bell.

Third. An electric signal, showing when the light has been extinguished. This consists of an electro-magnet with its coil in a circuit secondary to that of the regulator. If the light is extinguished the principal current is arrested and the secondary becomes capable of causing, by means of the clectro-magnet, the motion of a soft iron rod arranged so as to close the current of an electric bell. (Fig. 294).

Fourth. An alarm serves to awaken the keeper when any stoppage of the machines takes place.

Cost.-The cost of the varions pieces of apparatus, including the optical apparatus, the indicating instruments, three caloric ringines, two magneto-electric machines, ete., is 80,000 francs.
M. Barbier constructed the optical apparatus ; MDM. Sautter, Lemonnier \& Co., the motors, and M. Méritens, the magneto-electric machines, under the direction of M. Emile Bernard, director of tho light-house servic.
Chapter Kif.-Acolestic signals in connection with elecTRIC LIGHT-HOUSES.
(410) Programme. - It is proposed to realize in the new establishments the following progrimme:

First. To utilize as much as possible the persomel and machinery of the electric light-honses for working the acoustie signals.

Second. To arrange all the mechanism so as to produce tho somuds when needed.

Third. To emit these sounds at a distance from a light-house unflor the most favorable conditions to be heard at sea.

Compressed air is used insteal of steam, and all the apmaratus is united in the same building umber one engineer. who takes charges of the electric and the acoustic apparatus, ame the three caloric engines used to drive tho air-compressor.

The sirens are oferated ly compressed air, from a reservoir. H. Ex. 410—V゚OL H—— 0

THE ESTABLSSHMENT OF THE SOUND SHANALS IN THE ELECTRIC LIGHT-HOL゙SE OF BELLE ILE ANI BARFLECR.

Fig. 295 shows the arransement of the mathinery in the Belle Ile light-house.

Fio. 29:- Plan of the establishment in the light-homse: at belle Ihe.

Franes.
A, A. A. caloric engines. 9 horse power eath.
2.111111

B, air-compressor, 90 horse power. with water cirenkation tocool it. K. who
C. Holmes siren, with electric: mechanism for the emission atal the rythm of the sounds s. mon
D. D, two reservoirs containing 4. cubie meters of compressed air. (6, soo)
EE, two distributing reservoirs containing $i .5$ cubic meters . . . \quad. for
I, motor of one-half horse powar. 1,100
K, Gramme dynamm work the sirens

1,600
L. shafts. belts. ele. $\overline{\text { I, } 400}$

M, M. M. M. enmaging and disengarimer gear
4. 1011

P, P, plate iron reservoirs. 2, sul
R, pipes and valves. 2, 900
Sumblrits. 8. 200
Total. \quad \% 1 , (100)
S. S. electro-magnetic machines.

This sum includes much that is reçuired for the light-house itself. The extra expense is about 34,061 francs, without including the cost of erection.

The contractors were DLDE. santter, Lemomier \& Coo. under the direction of M. Bourdenles. chiof emgineer of the light-house service.

Chapter Lilf.-The mhemination of momated beoys and beacons by meats of gasoLINE.
(th1) It is very important for the security of navigation that there should be some moans of lighting economically the beacon towers on isolated ruefs. This has been surcessfully acomplishod in the following mamur.

The apparatus.--Fig. 206 consists of four burners placed in the center of a dioptic drum with a fixed light and sheltered by a cylindrical lantern. This lantern is glazed below for a height corresponding to the optical apparatus, and furnished with every arrangement requisite for ventilation and for aroiding the effeets of squalls. Its upper part is closed with phato iron riveten to up, rights built into the masonry of the tower. A dom abore the glazing allows the optical apparatus to be remosed, and the burners replaced or repaired.
(412) The burners communicate with two reseroirs, each holding 225 liters and intended to contain emongh gasoline to last for there months. These resuroirs are placed arouad the iron lantern. leaving two sectors for the service. They are sheltered from the sum, the rain, and the sea, by an iron roof, and a cylindrical cage, supported by a strong steel lattice girler which allows the luminous beams to pass through the openings. The girder is huilt into the masonry, and the whole construction is sufficiently strong to resist completely the action of the waves. To increase this resistance, the tower is raised as much as possible above the level of the sea, and its diameter at the top exceeds hy 1 or : meters tiat of the iron superstruc-- ture. which is: 2 meters.
(t13) Propertios of petroleum produrts.-Lung experience shows that all petroleum products employed in lighting. produce, by their decomposition by heat, tar deposits. and charcoal, adhering to the orifices of the burners, which. increasing with time. reduce more and more the flow of the fluid. and consermently the intensity of the flame.
The amount of these deposits diminishes, and the duration of the light increases, as the product employed is more volatile and approaches the character of the ethers. Again, the luminoms intensity diminishes as the essence employed becomes lighter. Fon these reasons. a gasoline weighing bato grams per liter, perfectly pure amd rectified. has been seleeten. As to the burners, the old tye hats been kept. They are furnishel with a capillary tube giving vent to the gasoline rapor which is projected without pressure upon a motallic spatula upon which the flame rises in the form of a butherfly. This spatula serves, besides, to heat still more the gavoline which comes from the burner. The former passes through a tube commmiating with the reservoirs and is tamped with cotom mar the humer.
(414) The arrangunent of the reservins comstitutes the most delicate portion of the prohlem. It is meressary to stome nearly half : cubic meter of gasoline to furnish this combustible as it is usend. to maintain a constant pressure at the burner in order to have a constant combustion, and, finally. to aroid all werflow of an cotremely volatile liguid capable of producing an explosive mixture whicin might give rise to a surious ancrident. For this purpusie a special contrivance was adnpted. namels: a pressure regulator bet ween each
reservoir and the burners which are fed by it. This regulator consists of a cylindrical floater which carries, in the direction of its axis, a graduated test-grgass containing a calculated quantity of mercury, into which a glass tube plunges; this tube has a stopeock aml communicates with the reservoir. The floater rises with a slight play in a receiver united to the burners by means of a tube from the bottom. The reservoir cock being open, the gasoline flows through the tube, fills the test glass, flows into the receiver, and raises the floater. As the latter rises, the reservoir tube sinks gradually into the mercury and thus reduces the flow of the grasoline until it ceases.

Fig. :M, - Section of the apmaratus for lighting bencon towers with gashline.
At this moment the level of the liguid attains in the reservoir a height of (0.30 meter above the orifice of the burner, i. e., the most favomble height for the working of the light. Then the burner may be lighted by opening the burner cocks. The gasoline rums from the receiver and lowers the floater until the flow of the reservoir equals that consumed by the burners. The permanent flow is thon established, and the apparatus works automatically with great sensitiveness, and maintains regularity of flow, notwithstanding the
thermometric and barometric variations, whatever may be the height of the gasoline in the reservoirs.
Repeated experiments have shown that the arrangements adopted answer perfectly the purpose for which they were established. The light has been kept burning one hundred and fifty days and nights without changing the burners. The luminous intensity is equal to that of three Carcel burners for a group of four burners. With the optical apparatus a light is obtained nearly equal to that of the fifth order of Fresuel lights.
No accident has thus far occurred, and everything indicates that, with simple precautions, lights may be maintained, at least in the beacon towers.
One of these was set up on the beacon tower near Ré Island opposite the new port of La Pallice, and a number are in process of erection.
(415) Cost.-The cost of the metallic superstructure, including the optical apparatus, the reservoirs, and all accessories, was 7,000 francs. As to the cost of maintenance, it camnot be calculated exactly; it varies with circumstances; it may be approximately estımated at 1,000 francs per year, as an average.
This system of lighting proposed by M. Bourdelle, chief engineer of the light-house service, was constructed by MM. Barbier \& Co.

Chapter LIV.-Graphic method of quadrature.

By M. Ed. Collignon, Chief Engineer of Roads and Bridges.
(416) The following figures, illustrating a new graphical method of quadrature, were exhibited in the pavilion of the ministry of public works.

The quadrature of a plane area may be reduced to the problem of finding the sum of adjoining trapezoids I. II, III (Fig. 997), the bases of which are situated in a right line. This summation is easily made by the following method:

Take the midulle prints, $1.2,3$ of the upper sides of the successive trapozods. Draw the line 13 ; it cuts in α the ordinate separating the traperoids I and II. Rwerse this line 12 end for emd. The point of after this reversal takes the position (12), defined by its distance $\because(1 \geqslant!=1 \pi$. It is easy to see that the product of the ordinate of the point ($1: 2$) by the sum $A(C$ of the bases is the measure of the smon of the areas of the two figures I and 11 .

We then join ($1: 2$) and :3, which gives a right line cutting in β the ordinate separating the surfaces II and III. On reversing end for end the right line (12) 3 , and taking the segment (12) ($12: 3$) $=3 \beta$; the pronnect of the ordinate of the point $(1: 3)$ by the sum A I) of the three hases, will he equal to the sum of the surfaces I. II, III.

Finally bining ($1: 3$) and 4 and taking ($1: 3)(1234)=4)^{\prime}$ we whain a point ($1: 34$) situated vertically over the middle H of the total hase A E , and such that the product

$$
\mathrm{H}(1 \geqslant 34) \times \mathrm{AE}
$$

is the sum of the smrfaces of the fome given intipezoirls.

The method is general: it applies to the algelnaie addition of positive or negative areas, to the araluation of closed areass etc.
(+1ii) The consideration of zero areas is useful for adding nomeontiguous trapezoids, and for reducing a rectangle to a given base. First. Suppose (Fig. ens) that we had to add the two figures I and III. separated ley a free interval, B, C. standing on the same line, A D: we will consider the interval B (: as a rectangle II with at height erro. which will make a connection hetween the surfaces I and III. Applyine the mothod to the thee trapezoids T: II, III, we arrive at a final puint ($1: 3$), and the product

$$
(1: 3) 1 H \times A \mathrm{~A})
$$

is the requirad area.
(+18) Second. To ehange a rectangle A $B(1)$, into an repuivalent rectangle, which has for base a given length. A. E. We will consider the required rectangle as the sum of the rectangle A BCD (Fig. ens), and a rectangle having zoro for heirft, amd B E for hase. We therefore tate the middle prints. 1 and : of the upper sides of these rectangles; we join 1 and \therefore. the line 12 cuts in a the ordinate,
which separates the t wo surfaces. and taking $1(1 \%)=2 \alpha$, we have at the point ($1: 2$) the middle of the upper side of the rectangle, A EF G. which has for hase A E, aml which is equivalent to the given rectangle. The construction avoids the last multiplication which would be meressary to compute the total area. We may take the

hase, A E , so as to render this last operation very rapid. It is sufficient to make. for example. A $E=1$ meter, or equal 10 meters or 100 meters, etc.
(41:1) The method applies to the computation of the surfaces of cross sections, to the tracing of longitudinal sections along a line, for balancing excavations and ambankments, and for the determination of the mean of given mombers without serking heforehand the total.

Finally, it applies to the quadrature of curves with the same despee of approximation as that given hy Simpsonts rule.

Divide the base A B,f the area to compute into an evon mumber of equal parts, in cight parts. for example (Fig. 30(1), at the points 1. $2, \ldots i$; erect ordinates at the points of divisiom, then draw the chords $A^{\prime} m, n m, n P, 1$ B', he joining the surcessive prints of the curve situated upon tha exen ordinates. Take the points a, b, re, d, on the deflections of the summents comprised botween the corve and the chords at two-thirds of these deflections starting from the chord.

It only remains to join a and b, which gives the point ($a b$) upon the ordinate ($?^{\prime}$, to join ($a b$) and c, which gives the point ($a b c$) on the ordinate (3); to join (abc) and d, which gives the point ($a b$ c $c i$) upon the central ordinate of the curve. The required area is the product

$$
\mathrm{AB} \times 4(a b c d) .
$$

The equidistance of the ordinates has avoided the necessity of reversing end for end the successive joining lines, the construction being thus considerably simplified.

INDEX.

A.
Page.
Abel full-fashioned legger (knitting machine) 383
Abt system for steep inclined railways 522
Acoustic signals in connection with electric-light houses
Agricultural work and food industries:
Relative value of exhibits (Richards's review) 27
Review by C. B. Richards, M. D 27
United States exhibitors, awards to 27
Aiken full-fashined footer (Abel Machine Company exhibitor) 381
Aimé-Witz, Dr., of Lille, tests by, of consumption of gas for gas engines 142
Alauzet \& Liquet, exhibit of printing presses (Richards's review) 50
Allotment of space in Machinery Hall 15
Alsatian Society's large tools 325
American Screw Company's exhibit (Richards's review) 29
wood screw machines 345
Antoinette Bridge 789
Apparatus and methods of mining and metallurgy, report by Henry M. Howe. 249
Armington \& Sims, engines 124
Arrault's couplings for rods 254
light sinking outfit 253
solid trepans. 254
Art of knitting by machinery 369
Awards to exhibitors of typewriters (Richards's review) 58
United States exhibitors of agricultural work and food products (Richards's review) 27
chemical manufactures (Richards's review) 27
machine tools (Richards's review) 28
mining and metallurgy (Richards's review) 24
sewing and clothing machines (Richards's review) 34
spinning and weaving machine! (Richards's review) 32
13.
Bahcock \& Wilcox Inilers 80
Balanced gates on the Rhône and Cette Canal, France 038
Baldwin gas engine (Otis Brothers, exhilitors) 15
Bariquand's miscellaneous tools 318
Barr, Prof. John H., report on machine tools 317
Bassegeuse or wedging drill 2038
Becot's bell and cone joints. 25\%
Belgian railway plant 467
irontie 500
State railways 470
Belleville boiler Page. 87
Berges, M. Aristides, installation of water wheels under great heads 1.0
Bibly \& Boron, exhibit of paper-bag machine (Richards's review)
Blake multiple-jaw crusher 301
Bolee, M. Ernest, giant hydraulic ram 192
ram pump 198
Boney \& Sons, heavy tools 319
Bonjour's engines 110)
Borner \& Co.'s brick machine 428
cutting table for brick machine 428
Boulet \& Co. ${ }^{\circ}$ antomatic brick press 423
tile press 421
clay-mixing mill 415
hand-screw press for tiles 416
" revolver" forcing machine for chimney flues 429,430
two forcing-screw brick machines 426, 427
vertical-flne tile mathine $.430,431$
Boulogne outer harbor works 687
Bourdon. M. Eugene, exhibit of pressure ganges 224
Brake attachment for hoisting engines 277
Brasseur's compound engines 107
Brault, Tisset \& Gillet, exhihit of turbines. 169
Braye-en-Laomnoi's tumnel 642
Brick and tiles, pottery, and porcelain:
Chimney " wagons" or flues $+1 ; 3$
Duprat's interlocking thues
Machinery, exhibit of (Richards's review) 46
Machines exhibited $119-432$
Pinette"s, Boult \& Co.'s, Joly \& Foucat's, Ollagnier's, Schmerber Brothers", IChambrette-Bellon's, Borner \& Cos.s.
Processes of and progress in manufacture 411
Report by H. D. Workls, c. E 411
Brown. C. H., \& Co.'s steam engines $12: 3$
Brown \& Sharpe's tool exhibit 3.45
Buss's speed indicators and recorders 230
(.
Cable towage for boats on camals am! siver:s (i2i)
Cadegal fan brake and gravity road at the Bilboa iron mines 292
Calais harbor works (6) 0
Caper Antifer light-honse apparatus 870
Carels Bros.' compomal angines. 120
Carriages, wagons, harne's work and saddlery :
Exhibit of cyoles and awards for (Richards's review). (12
Humber \& C'o. Rulge ('ycle ('o., pold medal ; Serpolet Brow
Healy \& Co. ${ }^{\text {s exhihit (Richardsts review) }}$ 81
(astalet bridgr. 78!
Centrifugal pumps $18(1)$
Caret loridge 781
Chambette-Bellom, J., antomatic tile press $4: 1$
hulb pipe piston machine 431
small drain pije machine 439
('hampigny's V-growed pulley for wire ropes. 278
Charon, Lomis, gas engine $14: 3$
Page.
Chaux-de-Fonds, description of water supply of 157
Chemical manufactures:
Awards to United States exhibitors of (Richards's review). 27
Relative value of exhibits (Richards's review). 27
Chimney wagons or flues. 413
Circular and jig saws for metal 333
Circulars of information for jury in general mechanice, furnished by exhib- itors 34
Civil engineering, public works, and architecture:
Bridges and viaducts. 74-800
Steel bridge at Rouen on the Seine, reconstruction of the roadway of the suspen-sion bridge at Tournog Charente. lifting bridge at La Villette (Paris), Garabit Via-duct, Gour-Xoir vialuct, viaduct over the river Tardes, consolidation of the side slopesat La Plante, tumuel through Cabres Pass, Cubzac bridge over the Dordogne. CrueizeBiaduct, Castalet, Antoinette and Laveur bridges, crossing of the Garonne at Mar-monde, Olorou railway bridge, Gravona bridge.
Civil construction and architecture. $.401-863$Sgecimens of iron coustruction in Paris, Eiffel twwer, machinery hall (Expuritionplace. 1
Hydraulic engineering-rivers and canals. 5-9-669
Hydranlie camal lifts at Les Fontinettes, France, and at Lat Ionviere. Belgium ; mov.able dam at Suresue on the Seine; Marly dam on the Seine : lock at Bougival and itshydraulic workiug appliances; movable dam at Poses on the Seine; movable fish-way atPort-Mort dam on the Seine; Torcy-Neuf reservoir for feeding the Central canal;high-lift locks on the Central camal; cable towage for toats on canals and rivers; toy-age by submerget chain with flreless engine; pmop system for supplying the canalfrom the Marne to the Rhine and the Eastern canal, France; oseillating bridge overthe Dames camal lock; balanced gates on the Rhone and Cette canal; Baye-en-Lnon-mois tumel; mavigation of the selme from Paris to the sea; embankment works forthe improvement of the tidal seine.
Introduction and acknowledgments $5: 1$
Light-houses $864-888$
At Planier, at Port Vendres, apparatus for lighting at Cape Antifer, improvementsin oil apparatus, improvements in other methods of lighting, acoustic signals, illumi-nation by gasoline of buovs and beacons, graphic method of quadrature.
Report by William Watson, Ph. IJ 551
Tidal, coast, and harkor works. 670-744
Calais hartmor, onter harlor at Bologhe, Pellot lock at Havre, iron wave breaker onthe breakwater at the sonth side of the outer harkir of Havre, single gate of theTaucarville lock, camal from Havre to Taucarville, slipway at Rouen for repmir ofships, Port of Honteur. traversing bridge over doek lewks nt St. Mato.St. Servan, hy-draulic works and pmeumati: fommation at Genom, fombdation of the jetties at laPallice, port of Ruchelle.
Weights and measures in French, converted into English equisalents. 545
Clannys safety lamp. 242
Classification of exhihits in general mer hanics : $:$
of sewing and elothing marhines(Richards's review) :33
machinery exhibits 11
Coal-transferring plant at Eleu $29!$
Cockerill howing ongine for hast furnaces :314
Compagnie Bona-(Guelma (Algeria-Tunis) exhibit $41: 3$
des Chemins de Fer da Nord axhibit 4.59
Sud exhibit 461
Omnibus et Tramways le Lyons axhihit disis
Francaise des moteurs ia (ioz axhihit $1: 4$
Internationale des wagons lits whibit. 419:
Compressed air railway motors. 314
Consolidation of the side slopers at La plante. 391
Cornely, E., exhibit of the "Couso-Brodeur" machine (Richards's review). Page. 38
Cost of compressing air for mine drills. 269
transmitting power, tables by Col. Tureffini 161
Crossing of the Garonne at Marmonde, masonry caison 702
Crossley Bros., Otto gas engines. 149
Crueiza viaduct 781
C'ubzac bzidge over the Dordogne 7π
Cuvelier's hydratic fastening for safety lamps 284
D.
Dandoy, Maillard \& Co.'s rertical spindle milling machine 320
Davis Sewing Machine Co.'s exhibit (Richards's review) 37
Davy's bafety lamp 279
Davey, Paxmant \& Co.'s engines $12 \overline{7}$
Debie, M., exhibit of millboard making machines (Richards's review) 49
De Cour's centrifugal pumps (at Brest) 189
Delaware-Deboutteville \& Malandin's "Simplex" gas engrine 137
Delcambre composing machine (Richards s review.) 52
De Morr's exhibit of lolt and nut machinery 340
De Nayer loiler 84
Derriey, M. Jule, exhibit of embroidering machine 40
Deville-Chatel \& Co.s compound engine with Fricart's gear 115
Direct-acting steam pumps 174
Display of general mechanics in United States section and awards 71
Distribution and value of awards in general mechanics. 72
Drill fluting machines 325
grinder 34^{2}
press, table, and vise 32)
Dubois \& Francois's air compressor 208
Dulac's boiler with field tubes. 91
Durozoi's ram pump) 198
F.
Edoux elevator 204
Eiffel Tower, construction of. 806
hydraulic elevators 199
Ellington's hydraulic balance elevator 209
Embankment works for the improvement of the tilal Seine 651
Embroidering machines, exhibits of (Richards's review) 38
English railway rolling-stock exhibits:
London, Brighton and South Coast Company 474
London and Northwestern Company 477
Midland Company 481
North London Company 476
Southeastern Company 475
Escher, Wyas \& Co.is engines 120
exhibit of Girard turbines in use at Chatux de Fonds 156
-Jonval turbines in use at Genoa 150
F。
Farcot's centrifugal pumps (at Kahtetheh. Egypt) 181
engines 104
Faure. M. Pierre P., axhibit of porcelain machines (Richards's review.) 46
Fay, J. A.\& Co., exhibit of wood making marhinery (Richards's review) 44
Page
Fetu, Defize \& Co.'s key-seating machines $34:$
Fishway, movable, at Port-Mort dam on the Seine 610
Fougerat's Basculeur 297
Foundation for jetties at Lat Pallice, port of Rochelle 786
Four-spindle valve milling machine 831
Fox's corrugated boiler flues and furnaces 311
machine-flanged plates. 311
French exhibits of railway rolling stock:
Compagnie Bôna-Guelma (Algeria-Tunis) 4103
des Chemins de Fer du Nord 459
Sud 461
Internationale des wagons lits. 462
Paris and Orleans Company 468
Lyons and Mediterranean Conpany 450
Société Anonyme Internationale 462
Genéralé des Chemins de Fer Economiques. 463
Special Motors 464
Western Company $4: 38$
Woolf engine 45%
French manufacturers' exhibit of wood-working machinery (Richards's re- view) 4)
French section, exhibit of sewing and clothing machines (Richards's review). 37
Frey \& Co.'s combined boring and milling machine 321
Fricot's releasing valve gear 111
Fumat's safety lamp 281
(i.
Galloway boilers 90
Garabit viaduct 756
Gear cutter for spirals $3: 7$
General mochanies :
Circular of information for the jury furnished by exhibitors 74
Classification of exhibits 73
Displays in United States section and awards 71Worthington Phmping Engine Company, grand prize ; American Ele vator Com-pany, Armington \mathbb{E} Sims, C . H. Brown \mathbb{E} Co., Crosby Stemm Gauge and Valve Com-pany, otis Bros. \& Co.. Straight Line Engine Company, Jerome Wheelock, goldmedals.
Distribution and value of awards $7:$
(ias engine exhihitors 131-134Lomis Charon's, Ravel, Ragot (getroleum, Thylur, (irimin. ('roskley Bros., Maldwin.
Hydraulic machinery $10+172$
Jonval or Fontaine thrbines, (imard turbines in use nt Chanx-he.Fomis, J. J. Reiteresheruls.
Instruments for measuring pressure. speod, ets: $24-24: 3$
Pressure gauges (Bourlon's), Buss's sperd indicators and recorders,stam emgine in-dientors, water meters (Schonheydur, Thompson).
Pneumatic jostal dispatch 219
Pumps and pumping engines. 17:3-210thring (ompany's silwer Indmine Manafacturine (ompany's), hylraulit wevators
General mechanics-C'ontinued. Page
Report on by C. B. Richards, M. A 71
Space allotted to exhibitors of 71
Steam boilers. 7i-9\%bulae with Field tubes, Sepolet's steam generator.
Steam engines. $.93-130$Exhibit in general, Weyter \& Richemomal. Farcot. Brasseur. Le Couteux \& (iarmierCorliss cut-off gear, Bonjour. Fricarts releasing valve gear. be ville (hatel is (w, withsection, in British section, Parson's compenand turbine.
Transmission of power by compressed and rarified air $\because 11-919$

- Popp system, Pretit \& Boudenot's system.
General review of the sixth group:
Allotment of spare in machinery hall 1.7
Class 4s. Mining and metallurgy $: 4$
 factures 27

53. Machine tools 28
it and min. Machinery and processes for the textile industries. 32
54. Machines for sewing and the manufacture of chothing 333
55. Manufacture of ar: icles for furniture amd dwellings 43
56. Paper manufacture and printing. 4π
57. Miserellameous machines 65)
58. Carriages, wagons, harness work and sadulhery 61
Classification 11
Description of Machinery Hall 14
General Character of the Exposition 7
Introduction. 5
Machinery Hall. 1.)
Number of exhibitors by nations and classes. 12
Particulars of boilers supplying steam. 21
steam engines used for motive power 19
Prices paid exhibitors who furnished steani 21
received for power furnished 20
Space occupied by exhibitors 13
Geneva, description and prices of water supply $16: 3$
Girard turbine and applications therent 104
Gour-noir viaduct 763
Grand Central Railway exhibit
Mixed carriage for first and secombl clase passengers 468
Twenty-ton rondola with movable sides. 469
Graphic method of qualrature 8 SK
Gravoma Bridge Tis
(iray's sufaty lamp) 240
Greemwond \& Batley's mammonth lathe- 3.\%
(iriftin (iats Engine (i. ('. Bingham. exhibitor). 149
 24
Hand and power pumps 17:3
Hardy's patent multiple work fur hrinuing coal down -ns
picks. :
Mant. Prof. Ia wis M. . report on railway plant $4: 37$
Havre. Ikellot low-k Mis. 4
iron wave breakre on the ineakwatere south side of attor hartor. To
Prage.
Healy \& Cob exhibit of carriages and award of grand prize for (i)
Heating air for compressea air motors $\because \pi$
Heginbotham, Joseph, automatic cireular ril-knitting machine 39%
Machine Companys knitting machin- Mis
Helson, M. Cyrique, exhibit 484
Hepworth knitting machine :34:3
High lift locks on C'entral Camal. F:ame. 619
Hoffmeier railway tie system 512
Honfleur, siphons and siphonag. 71.5
sluicing basin with feeding weir T18
Howe, Henry M., report on apparatus am! methods of mining and metallurg. $\because 4!$
Hulse \& Co. © tool exhibit ; 3.4
Humber \& Co., exhibit of corles an:l anam of gold nedal for Richardsis review) (i)
Hurres combined vertia al and horizontal milling machine : 1×1
Hurtu \& Hatin's exhibit of embroidering machines (Richards's review 41
precision tools. 3:2!
Hydraulic canal left at la Louviére. Belgium Tis
Les, Fontinettes, Frame i.i:
elevators in the Eiffel Tower 199
punching machine :3:3
railway (chemin de Fir (ilessimt) 503
rams. 119
works and pmennatic fomdation at (emon $\because 2$
I.
Illumination by gasoline of bunss amd beacons Nis
International Button-Hole Sowine Marhine (ompany's exhihit Rirhathes review) 34
Iron (ar Company:s exhibit 50
. .
Joly \& Foncarts lever presses for tiles 417,419
self-contained continuousty acting tile machin. $43:$
special delivery table for brick machines. 4:0.4.47
two forving-serew brick machine 406,427
Jonval turbine in use at Gemoa 11:3
K.
Kientzy Brothers exhibit of printing proses (Richarls*s reviow) 51
Kimu-Chatron process for sinking shafts 35
Knitting and embroidering:
Art of knitting hy machinery :31! 1 - 4113
Tumbe. Sational Antomati-9, fashionims
Embroidering machimes $11: 1-11.5$

Knitting mathinms :16:-:3169

J..
Lafitte's patent flux plates
Page. 312
Lagerman type-setting machine (Richards:s review) 51
Lamb knitting machine 378
Dachine Company's looper 4102
power cardigan jacket knitting machine 379
,
Lamont, C'. , tool exhibit 337
Large milling machine 344
Lil Société Anonyme des Ateliers de Construction de la Meuse of Liege 473
Laveur loridge 782
Lead rivet fastenings for safety lamps 25
Le Blanc \& Co. s bolt-forging machine 326
Le Brun's large milling machine 338
Le Couteux \& Garnier's Corliss cut-off gear 107
Legat \& Herbert, exhibit of machines for sewing straw (Richardsis review). 4
Leinhork, M. F., exhibit of paper-bag machines (Richards's review) 59
Lenoir gas engine 144
Lifting bridge at La Villette, Paris 752
Light-house apraratus, improvements for use of mineral oil 872
in methods of illumination 876
at Port Vendres 867
Lippmans lifting ram 250
patent filtering colomm 249
morlification of the Kind-Chaudron prosess for shaft-sinking -262
nippers for shaft-sinkingr
pipe cutter 9.5
reamer 250
Lock at Bougival and its hylraulic working applances 572
Locomotives, table of general data 542
without fire 464
M.
Machines for forming cutters 322
fluting hayonets. 319
sewing straw (Richards:s review) 41
Machine tools:
American siscrew Company's exhibit (Richards's review) 29
Awards to United States exhibitors (Richards's review) 28Brown \& Shares Manufacturing Company, Willian Sellers © Co., American ScrewCompany, G. F. Simomds, Stiles \& Parker Press Company, American Tool and Ma-chine Company, E. W. Bliss © Co., Morse Twist-drill and Machine Company, II. J.Sternberg is Son., The Tannite (ompany, Warner \& Swasey
Report 'by I'rof. John H. Barr.317
(ieneral remarks, bariguand's miseellameous tonls, machine for fluting bayonats; buney \& Son's heavy tewhs. phaner for chamfering plates, Dandoy, Maillard \& Co.s vertical spulle milling machine, drill jr:ss, table, and wise; Freyd Co.s combined boring and milling machine: Hurre's comblued vertical and horiantal milling machine, machine for forming cutters; Hurtu \& Hantin's precision tools, tap straightening ma-hine, drill fluting madine; Richards \& Co's she phaner; Le Blane \& Co.s bolt. forgith malhine, nut-chamfering machfar; C. Jamont's exhibit; Surys machhe for panching ralls, ete: Panhard id Lavassor's band waws for sawing metal, saw sharpener, cirenlar saws and jig saws for metal; Protot's milling machine; Rainte.
 Scuifty's large tomes, giar eutter for spiral geare: Le: Brun's harge milling machine,

 ing machine for rectifying, large milling machine: American sorew fompanys wood-
Machine tools-Contiuued.
screw machines; Brown \& Sharpe's exhibit; William Sellers\& Co.'squick-return planer; Seller's drill grinder; Warner \& Swasey"s monitor lathe, four-spindle valve milling machine; Greenwood \& Batley s mammoth lathe; Hulse \& Co.'s tools; Selig, Somen- thal \& Co.'s wheel-too h cleaner and other grinding machines; Pearn's lightning tap- per: Oerlikon machine Works' bevel gear planer.
Review by C. B. Richards, M. A. 28
Simond, Geo. F., forging machine (Richards's review) 30
Steinlen \& Company's works and exhibit (Richardsis review) 28
Machinery for knitting and embroidery, report by J. M. Merrow 365
Machinery Hall, construction of 832
description of 14,16
MacKellar, Smith \& Jordan Company, award of gold medal to (Richards's review) 51
Magnetic fastenings for safety lamps 286
Magnet's system of railway curves 517
Malissard-Toza's automatic " Basculeur" or dumping plant 205
Marly dam on the Seine. 570
Marsaut's safety lamp 283
Masonry caissons at the crossing of the Garomme at Marmande 702
McCoy, S., exhibit of pneumatic tool (Richards's review) 46
Merrow, J. M., report on machinery for knitting and embroidering. 365
Metropolitan railway of Paris exhibit 525
Miani, Silvestrie et Cie, exhibit 484
Millboard-making machine, exhibit of (Richards's review) 49
Mine transportation by hanging chains at Ain-Sedma, Algeria 289
Mining and metallurgy:
Awards to United•States exhibitors (Richards's reviewi) 24
Cyclone I ulverizer Company, Ingersoll Rock Drill Compmy, Theodore Bhake, ElmerSperry \& Co.

- Blowing machinery for metallurgical works 304
Cockerill engine.
Boring and shaft-sinking. $249-262$
Lippman's patent filtering column, lifting ram, reamer, pipe cutter and nippers forshaft-sinking; light sinking outfl, solid trepans, couplings for rods, bell and conefolnts, Kind-Chaudron process for sinking shafts aud Lippman's modifleation.
Crushing machinery$.301-304$
Blake multiple-jaw crusher.
Gyrating screen for conl, exhibited by E. B. Coxe. (Richards's review) 24
Hoisting machinery $.270-278$
Tail rope counterweight at the Lyons shaft of the Moitrambert de la BerandiereCoal Mining Company, Rossigneux's pump-rod balance, brake attachment for hoistingengines, Champigny's V-grooved pulley for wire ropes.
Mining tools and appliances $278-280$Safety lamps (Gray`s, Fumat's. Dnvy`s, Clanny`s, Marmat's, Mueseler's); fasteningsfor safety lamps (Cuveller's, maguetic, lead-rivet); steel mine cars, Hardy's patentpicks and multiple wedge.
Mining transportation, ete 289-301Transportation by hanging chains, at Arn-Sedma, Ageria; Cadegal fan-brake andgravity road at Balboa; Malissarl-Tozs's automatic "Barculeur," or dumping plant;Fougerat's " Basculcur" conl-tranifuramp phant at Elen.
Reriew by C. B. Richards, m. A 24
Rock drills and air compressors for mines. 203-270
Bosseyeuse drill. Dutools \& Francols, air com ressor, cost of compressing air, venti-
Iation by the Kniting jet hower, henting air for eompressed air motors.
Rolling mills and iron-working appliances, ate 305-312
Universal reversing-phate mill of ('hatillon et Commentry, reversing en-inch brom-
ing and rail train at Videnciennes. Fox's patent eorrugated boller flues and furnaces,
Iafitte's patent flux plates, silf-skimming foundry lade.
H. Ex. 410-VOL III-i7
Miscellaneous machines: Page.
A wards to exhibitors (Richards's review). 58Of typewriters: Caligraph, Hammond, Remington, gold medals: Bar-lock. Columbia.Mercury, World, silver medals; Hall, hronze medal.
Of wire corkserew machines: ' Clough \& Meconnell, silver medal.
Of cash registering and adding machines: Lamsen Cousolidated store service Compauy, silver medal.Of finishing and bunching cigar machines: John R. Williams (ompany. silver medal.Number of grold medals awarded (Richards's review)5.5
Paper-hag machints, exhibit of (Richards's review). 59
M. F. Letinhach, Bibhy \& Baron, Planche Prethers, Claude Rochette.
Thorne typesetting and distributini, machine (Richards's review) 53
Typewriters, exhibit of (Richards's review) 55Remiugtou. Caligraph, Bar-lock, Hummond, Hall, Columbia, Mercury, Worlh, Sas-kelyness. Velagraph.Miscellaneotus Railway Exhibit:Arbel wheels529
Brouhon, Pierre, dumping car. 527
Ferand system of supporting car bodies. 528
Gruson coupler. 508
Inloes, W. H., turn-tahle lock 526
Merchants' Dispateh Transportation Gompany. refrigerator car. 527
Foulet \& Co., bridge, switch semaphore. car 526
Peckham Street Car and Wheel and Axle Company 529
Valère Mabile. iron work. 527
Montrichard's valveless pump 173
Movable dam at Poses on the Seine 588
Suresnes on the Seine 564
Mueseler's safety lamp 983
N.
National Automatic Knitter for seamless hosiery (Walter P. McClure, ex- hibitor) 401
Navigation of the Seine from Paris to the sea 649
Nezeraux's centrifugal jet pumps. 190
Number of exhibitors in machinery hall by nations and clases 10
Nury's machine for punching rails, etc 327
Nut-chamfering machine 320
Nye \& Fredick automatic circular rib-knitting machine 376
circular rib-cuff machine 394

0.

Oerlikon bevel-gear planer 357
Ollagnier's lever press for tiles 417
Oloron railway bridge 796
Oscillating bridge over the Dames Canal lock 638
Otis elevators 209
railway joint 511
()tte) gas engine 184
1
Paget warp knitting machine 388, 380
Paine, S. White, shoe-lasting machine (Richards's review) 43
Panhard \& Lavassor's band saws for sawing metal 324
Paper and printing :
Page.Debie millboard machine (Richards's review)49
Delcambre composing machine (Kichards's review) 52
Exhibit of paper-making machines (Richards's review) 47
Darblay, DNayer \& Co., Dautrebaud \& Thiry, Eseher Wyss \& Co.49C'ampbell Printing Press Company, Casey Machine and Supply Company, Golding \&Company, Likerty Machine Works, John Thompson, Ve Alauzet \& Tiquet.Kientz:Bros.
Thorne typesetting and distributing machine (Richards's review) 53
Type and type-printing material (Richards's review) 51
Setting and distributing machines (Richards's review) 51
Iagerman, Delcambre. Thorne.
Paper-bag machines (Richards's review) 59
making machines (Richards's review).. 47
Paris, Lyons \& Mediterranean Railway Compans's exhihit 450
Parson's compound steam turbine 128
Particulars of lwilers supplying steam in machinery hall 21
steam engines used in machinery hall 19
Paulet's metal railway tie 516
Pearn's lightning tapper. 357
Petit \& Bondenot's system of distributing power by rarified air. 218
Pinetti's atiomatic tile press 420
cylinder mill for mixing clay 415
forcing presses, piston and roll. 424.425
Planer for chamfering plates 319
Planier lighthouse 804
Popp system of transmitting power by compressed air and electricity (Pari- sian Company, exhibitor) 212
Portable railways 50
Postal dispatch and telegraph bureau of France, exhibit of pueumatic dis- patch tubes 219
Power serew press for tiles, driven by friction disks 16
Pretot's milling machine : $: 3$
Prices for power furnished, etc., in machinery hall (Richards's review) 20
paid exhibitors who supplied steam for machinery hall (Richards's re- view) 21
Printing presses. exhibits of (Richards's review) 49
Processes of. and progress in, the manufacture of brick and tile 411
Pump system for supplying the canal from the Marne to the Rhine. and the Eastern canal. France. 835
Pulley lathe :338
Pumping engines 17.
12.
Railway block signals:
Compragnie de louest 53
du Midi. 931
Lesbros system 5382
Simplex railway patents syndicate. 530
Train staff system (Welh \& Thompson). 532
Railway hidge joint 510
carriages table of general data relating to 542
joints and fastenings. 510
Page
Railway plant:
American road machines 588-540
Champion, Leader, Lamborn.
Block signals$.530-533$
Compagnie de louest, Compagnie du Midi. Lesbros system. Simplex railway pat-ents syndicatc, train staft system (Webb \mathcal{E} Thompsou).
Deductions and comparisons 540
Electric motors $.533-537$
Sprague Company, Thomson-Mouston, International Company.
Installation437
Miscellaneous United States exhibits 539-580
Bishop combination joint, Boyden power brake, Laird automatic coupler, equip-ments and supplies by New York Commercial Company; models by Railway NewsCompany; Steven's crossing gate, car coupler, brake, aud combined antiderailiugswiteh, frog and erossing ; Tubular Barrow Machine Company, Warren's lever jacks.
Permanent way507-530Webb tie, Belgian iron tie, rail joints and fastenings, bridge joint, Otis joint, Hoff-meier system, worden cross-ties, other metallic ties, Paulet system, Sandbery system,Maghat system, portable milways, Abt system for steep inclines, hydraulic railway(Chemin de Fer Glessant) Metropolitan Railway of Paris, miseellaneous.
Report by Prof. Lewis M. Haupt 437
Typical exhibits 438-508
French.-Western Railway Company, Paris, Lyons and Mediterranean Company,Woolf Engine, Compagnie des Chemins de Fer du Nord, Compagnie des Chemins deFer du Sud, Socécté Anonyme Internationale, Compagnie Internationale des Wigons-lits, Société ctenéral de Chemins de Fer Economique, Compagnie Bina-Guelma (al-geria-Tunis) special motors, locomotive without fire. Compagnie des ommibus et tram-ways de Lyons, Socifté des Anciens Etrblissements Cail.Belginn.-Grand Central Railway, Belgiau State Railways, Tank locomotive madeby La Sociaté Anonyme " La Mettallurgique" of Brassels, La Sociéte Anonyme desételiers de Construction de la Meuse of Liege. Visine Kagheno at Malines.
English.-L Andon, Brighton and South Coast Railway Company, Southeastern Railway Company, North Loudon Railway Compauy, Londou and Northwestern Railway Company, Midland Railway Company.
Swiss.-Société Suisse of Winterthur.
Italiau. -Société des Chemins de Fer de Méditerranée of Milan. Societé Italienne des Chemins da Fer Míridionaux of Florence, Miani, Silvestri et Cie. of Milan. Mr. Cyriaque Helson of Turin.
United States.-Baldwin Engines, Pennsylvania Railroal Company, Strong Iccomotive, F. K. Porter \& Co. locomotlve.
Special-Decauville Rallway engine for high speed, speed regulator, Iron Car Company, compressed air motors.
Ravel gas engine 146
Reconstruction of the roadway of the suspension bridge at Tournoy-Charente. 748
Reidler, Professor, of Berlin, investigation by, of Popp's system of transmit- ting power by compressed air 216
Reiter, J. J., exhibit of turbines 168
Relative value of exhibits in agricultural work and ford industries (Rich- ards's review) 27
of chemical manufactures (Richards's review) 27
Reports:
Apparatus and methods of mining and metallurgy, by Henry M. Howe 249
Brick and tile, porcelain and pottery. by H. D. Woods, C. E, 411
Civil engineering, public works and architecture, by William Watson, Ph. D. 551
General mechanics. by C. B. Richards. m. A. 71
Machine tools, by Prof. Jolin H. Barr. 317
Machinery for knitting and embroidering, by J. M. Merrow 305
Railway plant. by Prof. Lewis M. Haupt 437
Reversing 20-inch blooming and rail train at Valenciennes, $\mathbf{5}, 000$ horse power
Pego.
Reviews:
Agricultural work and food industries, by C. B. Richards, m. A 27
Machine tools, by C. B. Richards, M. A. 28
Mining and metallurgy, by C. B. Richards, M. A 24
Richards, C. B., M. A., general review of sixth-group mechanical appliances 5
report on general mechanics 71
review of agricultural work and food industries 27
machine tools 28
mining and metallurgy 24
Richards \& Co.'s side planer 325
Ragot petroleurn engine 147
Root boiler 82
Roser boiler 86
Rossigneux's pump-rod balance 272
Roux. Combaluzier \& Lepape elevators 200
Rudge Cycle Company, exhibit of cycles, and award of gold medal for (Rich- ards's review) 62
s.
Safety lamps 278
Sandberg metal railway tie 517
Sainte Kahn \& Co.'s emery wheels and grinders. 334
Saw-sharpener 339
Saxony lnitting machine (Abel Machine Company, exhibitor) 385
Schmerber Bros. power press for tiles 418
Schönheyder water meter (Beck \& Co., exhilitors) 234
Sectional steam boilers 76
Self-skimming foundry ladle 312
Selig, Sonnethal \& Co.‘s grinding machines 35
Sellers's drill-grinder 349
Wm., \& Co., quick return planer 347
Serpolet's instantaneous steam generator 93
Bros' exhibit of steam tricycle (Richards's review) 62
Sévérac's metal railway tie. 516
Sewing and clothing machines:
A wards to United States exhibitors (Kichards's review) 34
International Bution Hole Machine Company, Wheeler \& Wilson ManufacturingCompany, Davis Sewing Machine Company, New Home Sewing Machine Company,Singer Sewing Machine Company, White Sewing Machine Company, Paine ShowLasting Machine Company, medals.
Classification of exhibits (Richards's review) 33
Cornely, E., exhibit of "Couso-Brodeur" (Richards's review) 38
Davis Sewing Machine Company (Richards's review) 37
Derriey, M., Jules, exhibit of (Richards's review) 40
French section, exhibit in (Richards's review) 37
Hurtu \& Hautin. exhibit of 40)
International Buttonhole Sewing Machine Company, (Richards's review). 34
Legat \& Herbert's machine for sewing straw (Richards's review) 41
Machines for sewing straw (Ric hards's review) 41
Paine's shoe-lasting machine (Richards's review) 43
Singer Minufacturing Company (Richards's review) 36
Wheeler and Wilson Company (Richards's review) 35
White Stwing Machine Company (Richards's review) 37
Shell bwilers 00
Page.
Ship repair slipway at Rouen 704
Simonds, Geo. F., forging machine (Richards's review) 30
Singer and Company's exhibit of sewing machines (Richards's review) 36
Slotting machine 339
Smith \& Coventry's tool exhibit 356
Société Anonyme Industrial exhibit 462
des anciens établissements Cail exhibit 466
Chemins de Fer de la Méditerranée exhibit 48.4
Générale de chemins de Fer Economique exhibit 463
Italienne des Chemins de Fer Méridionaux exhibit 484
Suisse of Winterthinr exhibit 483
Space allotted to exhihits in general mechanies 71
occupied by exhibitors in machinery (Richards's Review) 13
Special grinding machinery for rectifying railway engines and appliances 343
Decauville railway 500
engine for high speed 501
speed regulator 502
railway motors 464
Specimens of iron construetion in Paris 801
Spinning and weaving machines:
Awards to United States exhibitors (Richards's review) 32
National Cordage Company; Fureka Fire-Iose Company,
Spring-needle circular knitting machine (J. S. Crane \& ('o., exhibitors) 390
Steam engines, exhibit of 98
indicators 233
in British section 12%Invy, Paxman \& (co.in United States section123C. II. Brown \& Co.: Straight Line Engine Company; Arnington\& Sims; Jerome Wheelock.
Steam gauges 22.4
Steel bridge at Rouen on the Seine 745
mine cars 285
Steinler \& Co. is machine works exhibit (Richards's review) 28
tool exhibit :3:3)
Straight-knitting machines. 376
with fashioning mechanism 386
power mechanism 380
Straight-Line Engine Company's exhihit 124
Sulzer's engines 116
Switzerland Railway exhibit 483
'I.
Tail rope counterweight at Lyons coal shaft 270
Tank locomotive made by La Société Anonyme "La Metallurgique," Brus- sels 472
Tap-straightening machines 324
Taucarville lock, single gate, canal from Havre to Taucarville 702
Taylor gas engrine 148
Terrot's circular knitting machine. 391
with spring needles 302
Tests of gas consumption by gas engines 142
Thompson, John, water meter 241
Torcy-Neuf, reservoir for feeding the Central Canal, France 612
Towage for lonts ly a submerged chain with a fireless engine 631
Training rivers through tidal estuaries, essay by Prof. Vernon-Harcoart 653
Page.
Trarersing bridge over dock locks at St. Malo-St. Servan 718
Tunnel through Cabres Pass 773
Turrettini, Col., tables by, of cost of transmitting power 161
Tuttle knitting machine (Lamb Company, exhibitor) 398
Type and type-printing material (Richards's review) 51
setting and distributing machines (Richards's review) $5 i$
writers, exhibit of (Richards's review) 55
U.United States railway exhihits:Baldwin engines485
Pennsylvania R. R. Co 49.9
Porter, H. K. \& Co., locomotive 499
Strong locomotive 497
United States section in Machinery Hall (Richards's review) 9
Universal reversing plate mill of Chatillon et Commentry 313
Usine Ragheno at Malines 413
V.
Vernon-Harcourt, Prof., essay on training rivers through tidal estuaries 053
Viaduct over the river at Tardes 769
Villez movable dam on the Seine. 006
W.
Warner \& Swasey's Monitor lathe 350
Water meters. 23.4
Watson, William, pif, D., repost on civil engineering, public works, and architecture 5.51
Webb railway tie 509
Weights and measures in French converted into English equivalents. 54
Western Railway Company of France, exhibit:
Acetate of soda heaters. 441
Carriage with sleeping apartment 412
Express locomotive with coupled drivers and bogie 441
General data relative to engines 438
Heaters with interior flues 4115
Mixed carriage for light trains. 44
Molding and machinery $44 \times$
Special devices and apparatus 44π
Tender with two axles 44
Thermo-siphon heaters 447
Uncoupling device. 445
Weyher \& Richemond engines. 99
Wheeler \& Wilson Co.'s exhibit of sewing machines (Richards's review) $3:$
Wheelock. Jerome, engines 124
pumping engine (De Quillac \& Meunier, exhibitors) 181
White Sewing Machina Co.'s exhibit (Richards's review) 37
Wood-working and furniture machinery:Exhibits (Richards's review)44M. Pierre, J. Faure, J. A. Fay \& Co., French mamofacturem; S. MeCoy"s pmemmatietowl.
Woods, H. D., C. E., report on brick, tile, porcelain, and joxtery 411
Worden railway cross-ties 515
Woolf railway engine 48.5
Worthington, Henry R., exhibit of direct acting stem pig. $1: 6$

[^0]: * The general arrangement of the ground floor of Machinery Hall is well shown on the plan of the Champs de Mars, in vol. I of the reports.

[^1]: * This crusher is described in Mr. Henry M. Howe's report.

[^2]: *These illustrations are taken. by permission. from "• Engineering," London, August 30. 1889, where the incention is described more fully than in this report.

[^3]: *Mr. Hering's report is contained in this volume.

[^4]: * Companie des Fonderies et Forges de l'Horme, Chantiers de la Buire, Lyons.

[^5]: * Joth kinds of Hurtu \& Hantin machiars mentiond alose are veryelearly illus-
 series, vols. íand 9).
 + Mr. H. D. Wowls collereded the greater part of the information relating to ambroidering and straw-hraid maddines

[^6]: * I general view of the complete machine, and a notice of its operation. somewhat in detail, can be found in the "Boot and Shoe Recorder." Boston. December 13. 1×88.

[^7]: * Engineering. London. July 1, August $\stackrel{3}{ }$ and $? 3$, September 6 and 31 , and October 4. 1 8s9.

[^8]: * For a description of the justifying machine see " Engineering," London, March 7, 1890.

[^9]: * The term tubulous boiler is applied to a kind composed chiefly of tubes which contain the water to be evaporated and are surrounded by the flame and hot gases, in distinction from a tubular boiler, which consists of a shell containing the water and traversed by tubes which form flues for the hot gases and are surrounded by the water.

[^10]: *The Root boiler originated in the United States, where it has been introduced extensively.

[^11]: *An automatic steam actuated cut-off was patented in the United States in 1866 by Babcock \& Wilcox, who introluced quite extensively engines having this feature. Illustrated descriptions of their system can be found in Engineering. of January 1, 1860, and August 26, 1870.

[^12]: The arrangement for engrines of 30 horse-power and under will first be described, and its increased simplicity for engines of larger power will then be pointed out. For an engine of 16 horse-power, for example, a smail gas pipe furnished with a three-way cock is fitted on the igniting apparatus: an admission passage for gas traverses the barrel of the cock, and a small hole of suitable section communicating with the outer air is pierced in this passage. An india-rubber tube connects this gas pipe with the gas supply of the engine, and at the point of junction is fixed a small graduated cock (which may be called the gas cock), the degree of opening of which regulates the proportions of the explosive mixture. The method of starting is as follows: The engine must previously have been stopped at the ignition point. which is easily done by means of the three-way cock. The induction coil is fitted with a contact breaker, which interrupts the flow of sparks between the platinumpoints. When this is done the three-way cock is first opened. and then the gas cock to the marked position. The fly wheel is now slowly turned todraw in the explosive mixture, and when the piston has made two-thirds of its stroke, the threeway eock and gas cock are closed; then the plug of the large gas cook used when the engine is rumning is turned, and set at the position convenient for starting: the fly wheel is turned bnekward to compress the charge, the electriceurrent switched on,

[^13]: *See the report on Electricity, by Mr. Carl Hering, in this volume.

[^14]: * These tables were taken from a work by Beringer: " Kritische Vergleichung der electrischen Kraftübertragung." The costs, which were given in marks, were converted into francs, and the tables published in the Génie Civil of February 2, 1889.

 H Ex. 410-VOL III--11

[^15]: *Thr circumferential speed of a 164 -foot wheel at 230 turns jer minute is about 6.) per cent. of the velocity of flow due, theoretically, 10 a head of 1,000 feet.

[^16]: Diameter of rumner, outside. .inches. . 150
 Diameter of central opening in the rumner, also diameter of inlet pipe. .do.... 96.4
 Width of runner blades-

[^17]: *Annales des Ponts et Chaussees, September, 1888.

[^18]: * See pare 161. The fact that the origimal souree of peswer is derived from a fall of water makes these systems praticable in (reneva.

[^19]: *Professor Kennedy's estimates give 348 cubic feet.

[^20]: * For an illustrated description of the engine see Engineering, London, June 14, 1889.

[^21]: *See Le Genie Civil, xilf, No. 25, p. 390, Octoler $20,1888$.

[^22]: * Edouard_Lippmann et Cie.. 36 Rue de Chabrol, Paris.
 \dagger A. Paulin Arrault. 69 Rue Reshechouart, Paris.
 \ddagger H. Becot, 25 Rue la Quintinie, Paris.

[^23]: * Condensed from an interesting paper by M. Chatudron; excerpt from "Industrie Moderne," A. D. 1889. 51 Rue Taitbont, Paris.
 \dagger Trans. American Inst. of Mining Engineets, v, p. 117, 18it. M. Dely here illustrates the tools used in this process. See also a paper by Mr. A. Demmler, read hefore the Manchester (reological Society, January $29,188_{8}$ Fig. 10 is taken from this last paper.

[^24]: *This form of free fall was invented by M. A. Vancranem, and patented (in Belgium) on April 18, 1879.

[^25]: * L’air comprimé et les Bosseyeuses aux charbonnages de la Société de Marihaye, it Flémalle-Grande, par Mr. Mathieu Dubois. Liége, Chas, Gordime et fils. Date not given, but thought to be 1889. I venture to suggest the name wedging drill for this machine.
 \dagger Figs. 15 to 22 and the description of the drill given in quotation marks are from Engineering, July 12, 1889, p. 44.

[^26]: * By addressing the Société Anonyme des Houillères de Montrambert et de la Béraudière, 4 Quai de l'Hôpital, Lyons, France, the reader can probably obtain a copy of their pamphlet distributed at the Paris Exhibition of 1889, and containing a fuller account and a mathematical discussion of this counterweight.

[^27]: * Described in l'Industrie Minerale, vol. vir, 2d series. The Bochkoltz, of which it may be regarded as a modification, is described in the same journal, vol, xiv, 1st series, and vol. I, 2d series. See also a pamphlet distributed at the Paris Exhibition of 1889 , and probably to be had by addressing the Société Anonyme des Houilleres de Montrambert et de la Bérandiére, 4 Quai de l'Hôpital, Lyons, France.

[^28]: *For the information and, indeed, reasoning on which these remarks are based, I am indebted to a considerable extent to the papers presented by Messrs. Marsaut, Le Chatelier, and Fumat in connection with the Exhibition, or with the International Congress on Mining and Metallurgy: "Les Lampes de Sûreté," J. B. Marsaut, Besseges, France; "Lampes de Sûreté," H. Le Chatelier, extrait du Bulletin de la Soc. de l'Industrie Minérale, 2d ser., in, 1889; "Lampe Fumat," 1889, Alais.

[^29]: * Remarks at the International Congress on Mining and Metallurgy, based on his experiments of September $5,1889$.

[^30]: *For further information, see a pamphlet by N. J. Raffard, May 1889, "Fermeture des Lampes de Súreté des Mines," to be had from Maison Bréguet, the makers of the apparatus, 19 Rue Didiot, Paris.

[^31]: *Communication sur les Divers Moyens de Transport Mechanique Employés dans les Exploitations de Minerai de fer de Bilbao, par M. Malissard-Taza. 1881,

[^32]: *For a further description of this process see, under Class 53, the general review of the sixth group, in this volume.

[^33]:

[^34]: * Several of the abser aleseriptions ate abstracts from the full reperts on the liarin
 for drawings and more minute details.

[^35]: * Fingine ring. Augast \because gesa.

[^36]: * See special exhilits. page se8.
 \dagger Vide Revue Universelle des Mines, January, 1884.

[^37]:
 \dagger Abstract from Engineering, July 5.

[^38]: * Extract from the Railway Age, Chicago, March 8, 1889.

[^39]: * The Railroal Gazette, its Broalway. New York.

[^40]: * For fuller descriptions and tests sere Franklin Institute Journal of February, 1sys, vol. exav. Philadelphia, Pennsylvania.

[^41]: * Fuginma of Permanent Way. Notherlanlatate Railway Company.
 \ddagger Ammal report on Railroads of (iermany.

[^42]: * Engineering. July $26,1689$. p. 117.

[^43]: *Sketches accompanied by a more complete desaription of this invention will be found in Engineering News of August 31 and Octoter $23,1884$.

[^44]: *This is a mean of 4,769 operations.
 \dagger This time would have been reduced to 3 minutes if the section of the conduit between the presses had not been reduced as a precautionary measure.

[^45]: * This ring being there for the sakeof its volume, and not for weight or strength, the use of worl is naturally imlicated.

[^46]: * M. Camere pointed out to the nuthor a new stoamer of f(a) tons burden. built for the coasting trade, just returned from a voyage to Spain.

[^47]: * From the proceedings of the Royal Sexciety, Vol. 4is, p. 304.
 + Instit. ('iv. Fngin. Proc., Vol. 84, pl. 946 and 99 , and Pls. 4 and 5.

[^48]: *Instit. Civ. Engin. Proc., Vol. 84, p. 241, and Pls. 4 and 5.
 †Étude sur la Navigation des Rivières a Marées, M. Bouniceau, p. 15:. Pl. :2.
 \ddagger Instit. Civ. Engin. Proc., vol. 84, p. 247, and Pl. 4. Fig. 9.

[^49]: *Instit. Civ. Engin. Proc., vol. 84 , Plate $\overline{5}$, fig. 1.

[^50]: * "La Seine comme Voie de Communication Maritime et Fluviale," J. de Coene, 1883, p. 11, and phate 7.
 f"Projet des Travaux a faire a la`Embouchure de la Seine." L. Partiot, Paris, 1886.
 \ddagger Mémoires de la Ssciété des Ingénieurs Civils, Mars, 188s, Paris, pp. 2.97 and 273, and Pl.162, Fig. 2.

[^51]:

[^52]: * For drawings and informatom 1 ann indebted to the notice of this work pre-
 and hridges.

[^53]: of Framee.

[^54]: * Annales des Ponts et Chausseees, Sixth Series, Vol. 11.

[^55]: * Tessandier.

[^56]: * Abrove the level of the sea.

[^57]: A GROUP OF FIGUAES SUPPORTING THE LINTEL OF MACHINERY HALL, AND REPRESENTING ELECTRICITY; BY M. BARHIAS.

[^58]: * When the lower coxck is opened the air in the reservoir is slighty rarified. by the oil passing into the tank. The outer air enters the central tube and clears it. and as the oil rises it is forced up the lateral tule as high as the level of the oil in the reservoir.

